CN111244471A - 一种固体氧化物燃料电池阳极及其应用 - Google Patents

一种固体氧化物燃料电池阳极及其应用 Download PDF

Info

Publication number
CN111244471A
CN111244471A CN201811445050.5A CN201811445050A CN111244471A CN 111244471 A CN111244471 A CN 111244471A CN 201811445050 A CN201811445050 A CN 201811445050A CN 111244471 A CN111244471 A CN 111244471A
Authority
CN
China
Prior art keywords
anode
active particles
fuel cell
solid oxide
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811445050.5A
Other languages
English (en)
Other versions
CN111244471B (zh
Inventor
程谟杰
赵哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201811445050.5A priority Critical patent/CN111244471B/zh
Publication of CN111244471A publication Critical patent/CN111244471A/zh
Application granted granted Critical
Publication of CN111244471B publication Critical patent/CN111244471B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明公开了一种固体氧化物燃料电池阳极及其应用,其特征在于所述阳极由骨架层和活性颗粒组成,其中,骨架层为LnxSr1‑xTiO3—GdzCe1‑zO2复合物,LnxSr1‑xTiO3与GdzCe1‑zO2的质量比为70:30~30:70,Ln为La,Pr,Sm,Gd,Er,Yb,Y中一种或几种,0≤x≤0.4,0≤z≤0.3,骨架层厚度为10‑50微米,活性颗粒为NiO或NiO—GdzCe1‑zO2复合物,活性颗粒均匀负载在骨架层表面,占比阳极质量分数为2%~20%,活性颗粒大小为10~300纳米。本发明的固体氧化物燃料电池阳极,具有良好的电化学性能,显示出优异抗硫中毒稳定性,特别适合适用使用生物质燃料的固体氧化物燃料电池发电。

Description

一种固体氧化物燃料电池阳极及其应用
技术领域
本发明涉及燃料电池领域,具体涉及一种固体氧化物燃料电池阳极。
背景技术
固体氧化物燃料电池(SOFC)不仅可以使用氢气作为燃料发电,还可使用天然气、煤制气、生物质燃气等燃料发电。SOFC发电效率位居各种燃料电池之首,一次发电效率可以达到60%以上。SOFC与余热利用系统等集成,可以实现热、冷、电联供,综合能量利用效率可达到90%,适合于城市用户端的分布式供能。
阳极是SOFC关键材料之一,要求其具有良好的催化活性、电导率以及足够的孔隙率,还必须具备工作条件下的化学稳定性、热稳定性与机械强度。目前,研究较多的SOFC阳极材料是金属陶瓷复合材料Ni-YSZ,该阳极显示出较高的电化学性能。但是,当使用碳氢燃料时,例如SOFC以生物质燃气为燃料发电时,一方面,Ni-YSZ阳极存在严重的积碳问题,导致阳极催化活性不断损失,积碳易造成阳极孔道阻塞;另一方面,生物质燃气中杂质气易引发阳极催化剂中毒,导致电池性能降低[Fuel Processing Technology 160(2017)8-18]。其原因主要是H2S的H-S键很弱,很容易在过渡金属上分解,而S的P轨道和金属M的D轨道大部分重叠,所以导致S-M(M=金属)键很强,形成的硫物种不易被消除,因此对电池阳极产生较大毒害作用。因此,开发一种具有高活性和高稳定性的阳极材料十分必要。
发明内容
本发明公开了一种固体氧化物燃料电池阳极,其由骨架层和活性颗粒组成,该固体氧化物燃料电池阳极,具有良好的电化学性能,显示出优异抗硫中毒稳定性,特别适合使用生物质燃料的固体氧化物燃料电池发电。
本发明解决上述问题所采用的技术方案为:一种固体氧化物燃料电池阳极,所述阳极由骨架层和活性颗粒组成,其中,骨架层为LnxSr1-xTiO3—GdzCe1-zO2复合物,LnxSr1- xTiO3与GdzCe1-zO2的质量比为70:30~30:70,Ln为La,Pr,Sm,Gd,Er,Yb,Y中一种或几种,0≤x≤0.4,0≤z≤0.3,骨架层厚度为10-50微米的片层,活性颗粒为NiO或NiO—Gd0.1Ce0.9O2复合物,活性颗粒均匀负载在骨架层表面,占比阳极质量分数为2%~20%,活性颗粒大小为10~300纳米。
所述阳极的骨架层为LnxSr1-xTiO3—GdzCe1-zO2复合物,LnxSr1-xTiO3与GdzCe1-zO2的质量比优选为60:40~40:60。
所述阳极的骨架层为LnxSr1-xTiO3—GdzCe1-zO2复合物,Ln优选为La,Pr,Y中一种或几种。
所述阳极的骨架层为LnxSr1-xTiO3—GdzCe1-zO2复合物,优选0≤x≤0.2,优选0≤z≤0.2。
所述阳极的骨架层厚度优选为10-20微米。
所述阳极的活性颗粒为NiO或NiO—Gd0.1Ce0.9O2复合物,活性颗粒占比阳极质量分数优选为5%~10%。
述阳极的活性颗粒大小优选为30-100纳米。
本发明公开了一种固体氧化物燃料电池阳极及其应用,其特征在于所述阳极可应用于氧化铈基、氧化锆基、LSGM基电解质上。
本发明的优点在于所公开的固体氧化物燃料电池阳极,在还原气氛中具有较高的电导率和氧化/还原循环稳定性,解决了使用碳氢燃料时,传统Ni阴极易积碳的问题,解决了H2S等杂质气容易引发传统Ni阳极中毒的问题。当采用生物质燃气发电时,本发明阳极显示出优异的电化学性能和较好的稳定性。
具体实施方式
下面通过实施例对本发明作进一步的阐述。
实施例1
固体氧化物燃料电池膜电极:阴极为La0.8Sr0.2MnO3,电解质为YSZ,阳极组成结构为:阳极骨架层为La0.2Sr0.8TiO3—Gd0.1Ce0.9O2复合物,La0.2Sr0.8TiO3与Gd0.1Ce0.9O2的质量比为70:30,骨架层厚度为15微米,活性颗粒NiO均匀负载在骨架层表面,占比阳极质量分数为2%,活性颗粒大小为100-300纳米。
膜电极电化学测试结果如下,测试温度为800℃下,发电电压为0.8V,电流密度达到0.85A.cm-2
实施例2
固体氧化物燃料电池膜电极:阴极为La0.6Sr0.4Co0.2Fe0.8O3,电解质为GDC,阳极组成结构为:阳极骨架层为Y0.1Sr0.9TiO3—Gd0.2Ce0.8O2复合物,Y0.1Sr0.9TiO3与Gd0.2Ce0.8O2的质量比为60:40,骨架层厚度为30微米,活性颗粒NiO—Gd0.1Ce0.9O2均匀负载在骨架层表面,占比阳极质量分数为10%,活性颗粒大小为30-50纳米。
膜电极电化学测试结果如下,测试温度为800℃下,发电电压为0.8V,电流密度达到1.50A.cm-2
实施例3
固体氧化物燃料电池膜电极:阴极为La0.6Sr0.4Co0.2Fe0.8O3,电解质为GDC,阳极组成结构为:阳极骨架层为Pr0.1Sr0.9TiO3—Gd0.2Ce0.8O2复合物,Pr0.1Sr0.9TiO3与Gd0.2Ce0.8O2的质量比为50:50,骨架层厚度为10微米,活性颗粒NiO—Gd0.1Ce0.9O2均匀负载在骨架层表面,占比阳极质量分数为20%,活性颗粒大小为30-50纳米。
膜电极电化学测试结果如下,测试温度为800℃下,发电电压为0.8V,电流密度达到1.20A.cm-2

Claims (8)

1.一种固体氧化物燃料电池阳极,其特征在于:所述阳极由骨架层和活性颗粒组成,其中,骨架层为LnxSr1-xTiO3—GdzCe1-zO2复合物,LnxSr1-xTiO3与GdzCe1-zO2的质量比为70:30~30:70,Ln为La,Pr,Sm,Gd,Er,Yb,Y中一种或几种,0≤x≤0.4,0≤z≤0.3,骨架层厚度为10-50微米,活性颗粒为NiO或NiO—Gd0.1Ce0.9O2复合物中的一种或二种,活性颗粒均匀负载在骨架层表面,占比阳极质量分数为2%~20%,活性颗粒大小为10~300纳米。
2.按照权利要求1所述固体氧化物燃料电池阳极,其特征在于:所述阳极的骨架层为LnxSr1-xTiO3—GdzCe1-zO2复合物,LnxSr1-xTiO3与GdzCe1-zO2的质量比优选为60:40~40:60。
3.按照权利要求1或2所述固体氧化物燃料电池阳极,其特征在于:所述阳极的骨架层为LnxSr1-xTiO3—GdzCe1-zO2复合物,Ln优选为La,Pr,Y中一种或几种。
4.按照权利要求1或2所述固体氧化物燃料电池阳极,其特征在于:所述阳极的骨架层为LnxSr1-xTiO3—GdzCe1-zO2复合物,优选0≤x≤0.2,优选0≤z≤0.2。
5.按照权利要求1或2所述固体氧化物燃料电池阳极,其特征在于:所述阳极的骨架层厚度优选为10-20微米。
6.按照权利要求1所述固体氧化物燃料电池阳极,其特征在于:所述阳极的活性颗粒为NiO或NiO—Gd0.1Ce0.9O2复合物,活性颗粒占比阳极质量分数优选为5%~10%。
7.按照权利要求1或6所述固体氧化物燃料电池阳极,其特征在于:所述阳极的活性颗粒大小优选为30-100纳米。
8.一种权利要求1-7任一所述固体氧化物燃料电池阳极及其应用,其特征在于:所述阳极可应用于氧化铈基、氧化锆基、LSGM基电解质上。
CN201811445050.5A 2018-11-29 2018-11-29 一种固体氧化物燃料电池阳极及其应用 Active CN111244471B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811445050.5A CN111244471B (zh) 2018-11-29 2018-11-29 一种固体氧化物燃料电池阳极及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811445050.5A CN111244471B (zh) 2018-11-29 2018-11-29 一种固体氧化物燃料电池阳极及其应用

Publications (2)

Publication Number Publication Date
CN111244471A true CN111244471A (zh) 2020-06-05
CN111244471B CN111244471B (zh) 2021-03-26

Family

ID=70873866

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811445050.5A Active CN111244471B (zh) 2018-11-29 2018-11-29 一种固体氧化物燃料电池阳极及其应用

Country Status (1)

Country Link
CN (1) CN111244471B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1897337A (zh) * 2005-07-14 2007-01-17 中国科学技术大学 一种固体氧化物燃料电池阳极及制备方法
CN102290589A (zh) * 2011-07-19 2011-12-21 中国科学院上海硅酸盐研究所 一种阴极支撑型直接碳燃料电池
US20120021332A1 (en) * 2010-07-23 2012-01-26 Institute Of Nuclear Energy Research Atomic Energy Council, Executive Yuan Anode on a pretreated substrate for improving redox-stability of solid oxide fuel cell and the fabrication method therof
CN102881930A (zh) * 2012-10-26 2013-01-16 中国科学院上海硅酸盐研究所 一种制备平板式金属支撑型固体氧化物燃料电池的方法
JP2013171789A (ja) * 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd 固体酸化物形燃料電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1897337A (zh) * 2005-07-14 2007-01-17 中国科学技术大学 一种固体氧化物燃料电池阳极及制备方法
US20120021332A1 (en) * 2010-07-23 2012-01-26 Institute Of Nuclear Energy Research Atomic Energy Council, Executive Yuan Anode on a pretreated substrate for improving redox-stability of solid oxide fuel cell and the fabrication method therof
CN102290589A (zh) * 2011-07-19 2011-12-21 中国科学院上海硅酸盐研究所 一种阴极支撑型直接碳燃料电池
JP2013171789A (ja) * 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd 固体酸化物形燃料電池
CN102881930A (zh) * 2012-10-26 2013-01-16 中国科学院上海硅酸盐研究所 一种制备平板式金属支撑型固体氧化物燃料电池的方法

Also Published As

Publication number Publication date
CN111244471B (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
Shaikh et al. A review on the selection of anode materials for solid-oxide fuel cells
Ye et al. High-temperature electrocatalysis and key materials in solid oxide electrolysis cells
Shen et al. Progress and prospects of reversible solid oxide fuel cell materials
Qiu et al. A review on anode on-cell catalyst reforming layer for direct methane solid oxide fuel cells
Jiang Challenges in the development of reversible solid oxide cell technologies: a mini review
Yoo et al. Stability and performance of SOFC with SrTiO3-based anode in CH4 fuel
US9627703B2 (en) Medium and high-temperature carbon-air cell
Kamlungsua et al. Hydrogen Generation Using Solid Oxide Electrolysis Cells.
Zhang et al. High performance and stability of nanocomposite oxygen electrode for solid oxide cells
Ge et al. Robust solid oxide cells for alternate power generation and carbon conversion
Chen et al. Effect of SDC-impregnated LSM cathodes on the performance of anode-supported YSZ films for SOFCs
JP2006283103A (ja) 水蒸気電解セル
Li et al. CO2 high-temperature electrolysis technology toward carbon neutralization in the chemical industry
Tao et al. A mini-review of carbon-resistant anode materials for solid oxide fuel cells
Zhang et al. Energy storage and syngas production by switching cathode gas in nickel-yttria stabilized zirconia supported solid oxide cell
Wu et al. Fabrication of a high-performance nano-structured Ln 1− x Sr x MO 3− δ (Ln= La, Sm; M= Mn, Co, Fe) SOC electrode through infiltration
JP5481611B2 (ja) 高温水蒸気電解セル
Sivtsev et al. Microtubular solid oxide fuel cells with a two-layer LSCF/BSCFM5 cathode
Rao et al. Investigation the Ni0· 9Cu0· 1TiO3-δ reforming layer for direct ethanol solid oxide fuel cells
JP2009193775A (ja) 電気化学セルならびにその製造方法および運転方法
Chuang Catalysis of solid oxide fuel cells
CN109546190B (zh) 一种固体氧化物电池能量储存与转化系统
US10811717B2 (en) Electrolyte formation for a solid oxide fuel cell device
CN111244471B (zh) 一种固体氧化物燃料电池阳极及其应用
Minh Reversible solid oxide fuel cell technology for hydrogen/syngas and power production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant