CN111244471A - 一种固体氧化物燃料电池阳极及其应用 - Google Patents
一种固体氧化物燃料电池阳极及其应用 Download PDFInfo
- Publication number
- CN111244471A CN111244471A CN201811445050.5A CN201811445050A CN111244471A CN 111244471 A CN111244471 A CN 111244471A CN 201811445050 A CN201811445050 A CN 201811445050A CN 111244471 A CN111244471 A CN 111244471A
- Authority
- CN
- China
- Prior art keywords
- anode
- solid oxide
- oxide fuel
- fuel cell
- active particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 32
- 239000007787 solid Substances 0.000 title claims abstract description 23
- 239000002245 particle Substances 0.000 claims abstract description 25
- 239000002131 composite material Substances 0.000 claims abstract description 16
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 5
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 5
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 4
- 229910052691 Erbium Inorganic materials 0.000 claims abstract description 3
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 3
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 3
- 229910052769 Ytterbium Inorganic materials 0.000 claims abstract description 3
- 239000003792 electrolyte Substances 0.000 claims description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 2
- 238000010248 power generation Methods 0.000 abstract description 7
- 239000002028 Biomass Substances 0.000 abstract description 6
- 231100000572 poisoning Toxicity 0.000 abstract description 4
- 230000000607 poisoning effect Effects 0.000 abstract description 4
- 229910052717 sulfur Inorganic materials 0.000 abstract description 3
- 239000011593 sulfur Substances 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 10
- 230000005611 electricity Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000000840 electrochemical analysis Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 229910002127 La0.6Sr0.4Co0.2Fe0.8O3 Inorganic materials 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910002119 nickel–yttria stabilized zirconia Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910002204 La0.8Sr0.2MnO3 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8652—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Inert Electrodes (AREA)
Abstract
本发明公开了一种固体氧化物燃料电池阳极及其应用,其特征在于所述阳极由骨架层和活性颗粒组成,其中,骨架层为LnxSr1‑xTiO3—GdzCe1‑zO2复合物,LnxSr1‑xTiO3与GdzCe1‑zO2的质量比为70:30~30:70,Ln为La,Pr,Sm,Gd,Er,Yb,Y中一种或几种,0≤x≤0.4,0≤z≤0.3,骨架层厚度为10‑50微米,活性颗粒为NiO或NiO—GdzCe1‑zO2复合物,活性颗粒均匀负载在骨架层表面,占比阳极质量分数为2%~20%,活性颗粒大小为10~300纳米。本发明的固体氧化物燃料电池阳极,具有良好的电化学性能,显示出优异抗硫中毒稳定性,特别适合适用使用生物质燃料的固体氧化物燃料电池发电。
Description
技术领域
本发明涉及燃料电池领域,具体涉及一种固体氧化物燃料电池阳极。
背景技术
固体氧化物燃料电池(SOFC)不仅可以使用氢气作为燃料发电,还可使用天然气、煤制气、生物质燃气等燃料发电。SOFC发电效率位居各种燃料电池之首,一次发电效率可以达到60%以上。SOFC与余热利用系统等集成,可以实现热、冷、电联供,综合能量利用效率可达到90%,适合于城市用户端的分布式供能。
阳极是SOFC关键材料之一,要求其具有良好的催化活性、电导率以及足够的孔隙率,还必须具备工作条件下的化学稳定性、热稳定性与机械强度。目前,研究较多的SOFC阳极材料是金属陶瓷复合材料Ni-YSZ,该阳极显示出较高的电化学性能。但是,当使用碳氢燃料时,例如SOFC以生物质燃气为燃料发电时,一方面,Ni-YSZ阳极存在严重的积碳问题,导致阳极催化活性不断损失,积碳易造成阳极孔道阻塞;另一方面,生物质燃气中杂质气易引发阳极催化剂中毒,导致电池性能降低[Fuel Processing Technology 160(2017)8-18]。其原因主要是H2S的H-S键很弱,很容易在过渡金属上分解,而S的P轨道和金属M的D轨道大部分重叠,所以导致S-M(M=金属)键很强,形成的硫物种不易被消除,因此对电池阳极产生较大毒害作用。因此,开发一种具有高活性和高稳定性的阳极材料十分必要。
发明内容
本发明公开了一种固体氧化物燃料电池阳极,其由骨架层和活性颗粒组成,该固体氧化物燃料电池阳极,具有良好的电化学性能,显示出优异抗硫中毒稳定性,特别适合使用生物质燃料的固体氧化物燃料电池发电。
本发明解决上述问题所采用的技术方案为:一种固体氧化物燃料电池阳极,所述阳极由骨架层和活性颗粒组成,其中,骨架层为LnxSr1-xTiO3—GdzCe1-zO2复合物,LnxSr1- xTiO3与GdzCe1-zO2的质量比为70:30~30:70,Ln为La,Pr,Sm,Gd,Er,Yb,Y中一种或几种,0≤x≤0.4,0≤z≤0.3,骨架层厚度为10-50微米的片层,活性颗粒为NiO或NiO—Gd0.1Ce0.9O2复合物,活性颗粒均匀负载在骨架层表面,占比阳极质量分数为2%~20%,活性颗粒大小为10~300纳米。
所述阳极的骨架层为LnxSr1-xTiO3—GdzCe1-zO2复合物,LnxSr1-xTiO3与GdzCe1-zO2的质量比优选为60:40~40:60。
所述阳极的骨架层为LnxSr1-xTiO3—GdzCe1-zO2复合物,Ln优选为La,Pr,Y中一种或几种。
所述阳极的骨架层为LnxSr1-xTiO3—GdzCe1-zO2复合物,优选0≤x≤0.2,优选0≤z≤0.2。
所述阳极的骨架层厚度优选为10-20微米。
所述阳极的活性颗粒为NiO或NiO—Gd0.1Ce0.9O2复合物,活性颗粒占比阳极质量分数优选为5%~10%。
述阳极的活性颗粒大小优选为30-100纳米。
本发明公开了一种固体氧化物燃料电池阳极及其应用,其特征在于所述阳极可应用于氧化铈基、氧化锆基、LSGM基电解质上。
本发明的优点在于所公开的固体氧化物燃料电池阳极,在还原气氛中具有较高的电导率和氧化/还原循环稳定性,解决了使用碳氢燃料时,传统Ni阴极易积碳的问题,解决了H2S等杂质气容易引发传统Ni阳极中毒的问题。当采用生物质燃气发电时,本发明阳极显示出优异的电化学性能和较好的稳定性。
具体实施方式
下面通过实施例对本发明作进一步的阐述。
实施例1
固体氧化物燃料电池膜电极:阴极为La0.8Sr0.2MnO3,电解质为YSZ,阳极组成结构为:阳极骨架层为La0.2Sr0.8TiO3—Gd0.1Ce0.9O2复合物,La0.2Sr0.8TiO3与Gd0.1Ce0.9O2的质量比为70:30,骨架层厚度为15微米,活性颗粒NiO均匀负载在骨架层表面,占比阳极质量分数为2%,活性颗粒大小为100-300纳米。
膜电极电化学测试结果如下,测试温度为800℃下,发电电压为0.8V,电流密度达到0.85A.cm-2。
实施例2
固体氧化物燃料电池膜电极:阴极为La0.6Sr0.4Co0.2Fe0.8O3,电解质为GDC,阳极组成结构为:阳极骨架层为Y0.1Sr0.9TiO3—Gd0.2Ce0.8O2复合物,Y0.1Sr0.9TiO3与Gd0.2Ce0.8O2的质量比为60:40,骨架层厚度为30微米,活性颗粒NiO—Gd0.1Ce0.9O2均匀负载在骨架层表面,占比阳极质量分数为10%,活性颗粒大小为30-50纳米。
膜电极电化学测试结果如下,测试温度为800℃下,发电电压为0.8V,电流密度达到1.50A.cm-2。
实施例3
固体氧化物燃料电池膜电极:阴极为La0.6Sr0.4Co0.2Fe0.8O3,电解质为GDC,阳极组成结构为:阳极骨架层为Pr0.1Sr0.9TiO3—Gd0.2Ce0.8O2复合物,Pr0.1Sr0.9TiO3与Gd0.2Ce0.8O2的质量比为50:50,骨架层厚度为10微米,活性颗粒NiO—Gd0.1Ce0.9O2均匀负载在骨架层表面,占比阳极质量分数为20%,活性颗粒大小为30-50纳米。
膜电极电化学测试结果如下,测试温度为800℃下,发电电压为0.8V,电流密度达到1.20A.cm-2。
Claims (8)
1.一种固体氧化物燃料电池阳极,其特征在于:所述阳极由骨架层和活性颗粒组成,其中,骨架层为LnxSr1-xTiO3—GdzCe1-zO2复合物,LnxSr1-xTiO3与GdzCe1-zO2的质量比为70:30~30:70,Ln为La,Pr,Sm,Gd,Er,Yb,Y中一种或几种,0≤x≤0.4,0≤z≤0.3,骨架层厚度为10-50微米,活性颗粒为NiO或NiO—Gd0.1Ce0.9O2复合物中的一种或二种,活性颗粒均匀负载在骨架层表面,占比阳极质量分数为2%~20%,活性颗粒大小为10~300纳米。
2.按照权利要求1所述固体氧化物燃料电池阳极,其特征在于:所述阳极的骨架层为LnxSr1-xTiO3—GdzCe1-zO2复合物,LnxSr1-xTiO3与GdzCe1-zO2的质量比优选为60:40~40:60。
3.按照权利要求1或2所述固体氧化物燃料电池阳极,其特征在于:所述阳极的骨架层为LnxSr1-xTiO3—GdzCe1-zO2复合物,Ln优选为La,Pr,Y中一种或几种。
4.按照权利要求1或2所述固体氧化物燃料电池阳极,其特征在于:所述阳极的骨架层为LnxSr1-xTiO3—GdzCe1-zO2复合物,优选0≤x≤0.2,优选0≤z≤0.2。
5.按照权利要求1或2所述固体氧化物燃料电池阳极,其特征在于:所述阳极的骨架层厚度优选为10-20微米。
6.按照权利要求1所述固体氧化物燃料电池阳极,其特征在于:所述阳极的活性颗粒为NiO或NiO—Gd0.1Ce0.9O2复合物,活性颗粒占比阳极质量分数优选为5%~10%。
7.按照权利要求1或6所述固体氧化物燃料电池阳极,其特征在于:所述阳极的活性颗粒大小优选为30-100纳米。
8.一种权利要求1-7任一所述固体氧化物燃料电池阳极及其应用,其特征在于:所述阳极可应用于氧化铈基、氧化锆基、LSGM基电解质上。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811445050.5A CN111244471B (zh) | 2018-11-29 | 2018-11-29 | 一种固体氧化物燃料电池阳极及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811445050.5A CN111244471B (zh) | 2018-11-29 | 2018-11-29 | 一种固体氧化物燃料电池阳极及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111244471A true CN111244471A (zh) | 2020-06-05 |
CN111244471B CN111244471B (zh) | 2021-03-26 |
Family
ID=70873866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811445050.5A Active CN111244471B (zh) | 2018-11-29 | 2018-11-29 | 一种固体氧化物燃料电池阳极及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111244471B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1897337A (zh) * | 2005-07-14 | 2007-01-17 | 中国科学技术大学 | 一种固体氧化物燃料电池阳极及制备方法 |
CN102290589A (zh) * | 2011-07-19 | 2011-12-21 | 中国科学院上海硅酸盐研究所 | 一种阴极支撑型直接碳燃料电池 |
US20120021332A1 (en) * | 2010-07-23 | 2012-01-26 | Institute Of Nuclear Energy Research Atomic Energy Council, Executive Yuan | Anode on a pretreated substrate for improving redox-stability of solid oxide fuel cell and the fabrication method therof |
CN102881930A (zh) * | 2012-10-26 | 2013-01-16 | 中国科学院上海硅酸盐研究所 | 一种制备平板式金属支撑型固体氧化物燃料电池的方法 |
JP2013171789A (ja) * | 2012-02-22 | 2013-09-02 | Mitsubishi Heavy Ind Ltd | 固体酸化物形燃料電池 |
-
2018
- 2018-11-29 CN CN201811445050.5A patent/CN111244471B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1897337A (zh) * | 2005-07-14 | 2007-01-17 | 中国科学技术大学 | 一种固体氧化物燃料电池阳极及制备方法 |
US20120021332A1 (en) * | 2010-07-23 | 2012-01-26 | Institute Of Nuclear Energy Research Atomic Energy Council, Executive Yuan | Anode on a pretreated substrate for improving redox-stability of solid oxide fuel cell and the fabrication method therof |
CN102290589A (zh) * | 2011-07-19 | 2011-12-21 | 中国科学院上海硅酸盐研究所 | 一种阴极支撑型直接碳燃料电池 |
JP2013171789A (ja) * | 2012-02-22 | 2013-09-02 | Mitsubishi Heavy Ind Ltd | 固体酸化物形燃料電池 |
CN102881930A (zh) * | 2012-10-26 | 2013-01-16 | 中国科学院上海硅酸盐研究所 | 一种制备平板式金属支撑型固体氧化物燃料电池的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111244471B (zh) | 2021-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Electrolysis of H2O and CO2 in an oxygen-ion conducting solid oxide electrolyzer with a La0. 2Sr0. 8TiO3+ δ composite cathode | |
Laguna-Bercero | Recent advances in high temperature electrolysis using solid oxide fuel cells: A review | |
Yang et al. | Performance evaluation of La0. 4Sr0. 6Co0. 2Fe0. 7Nb0. 1O3− δ as both anode and cathode material in solid oxide fuel cells | |
Li et al. | CO2 high-temperature electrolysis technology toward carbon neutralization in the chemical industry | |
Zhang et al. | High performance and stability of nanocomposite oxygen electrode for solid oxide cells | |
CN111244470A (zh) | 一种纳米复合阴极及其制备和应用 | |
Li et al. | Fabrication of anode supported solid oxide electrolysis cell with the co-tape casting technique and study on co-electrolysis characteristics | |
Han et al. | A novel Boudouard reaction catalyst derived from strontium slag for enhanced performance of direct carbon solid oxide fuel cells | |
Xu et al. | Enhanced steam electrolysis with exsolved iron nanoparticles in perovskite cathode | |
JP5481611B2 (ja) | 高温水蒸気電解セル | |
JP5637652B2 (ja) | 電気化学セルならびにその製造方法および運転方法 | |
CN115020741A (zh) | 一种低温高性能固体氧化物燃料电池及其制备方法 | |
Jiang et al. | Performance and stability of co-synthesized Sm0. 5Sr0. 5CoO3-Sm0. 2Ce0. 8O1. 9 oxygen electrode for reversible solid oxide cells | |
CN113430539B (zh) | 使用电解系统电解还原二氧化碳时提高二氧化碳转化率的方法 | |
CN118888773A (zh) | 一种对称固体氧化物电池及其制备方法和应用、电池运行系统及其构建方法 | |
JP2006283103A (ja) | 水蒸気電解セル | |
CN112349913B (zh) | 一种高性能可逆固体氧化物电池电极材料组成及其制备方法 | |
Rao et al. | Investigation the Ni0· 9Cu0· 1TiO3-δ reforming layer for direct ethanol solid oxide fuel cells | |
CN103236550B (zh) | 一种石墨烯改性的固体氧化物燃料电池镍基复合阳极材料及其制备方法 | |
Liu et al. | Nanofiber-structured Pr0. 4Sr0. 6Co0. 2Fe0. 7Nb0. 1O3-δ-Gd0. 2Ce0. 8O1. 9 symmetrical composite electrode for solid oxide fuel cells | |
CN111244471A (zh) | 一种固体氧化物燃料电池阳极及其应用 | |
CN111235589B (zh) | 一种高温电解池阴极材料及其制备和应用 | |
CN106835191A (zh) | 一种低温质子导体固体氧化物电解池 | |
Wang et al. | A symmetrical solid oxide electrolysis cell supported by nanostructured electrodes for highly efficient CO2 electrolysis | |
Wang et al. | Electrochemical performance of porous ceramic supported tubular solid oxide electrolysis cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |