CN111230864B - 一种五轴并联加工机器人的刀具路径规划方法 - Google Patents

一种五轴并联加工机器人的刀具路径规划方法 Download PDF

Info

Publication number
CN111230864B
CN111230864B CN202010040950.2A CN202010040950A CN111230864B CN 111230864 B CN111230864 B CN 111230864B CN 202010040950 A CN202010040950 A CN 202010040950A CN 111230864 B CN111230864 B CN 111230864B
Authority
CN
China
Prior art keywords
tool
path
straight line
point
line segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010040950.2A
Other languages
English (en)
Other versions
CN111230864A (zh
Inventor
谢福贵
刘辛军
解增辉
汪劲松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN202010040950.2A priority Critical patent/CN111230864B/zh
Publication of CN111230864A publication Critical patent/CN111230864A/zh
Application granted granted Critical
Publication of CN111230864B publication Critical patent/CN111230864B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

本发明涉及一种五轴并联加工机器人的刀具路径规划方法。所述方法包括:从刀位文件中获取刀具的原始路径;获取原始路径中的断点;根据断点将原始路径分为多个长直线段和多个短直线段组;分别对断点进行转接光顺,对短直线段组进行拟合光顺,对长直线段进行线性拟合;由转接光顺后的转接曲线、短直线段组拟合光顺后的曲线和长直线段线性拟合后的线性路径构成刀具的规划后全局G3连续的加工路径。本发明所提供的一种五轴并联加工机器人的刀具路径规划方法,能够提高机器人的刀具的加工路径的连续性,进而提高机器人的加工精度和加工效率。

Description

一种五轴并联加工机器人的刀具路径规划方法
技术领域
本发明涉及机器人领域,特别是涉及一种五轴并联加工机器人的刀具路径规划方法。
背景技术
近年来,随着机械设计水平的不断进步,零部件的设计也越来越复杂,这类零部件通常具有复杂曲面特征、尺寸精度和表面质量要求高的特点。要实现此类零部件的加工,加工装备应具备复合角度加工和高效加工的能力。相比于传统的串联加工装备,并联机器人通过动平台与定平台之间的多个支链来实现运动和力的传递,具有结构紧凑、刚度高、运动灵活、动态特性好等优势,因此成为复杂零部件加工的理想选择。
当此类并联机器人投入实际工业应用时,其多支链耦合运动特性对机器人加工效率和加工质量的控制带来挑战。因此研究此类机器人的运动控制对其加工能力的提升具有重要意义,其中刀具路径规划是非常关键的一个环节。当采用并联机器人高速切削时,相邻刀具路径连接点处的低阶连续性可能会造成机器人的自激振动,影响加工效率和加工质量的提升,因此,该类机器人对加工路径的连续性提出了更高的要求。
目前,常用的路径规划方法有曲线拟合光顺和局部转接光顺两类方法。曲线拟合光顺方法通常被用于拟合短直线段组,从而获得一条光滑的样条曲线加工路径,然而样条曲线与相邻路径之间的连续性却难以保证,并且实际应用过程中,加工路径通常为长直线段与短直线段组的混合路径,直接进行曲线拟合光顺会造成拟合误差过大,影响加工精度。局部转接光顺方法在相邻路径连接点处插入一个转接曲线实现加工路径的平滑过渡,这样会增加刀具路径曲线段的数量,对控制系统的内存造成极大地负担,并且转接段的曲率会严重制约加工的进给速度,影响加工效率。
五自由度并联加工机器人通常用方位角和摆角(T&T角)描述其刀具姿态,但T&T角存在表达奇异点,直接在T&T角平面内对刀具姿态进行曲线拟合光顺会导致运动失真,降低刀具摆角运动速度,降低加工精度和加工效率。
发明内容
本发明的目的是提供一种五轴并联加工机器人的刀具路径规划方法,能够提高机器人的刀具的加工路径的连续性,进而提高机器人的加工精度和加工效率。
为实现上述目的,本发明提供了如下方案:
一种五轴并联加工机器人的刀具路径规划方法,包括:
从刀位文件中获取所述刀具的原始路径;
获取所述原始路径中的断点;
根据所述断点将所述原始路径分为多个长直线段和多个短直线段组;所述长直线段为弓高误差大于弓高阈值的相邻断点之间的直线段;所述短直线段组为弓高误差不大于所述弓高阈值的相邻断点之间的直线段组;
在所述断点处进行转接光顺,得到转接曲线;对所述短直线段组进行拟合光顺,得到拟合曲线;对所述长直线段进行线性拟合,得到线性路径;
由所述转接曲线、所述拟合曲线和所述线性路径构成所述刀具规划后的全局G3连续的加工路径。
可选的,所述从刀位文件中获取所述刀具的原始路径,具体包括:
从所述刀位文件中获取所述刀具的原始位姿;所述原始位姿包括刀尖点位置和所述刀轴矢量;
根据所述刀具的原始位姿确定所述原始路径。
可选的,所述获取所述原始路径中的断点,具体包括:
从所述原始路径中获取第k-1刀尖点、第k刀尖点和第k+1刀尖点;
根据所述第k-1刀尖点、第k刀尖点和第k+1刀尖点确定外接圆;
根据所述外接圆确定第一弓高误差和第二弓高误差;所述第一弓高误差为所述外接圆的半径减去所述外接圆圆心到所述第k刀尖点和所述第k-1刀尖点的连线的距离的值;所述第二弓高误差为所述外接圆的半径减去所述外接圆圆心到所述第k+1刀尖点和所述第k刀尖点的连线的距离的值;
判断所述第一弓高误差和所述第二弓高误差是否大于转接误差;
若所述第一弓高误差或所述第二弓高误差至少有一个大于转接误差,则第k刀尖点为断点;
若所述第一弓高误差和所述第二弓高误差均不大于所述转接误差,则第k刀尖点不为断点。
可选的,所述在所述断点处进行转接光顺,得到转接曲线;对所述短直线段组进行拟合光顺,得到拟合曲线;对所述长直线段进行线性拟合,得到线性路径,具体包括:
采用五次B样条曲线对所述断点进行转接光顺,得到所述转接曲线;
采用五次B样条曲线对断点转接光顺后的所述短直线段进行拟合光顺,并对拟合曲线首尾处的切线、曲率和曲率导数进行约束,得到所述拟合曲线;
采用线性拟合的方式对所述长直线段进行拟合,得到所述线性路径。
可选的,所述由所述转接曲线、所述拟合曲线和所述线性路径构成所述刀具规划后的全局G3连续的加工路径,之后还包括:
根据所述刀具的规划后的路径确定所述刀具的规划位姿;所述刀具的规划位姿包括刀尖点位置和刀轴矢量偏角;
根据所述刀具的规划位姿,基于所述五轴并联加工机器人的运动模型,确定每一时刻的所述机器人各驱动运动链的长度;所述运动模型以当前时刻的刀具位姿为输入,以当前时刻机器人的驱动运动链长度为输出;
根据每一时刻的所述驱动运动链的长度控制所述五轴并联加工机器人。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明所提供的一种五轴并联加工机器人的刀具路径规划方法,其中,获取原始路径中的断点,根据断点将所述原始路径分为多个长直线段和多个短直线段组。对所述断点进行转接光顺,得到转接曲线,对所述短直线段组进行拟合光顺,并保证拟合曲线与相邻曲线之间的切线、曲率及曲率导数连续性,对所述长直线段进行线性拟合,进而根据断点转接光顺后的转接曲线、短直线段组拟合光顺后得到的拟合曲线和长直线段线性拟合后的线性路径构成所述刀具的规划后的全局G3连续的加工路径,提高了加工路径的连续性,进而提高了机器人的加工精度和加工效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所提供的五轴并联加工机器人模型结构图;
图2为本发明所提供的五轴并联加工机器人的原理图;
图3为本发明所提供的一种五轴并联加工机器人的刀具路径规划方法流程示意图;
图4为本发明所提供的第k-1刀尖点、第k刀尖点和第k+1刀尖点断点确定的原理图;
图5为本发明所提供的断点处刀尖点位置转接光顺示意图;
图6为本发明所提供的断点处刀轴矢量转接光顺示意图;
图7为本发明所提供的断点处五轴刀具路径转接光顺示意图;
图8为本发明所提供的短直线段组刀尖点位置曲线拟合光顺示意图;
图9为本发明所提供的短直线段组刀轴矢量曲线拟合光顺示意图;
图10为本发明所提供的短直线段组刀尖点位置和刀轴矢量样条参数同步示意图;
图11为本发明为本发明所提供的短直线段组曲线拟合光顺示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种五轴并联加工机器人的刀具路径规划方法,能够提高机器人的刀具的加工路径的连续性,进而提高机器人的加工精度和加工效率。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明所提供的五轴并联加工机器人模型结构图,图2为本发明所提供的五轴并联加工机器人的原理图,如图1和图2所示,所述五轴并联加工机器人包括定平台系统、动平台系统、五条驱动运动链和刀具;所述定平台系统和所述动平台系统通过五条所述驱动支链连接,所述刀具与所述动平台连接。
图3为本发明所提供的一种五轴并联加工机器人的刀具路径规划方法流程示意图,如图3所示,本发明所提供的一种五轴并联加工机器人的刀具路径规划方法,包括:
S301,从刀位文件中获取所述刀具的原始路径。
从所述刀位文件中获取所述刀具的原始位姿;所述原始位姿包括刀尖点的位置和所述刀轴矢量。
根据所述刀具的原始位姿确定所述原始路径。
S302,获取所述原始路径中的断点。
其中,图4为本发明所提供的第k-1刀尖点、第k刀尖点和第k+1刀尖点断点确定的原理图,如图4所示,从所述原始路径中获取第k-1刀尖点、第k刀尖点和第k+1刀尖点。
根据所述第k-1刀尖点、第k刀尖点和第k+1刀尖点确定外接圆。
根据所述外接圆确定第一弓高误差和第二弓高误差;所述第一弓高误差为所述外接圆的半径减去所述外接圆圆心到所述的值;所述第二弓高误差为所述外接圆的半径减去所述外接圆圆心到所述第k+1刀尖点和所述第k刀尖点的连线的距离的值。
具体的利用公式
Figure BDA0002367745110000061
确定第一弓高误差和第二弓高误差。δ1为第一弓高误差,δ2为第二弓高误差,R=l1/2sinφ1为外接圆半径,外接圆圆心为O,
Figure BDA0002367745110000062
为∠pk-1Opk大小的一半,l1=||pk-1pk||和l2=||pkpk+1||分别为第k刀尖点和所述第k-1刀尖点的连线的距离和第k刀尖点和所述第k+1刀尖点的连线的距离给定点之间的距离,
Figure BDA0002367745110000063
φ12=π-θ。
判断所述第一弓高误差和所述第二弓高误差是否大于转接误差δmax
若所述第一弓高误差或所述第二弓高误差至少有一个大于转接误差δmax,则第k刀尖点为断点。
若所述第一弓高误差和所述第二弓高误差均不大于所述转接误差δmax,则第k刀尖点不为断点。
通过确定的断点将原始路径中的长直线段和短直线段组分割开。
S303,根据所述断点将所述原始路径分为多个长直线段和多个短直线段组;所述长直线段为弓高误差大于弓高阈值的相邻断点之间的直线段;所述短直线段组为弓高误差不大于所述弓高阈值的相邻断点之间的直线段组;
S304,在所述断点处进行转接光顺,得到转接曲线;对所述短直线段组进行拟合光顺,得到拟合曲线;对所述长直线段进行线性拟合,得到线性路径。
采用五次B样条曲线对所述断点进行转接光顺,得到所述转接曲线。
在相邻路径之间的断点处插入五次B样条曲线,实现相邻路径之间的平滑过渡,包括刀尖点位置转接光顺、刀轴矢量转接光顺、刀具位置和刀轴矢量转接曲线的同步。
图5为本发明所提供的断点处刀尖点位置转接光顺示意图,如图5所示,插入的五次B样条曲线表达式如下:
Figure BDA0002367745110000071
其中,Pi=[Pix,Piy,Piz]T,(i=0,…,6)为样条曲线的控制点,P0,P1,P2,P3共线,位于第一条刀具路径pk-1pk上,P3,P4,P5,P6共线,位于第二条刀具路径pkpk+1上,控制点具体位置可通过参数l确定,||P1P2||=||P2P3||=||P3P4||=||P4P5||=l,||P0P1||=||P5P6||=0.5l,参数l根据转接误差δmax以及原始路径长度l1和l2确定,具体地,l=min{4δmax/3cos(α/2),l1/5,l2/5},α为原始路径之间的夹角。Ni,n(u)为n次B样条基函数,可根据节点向量U确定,计算公式为:
Figure BDA0002367745110000072
此处,节点向量为U=[0 0 0 0 0 0 0.5 1 1 1 1 1 1],u为样条参数,曲线次数n=5。
对于刀轴矢量,在球面坐标系上根据上述方法得到五次B样条曲线B(w),然后将其单位化后可以得到刀轴矢量样条曲线O(w)=B(w)/|||B(w)||,给定样条参数w,即可得到对应的刀轴矢量Ok=[Okx Oky Okz]T,并从中提取T&T角,计算如下:
θk=arccos(Okz),φk=arctan2(Oky,Okx)
图6为本发明所提供的断点处刀轴矢量转接光顺示意图,如图6所示,从而实现刀轴矢量转接光顺。
令转接长度在原始路径上占比例相同,以实现两条转接曲线的同步,同步公式为:
Figure BDA0002367745110000073
其中l(·)代表单位球面上的弧长,在完成刀具位置转接光顺之后,可以得到转接线段长度,从而得到比例系数m1和m2,根据比例系数可以求出刀轴矢量的转接长度l(O0O3)和l(O3O6),从而完成刀轴矢量的转接光顺,如图7所示。
采用五次B样条曲线对断点转接光顺后的所述短直线段进行拟合光顺,并对拟合曲线首尾处的切线、曲率和曲率导数进行约束,得到所述拟合曲线。采用五次B样条曲线拟合所有离散数据点,保证样条曲线经过所有给定路径点,并对B样条曲线起止点处的切线、曲率和曲率导数进行约束,保证B样条曲线与相邻转接曲线之间的G3连续性,具体包括:拟合刀尖点位置曲线、拟合刀轴矢量曲线、刀具位置和刀轴矢量的同步。
对于刀尖点位置,采用五次B样条曲线拟合N+1个离散路径点pK,K=0,…,N,具体公式如下
Figure BDA0002367745110000081
其中Ni,n(u)为5次B样条曲线基函数,可以根据节点向量U=[u0,…,uN+n+1,…,uN+n+7]求得,节点向量U可根据样条参数向量
Figure BDA0002367745110000082
求出,计算公式如下:
Figure BDA0002367745110000083
根据给定的原始路径刀尖点位置pK之间的距离,可采用向心法求出
Figure BDA0002367745110000084
具体如:
Figure BDA0002367745110000085
其中,
Figure BDA0002367745110000086
然后将
Figure BDA0002367745110000087
进行扩展,得到
Figure BDA0002367745110000088
计算公式如下
Figure BDA0002367745110000089
Pi为样条曲线控制点,可以通过建立方程求解。根据拟合得到的样条曲线经过所有路径点,可以建立如下方程组
Figure BDA0002367745110000091
其中α为控制点矩阵,根据切向连续性条件,可以建立如下方程组
Figure BDA0002367745110000092
其中p'0=(p1-p0)/||p1-p0|||u=0,p'N=(pN-pN-1)/|||pN-pN-1|||u=1
Figure BDA0002367745110000093
根据曲率及曲率导数连续性条件,可以建立如下方程组
Figure BDA0002367745110000094
利用公式
Figure BDA0002367745110000095
确定控制点矩阵α。其中
Figure BDA0002367745110000096
从而得到如图8为所示得短直线段刀尖点位置曲线拟合光顺。
对于刀轴矢量ok=[oKi,oKj,oKK]T,可以根据原始路径点拟合的刀轴矢量信息,构建样条参数向量
Figure BDA0002367745110000097
然后将其扩展得到
Figure BDA0002367745110000098
采用上述方法拟合得到样条曲线B(w),然后将其单位化得到刀轴矢量样条曲线O(w)=B(w)/||B(w)||,然后从中提取T&T角,完成如图9所示短直线段刀轴矢量样条曲线。
对于两条刀具位置和刀轴矢量的同步,可以根据所述
Figure BDA0002367745110000099
Figure BDA00023677451100000910
向量,拟合一个B样条曲线w(u),如图10所示。从而建立起两个样条参数之间的关系,完成刀具位置和刀轴矢量的同步。进而得到如图11所示的短直线段组拟合光顺之后的加工路径。
采用线性拟合的方式对所述长直线段进行拟合,得到所述线性路径。
S305,由断点处的转接曲线、短直线段组拟合得到的曲线和长直线段拟合得到的线性路径构成所述刀具规划后的全局G3连续的加工路径。
根据所述刀具的规划后的加工路径确定所述刀具的规划位姿;所述刀具的规划位姿包括刀尖点位置和刀轴矢量偏角。
根据所述刀具的规划位姿,基于所述五轴并联加工机器人的运动模型,确定每一时刻的所述驱动运动链的长度;所述运动模型以当前时刻的刀具的位姿为输入,以当前时刻所述驱动运动链的长度为输出。
所述五轴并联加工机器人的运动模型根据刀具的目标位姿求解驱动运动链的长度。所述当前刀具目标位姿
Figure BDA0002367745110000101
其中x,y,z为刀尖点位置,
Figure BDA0002367745110000102
θ为刀轴矢量偏角,并五轴联加工机器人的定平台系统的驱动支链点Bi(i=1,2,3,4,5)的位置在机器人定坐标系
Figure BDA0002367745110000103
(如图2所示)中可表示为
Figure BDA0002367745110000104
其中,R1=||oBi||,(i=1,2,3),R2=||oBj||,(j=4,5),α1=∠B4SB5/2,W1=||OS||。五轴并联加工机器人动平台系统中的驱动支链点Pi(i=1,2,3,4,5)的位置在五轴并联加工机器人动坐标系
Figure BDA0002367745110000105
(如图2所示)中可表示为
Figure BDA0002367745110000106
其中,Rs=||s'Pi||,(i=1,2,3)=||p'Pj||,(j=4,5),α2=∠P4p'P5/2,Lc=||o's'||为刀具长度,W2=||s'p'||。
动平台系统驱动支链点中心p′在机器人定坐标系
Figure BDA0002367745110000107
中的坐标可表示为
Figure BDA0002367745110000111
刀尖点o′在机器人定坐标系
Figure BDA0002367745110000112
中的坐标为
Figure BDA0002367745110000113
Figure BDA0002367745110000114
中向量o′B1
Figure BDA0002367745110000115
动坐标系
Figure BDA0002367745110000116
相对于定坐标系
Figure BDA0002367745110000117
的旋转矩阵为
Figure BDA0002367745110000118
其中,
Figure BDA0002367745110000119
为旋转矩阵R的第一列,
Figure BDA00023677451100001110
为旋转矩阵R的第三列,o=p×n为旋转矩阵R的第二列。
从而求出Pi(i=1,2,3,4,5)的位置在机器人定坐标系
Figure BDA00023677451100001111
中为
Figure BDA00023677451100001112
利用公式
Figure BDA00023677451100001113
确定各驱动支链的每一时刻的长度。
根据每一时刻的所述驱动运动链的长度控制所述五轴并联加工机器人。
根据每一时刻的所述驱动运动链的长度控制所述五轴并联加工机器人具体包括:进行进给速度规划,并采用插补算法获得刀具在每个伺服周期的控制指令,然后采用运动学将刀具伺服控制指令转换为各驱动轴电机的伺服控制指令。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (5)

1.一种五轴并联加工机器人的刀具路径规划方法,其特征在于,包括:
从刀位文件中获取所述刀具的原始路径;
获取所述原始路径中的断点;
根据所述断点将所述原始路径分为多个长直线段和多个短直线段组;所述长直线段为弓高误差大于弓高阈值的相邻断点之间的直线段;所述短直线段组为弓高误差不大于所述弓高阈值的相邻断点之间的直线段组;
在所述断点处进行转接光顺,得到转接曲线;对所述短直线段组进行拟合光顺,得到拟合曲线;对所述长直线段进行线性拟合,得到线性路径;
由所述转接曲线、所述拟合曲线和所述线性路径构成所述刀具规划后的全局G3连续的加工路径。
2.根据权利要求1所述的一种五轴并联加工机器人的刀具路径规划方法,其特征在于,所述从刀位文件中获取所述刀具的原始路径,具体包括:
从所述刀位文件中获取所述刀具的原始位姿;所述原始位姿包括刀尖点位置和刀轴矢量;
根据所述刀具的原始位姿确定所述原始路径。
3.根据权利要求1所述的一种五轴并联加工机器人的刀具路径规划方法,其特征在于,所述获取所述原始路径中的断点,具体包括:
从所述原始路径中获取第k-1刀尖点、第k刀尖点和第k+1刀尖点;
根据所述第k-1刀尖点、第k刀尖点和第k+1刀尖点确定外接圆;
根据所述外接圆确定第一弓高误差和第二弓高误差;所述第一弓高误差为所述外接圆的半径减去所述外接圆圆心到所述第k刀尖点和所述第k-1刀尖点的连线的距离的值;所述第二弓高误差为所述外接圆的半径减去所述外接圆圆心到所述第k+1刀尖点和所述第k刀尖点的连线的距离的值;
判断所述第一弓高误差和所述第二弓高误差是否大于转接误差;
若所述第一弓高误差或所述第二弓高误差至少有一个大于转接误差,则第k刀尖点为断点;
若所述第一弓高误差和所述第二弓高误差均不大于所述转接误差,则第k刀尖点不为断点。
4.根据权利要求1所述的一种五轴并联加工机器人的刀具路径规划方法,其特征在于,所述在所述断点处进行转接光顺,得到转接曲线;对所述短直线段组进行拟合光顺,得到拟合曲线;对所述长直线段进行线性拟合,得到线性路径,具体包括:
采用五次B样条曲线对所述断点进行转接光顺,得到所述转接曲线;
采用五次B样条曲线对断点转接光顺后的所述短直线段组进行拟合光顺,并对拟合曲线首尾处的切线、曲率和曲率导数进行约束,得到所述拟合曲线;
采用线性拟合的方式对所述长直线段进行拟合,得到所述线性路径。
5.根据权利要求1所述的一种五轴并联加工机器人的刀具路径规划方法,其特征在于,所述由所述转接曲线、所述拟合曲线和所述线性路径构成所述刀具规划后的全局G3连续的加工路径,之后还包括:
根据所述刀具的规划后的路径确定所述刀具的规划位姿;所述刀具的规划位姿包括刀尖点位置和刀轴矢量偏角;
根据所述刀具的规划位姿,基于所述五轴并联加工机器人的运动模型,确定每一时刻的所述机器人各驱动运动链的长度;所述运动模型以当前时刻的刀具位姿为输入,以当前时刻机器人的驱动运动链长度为输出;
根据每一时刻的所述驱动运动链的长度控制所述五轴并联加工机器人。
CN202010040950.2A 2020-01-15 2020-01-15 一种五轴并联加工机器人的刀具路径规划方法 Active CN111230864B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010040950.2A CN111230864B (zh) 2020-01-15 2020-01-15 一种五轴并联加工机器人的刀具路径规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010040950.2A CN111230864B (zh) 2020-01-15 2020-01-15 一种五轴并联加工机器人的刀具路径规划方法

Publications (2)

Publication Number Publication Date
CN111230864A CN111230864A (zh) 2020-06-05
CN111230864B true CN111230864B (zh) 2021-03-23

Family

ID=70867324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010040950.2A Active CN111230864B (zh) 2020-01-15 2020-01-15 一种五轴并联加工机器人的刀具路径规划方法

Country Status (1)

Country Link
CN (1) CN111230864B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114200886B (zh) * 2020-09-18 2022-12-20 沈机(上海)智能系统研发设计有限公司 五轴刀路转接光顺的过渡方法、介质及五轴机床的数控设备
CN113433889B (zh) * 2021-06-08 2023-09-26 西安交通大学 一种基于三段式羊角曲线的五轴机床加工的刀具轨迹规划方法
CN113741426B (zh) * 2021-08-06 2023-05-16 武汉理工大学 一种基于局部点云曲线拟合的机器人加工路径规划方法
CN114002996B (zh) * 2021-10-28 2023-09-22 天津大学 一种混联机器人c3连续五轴路径转接光顺方法
CN114019911B (zh) * 2021-11-03 2022-06-21 天津理工大学 一种基于速度规划的曲线拟合方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425725A (zh) * 2015-12-09 2016-03-23 华中科技大学 一种离散刀具轨迹的曲线拟合方法
CN108132645A (zh) * 2016-12-01 2018-06-08 华中科技大学 一种保证刀具轨迹整体g2连续的曲线拟合方法
CN109571473A (zh) * 2018-12-03 2019-04-05 武汉工程大学 一种误差可控的小线段轨迹光顺方法
CN109918807A (zh) * 2019-03-13 2019-06-21 西北工业大学 一种优化曲率的局部刀轨光顺方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017008748A1 (de) * 2017-09-19 2019-03-21 Innolite Gmbh Software-Baustein, Präzisionsmaschine, Verfahren und Bauteil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425725A (zh) * 2015-12-09 2016-03-23 华中科技大学 一种离散刀具轨迹的曲线拟合方法
CN108132645A (zh) * 2016-12-01 2018-06-08 华中科技大学 一种保证刀具轨迹整体g2连续的曲线拟合方法
CN109571473A (zh) * 2018-12-03 2019-04-05 武汉工程大学 一种误差可控的小线段轨迹光顺方法
CN109918807A (zh) * 2019-03-13 2019-06-21 西北工业大学 一种优化曲率的局部刀轨光顺方法

Also Published As

Publication number Publication date
CN111230864A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
CN111230864B (zh) 一种五轴并联加工机器人的刀具路径规划方法
CN109571473B (zh) 一种误差可控的小线段轨迹光顺方法
CN101539769B (zh) 基于二次b样条曲线对g01代码的拟合及插补方法
US9244456B2 (en) Tool path generation method and apparatus
CN111679629B (zh) 一种多主轴头加工的空行程无干涉轨迹规划方法
CN107765648A (zh) 一种cnc加工的进给速度规划方法及装置
CN113156893B (zh) 一种基于s形加减速的五轴机床速度规划方法
CN111633668B (zh) 一种用于机器人加工三维自由曲面的运动控制方法
CN106094737B (zh) 一种指定加工误差条件下的数控加工速度优化控制方法
CN110879569A (zh) 一种前瞻控制方法
CN113635301A (zh) 一种六轴机械臂运动速度控制改进方法
CN116774648A (zh) 速度规划方法、装置、机床控制系统和存储介质
CN109933009A (zh) 一种基于刀触点路径段的五轴线性插补方法
CN109521731B (zh) 一种基于公差带的G2连续Bézier刀具轨迹平滑算法
CN113504764A (zh) 基于位置矢量加权积分的连续线段数控加工路径平滑方法
CN111515954B (zh) 一种机械臂高质量运动路径生成方法
CN114002996B (zh) 一种混联机器人c3连续五轴路径转接光顺方法
CN109648557A (zh) 一种六轴机器人空间运动规划方法
CN112147893B (zh) 一种基于直纹面空间的五轴铣削刀轴矢量优化方法
CN110625617B (zh) 一种智能机器人轨迹规划方法
CN113608496A (zh) 空间路径g2转接光顺方法、设备及计算机可读存储介质
CN113433889A (zh) 一种基于三段式羊角曲线的五轴机床加工的刀具轨迹规划方法
CN113946139A (zh) 数控系统的速度预测、数控系统的控制方法及数控系统
CN113946136A (zh) 数控系统的控制方法、数控系统及具有存储功能的装置
JPH10286788A (ja) 軌跡制御装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant