CN111224149A - 一种基于电化学阴极剥离的石墨烯纳米片的电池正极的制备方法及一种铝离子电池 - Google Patents

一种基于电化学阴极剥离的石墨烯纳米片的电池正极的制备方法及一种铝离子电池 Download PDF

Info

Publication number
CN111224149A
CN111224149A CN201911282439.7A CN201911282439A CN111224149A CN 111224149 A CN111224149 A CN 111224149A CN 201911282439 A CN201911282439 A CN 201911282439A CN 111224149 A CN111224149 A CN 111224149A
Authority
CN
China
Prior art keywords
graphene
battery
positive electrode
electrochemical
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911282439.7A
Other languages
English (en)
Inventor
吴忠帅
黄海波
周锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201911282439.7A priority Critical patent/CN111224149A/zh
Publication of CN111224149A publication Critical patent/CN111224149A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开了一种电池正极的制备方法,包括以下步骤:1)获得电化学阴极剥离的石墨烯纳米片;2)将含有电化学阴极剥离的石墨烯纳米片的分散液,分散均匀,除去分散液中的大部分溶剂,得到湿润的平整的石墨烯膜;3)将所述石墨烯膜压制成型,得到所述电池正极。以及含有该电池正极的铝离子电池。该方法基于电化学阴极剥离制备的高质量石墨烯正极材料,缩短了电池的制备时间。极片自支撑无需外加粘结剂、导电炭黑等添加剂。本申请所提供的铝离子电池,电解液环保、宽温域、阻燃,所得到的铝离子电池具有优异的循环、倍率性能、高容量、高体积能量和高功率。

Description

一种基于电化学阴极剥离的石墨烯纳米片的电池正极的制备 方法及一种铝离子电池
技术领域
本申请涉及一种铝离子电池领域,且特别涉及一种电化学阴极剥离石墨烯的高性能铝离子电池正极的制备方法。
背景技术
近年来,随着锂金属资源日益紧缺,以及电动汽车等大型设备锂离子电池能量密度与功率密度的要求不断提高,商业化的锂离子电池已难以满足电动汽车长续航与快速充放电的特点。且所使用的电解液易燃、有毒、易挥发以及,难以满足广大市场的需求。
铝离子电池以其在地壳中铝含量高,成本低,较Li金属具有更好的空气稳定性和安全性,以及更高的比容量和能量密度,是视为锂离子电池的理想替代。自2015年戴宏杰团队在Nature上首次报道利用3D泡沫石墨烯作为正极材料得到具有超快充电、不易燃烧爆炸、可折迭、材料成本低、安全性能优异的铝离子电池之后,对利用石墨烯宏观体材料作为铝离子电池正极材料的关注度逐年递增。2016年,湖南大学鲁兵安教授等人利用等离子体轰击的3D泡沫石墨烯得到多孔石墨烯宏观体作为正极材料后,显著地降低了铝离子电池工作电压,并提升了电池在不同温度下使用的范围。2017年,浙江大学高超团队,利用高温还原氧化石墨烯得到具有“三高-三连通”无缺陷石墨烯膜作为铝离子电池正极材料,将循环稳定性、倍率和温度使用范围提升到前所未有的新高度。
但是在制备石墨烯基薄膜材料是时,常采用的化学还原和热裂解的方法都是高能耗、高污染的制备过程。所以开发一种低成本、高性能铝离子电池对其商业实际应用至关重要。
发明内容
根据本申请的一个方面,提供了一种电池正极的制备方法,该方法基于电化学阴极剥离的高质量石墨烯为正极材料,以获得高安全性、高容量、倍率性能、高体积能量密度以及宽温域的铝离子电池。
所述电池正极的制备方法,其特征在于,包括以下步骤:
1)获得电化学阴极剥离的石墨烯纳米片;
2)将含有电化学阴极剥离的石墨烯纳米片的分散液,分散均匀,除去分散液中的大部分溶剂,得到湿润的平整的石墨烯膜;
3)将所述石墨烯膜压制成型,得到所述电池正极。
可选地,步骤1)包括:
以含有氢氧化物的溶液作为电解液,以含有石墨的原料作为电化学阴极,以导电材料作为电化学阳极;
所述电解液、电化学阳极和电化学阴极构成电化学回路;
在电化学阴极和电化学阳极之间施加电压,电化学阴极剥离石墨,制备石墨烯纳米片。
可选地,步骤2)中,所述含有电化学阴极剥离的石墨烯纳米片的分散液中石墨烯的浓度为0.5-5.0mg ml-1
可选地,步骤2)中,所述含有电化学阴极剥离的石墨烯纳米片的分散液中石墨烯的浓度的上限选自1.0mg ml-1、2.0mg ml-1、3.0mg ml-1、4.0mg ml-1或5.0mg ml-1;下限选自0.5mg ml-1、1.0mg ml-1、2.0mg ml-1、3.0mg ml-1或4.0mg ml-1
可选地,步骤2)中,所述电化学阴极剥离石墨烯纳米片的尺寸为0.5-10.0μm。
可选地,步骤2)中,所述电化学阴极剥离石墨烯纳米片包括1~6层石墨烯。
可选地,步骤2)中,所述含有电化学阴极剥离的石墨烯纳米片的分散液中的溶剂选自乙醇、甲醇、叔丁醇、异丙醇、乙醇、水中的至少一种。
可选地,步骤2)中,所述除去大部分溶剂的方式为抽滤。
可选地,步骤3)中,所述压制成型的压力为0.1-5.0MPa。
可选地,步骤3)中,所述压制成型的压力的上限选自0.5Mpa、1Mpa、2Mpa、3Mpa、4Mpa或5.0Mpa;下限选自0.1Mpa、0.5Mpa、1Mpa、2Mpa、3Mpa或4Mpa。
所述的石墨烯气凝胶通过机械压制得到的薄膜具有较高的堆叠密度,同时仍保持了石墨烯气凝胶内部的孔道的连通性,为电解液离子的扩散,电子的传输提供了充足的空间和连续的扩散路径。
根据本申请的另一个方面,提供一种根据上述任一项所述的方法制备的电池正极在铝离子电池中的应用。所得到的铝离子电池具有优异的循环、倍率性能、高容量、高体积能量和高功率。
可选地,所述铝离子电池,包括:
正极;所述正极选自根据上述任一项所述的方法制备的电池正极的至少一种;
负极;和
电解液;所述电解液包括1-乙基-3-甲基咪唑氯盐和三氯化铝。
可选地,所述电解液中1-乙基-3-甲基咪唑氯盐和三氯化铝的摩尔比为1:1.0-1:1.6。
可选地,所述铝离子电池还包括隔膜;所述隔膜在正极和负极之间,并将正极和负极隔开。
可选地,所述隔膜包括1-6层玻璃纤维。
可选地,所述负极包括铝箔、铝片、泡沫铝中的一种。
本申请能产生的有益效果包括:
1)本申请所提供的电池正极的制备方法,基于电化学阴极剥离制备的高质量石墨烯正极材料,缩短了电池的制备时间。极片自支撑无需外加粘结剂、导电炭黑等添加剂。
2)本申请所提供的铝离子电池,电解液环保、宽温域、阻燃,所得到的铝离子电池具有优异的循环、倍率性能、高容量、高体积能量和高功率。
附图说明
图1为本发明实施例1中制备的石墨烯极片扫面电镜图。
图2为本发明实施例1中制备的石墨烯极片拉曼图。
图3为本发明实施例1中石墨烯基铝离子电池在10A g-1的电流密度下的循环性能图,其中电压窗口为0.01~2.51V。
图4为本发明实施例1中制备的石墨烯基铝离子电池的倍率性能,其中电压窗口为0.1~2.51V。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买。
本申请的实施例中分析方法如下:
利用日本日立JSM-7800F进行SEM分析。
利用LabRAM HR 800(532nm)进行拉曼光谱分析。
利用LAND和上海辰华电化学工作站进行电化学性能分析。
实施例中电化学阴极剥离的石墨烯异丙醇分散液的制备方法:
在电解池中加入氢氧化钾的水溶液(5mol/L),然后以石墨纸连接直流电源的负极,以铂片电极连接直流电源的正极,使石墨电极和铂片电极浸入电解质溶液的面积比为0.5,两电极相距1cm。施加10V的槽电压,室温下剥离1h,反应产物经过滤洗涤,在异丙醇中超声15min得到石墨烯的分散液。
实施例1
将0.5mg ml-1的阴极剥离石墨烯异丙醇分散液,超声均匀后,抽滤得到石墨烯薄膜。室温干燥后,使用3MPa的压力将上述石墨烯压制成膜,作为正极;正极的SEM图如图1所示。通过图1的扫描电镜图(SEM)可以看出,制备的该正极具有孔结构,平整表面。通过图2的拉曼(Raman)可以看出,该石墨烯正极材材料具有极高石墨化程度;使用3层的玻璃纤维作为正极与负极铝箔之间的隔膜;使用1-乙基-3-甲基咪唑氯盐和三氯化铝混合物为电解液。其中,1-乙基-3-甲基咪唑氯盐和三氯化铝摩尔比为1:1.2。
按照以下顺序装配螺母电池:电池壳中放入上述制备的石墨烯膜;在该正极正极膜上,放3层的玻璃纤维隔膜(Whatman),滴加0.08mL的混合比例1:1.2的电解液;在玻璃纤维隔膜上放负极铝箔,对齐拧实完成封装。使用蓝电测试系统,对上述组装的电池进行10Ag-1恒流充放电实验,发现这种石墨烯正极的高性能铝离子电池的容量在循环5000圈后可以保持在98mAh g-1,具有优异的循环稳定性。对该铝离子电池进行倍率测试,如图4所示。图4也可以看出,在1、2、4、6、8、10A g-1的电流密度下,电池的放电比容量分别为173,163,144,117,112和102mAh g-1
实施例2
将2.0mg ml-1的阴极剥离石墨烯异丙醇分散液,超声均匀后,抽滤得到石墨烯膜。室温干燥后,使用5MPa的压力将上述石墨烯压制成膜,作为正极;正极的SEM图与图1相似,正极的拉曼光谱与图2相似。使用2层的玻璃纤维作为正极与负极铝箔之间的隔膜;使用1-乙基-3-甲基咪唑氯盐和三氯化铝混合物为电解液。其中,1-乙基-3-甲基咪唑氯盐和三氯化铝摩尔比为1:1.3。
按照以下顺序装配螺母电池:电池壳中放入上述制备的石墨烯膜;在该正极正极膜上,放2层的玻璃纤维隔膜(Whatman),滴加0.1mL的混合摩尔比例1:1.3的电解液;在玻璃纤维隔膜上放负极铝箔,对齐拧实完成封装。该铝离子电池的性能与实施例1中的电池相似。
实施例3
将5.0mg ml-1的阴极剥离石墨烯异丙醇分散液,超声均匀后,抽滤得到石墨烯膜。室温干燥后,使用5MPa的压力将上述石墨烯压制成膜,作为正极;正极的SEM图与图1相似,正极的拉曼光谱与图2相似。按照以下顺序装配螺母电池:电池壳中放入上述制备的石墨烯膜;在该正极正极膜上,放3层的玻璃纤维隔膜(Whatman),滴加0.06mL的混合摩尔比例1:1.6的电解液;在玻璃纤维隔膜上放负极铝箔,对齐拧实完成封装。该铝离子电池的性能与实施例1中的电池相似。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (10)

1.一种电池正极的制备方法,其特征在于,包括以下步骤:
1)获得电化学阴极剥离的石墨烯纳米片;
2)将含有电化学阴极剥离的石墨烯纳米片的分散液,分散均匀,除去分散液中的大部分溶剂,得到湿润的平整的石墨烯膜;
3)将所述石墨烯膜压制成型,得到所述电池正极。
2.根据权利要求1所述的电池正极的制备方法,其特征在于,步骤1)包括:
以含有氢氧化物的溶液作为电解液,以含有石墨的原料作为电化学阴极,以导电材料作为电化学阳极;
所述电解液、电化学阳极和电化学阴极构成电化学回路;
在电化学阴极和电化学阳极之间施加电压,电化学阴极剥离石墨,制备石墨烯纳米片。
3.根据权利要求1所述的电池正极的制备方法,其特征在于,步骤2)中,所述含有电化学阴极剥离的石墨烯的分散液中石墨烯纳米片的浓度为0.5-5.0mg ml-1
4.根据权利要求1所述的电池正极的制备方法,其特征在于,步骤2)中,所述电化学阴极剥离石墨烯纳米片的尺寸为0.5-10.0μm。
5.根据权利要求1所述的电池正极的制备方法,其特征在于,步骤2)中,所述含有电化学阴极剥离的石墨烯纳米片的分散液中的溶剂选自乙醇、甲醇、叔丁醇、异丙醇、乙醇、水中的至少一种。
6.根据权利要求1所述的电池正极的制备方法,其特征在于,步骤2)中,所述除去大部分溶剂的方式为抽滤。
7.根据权利要求1所述的电池正极的制备方法,其特征在于,步骤3)中,所述压制成型的压力为0.1-5.0MPa。
8.根据权利要求1至7任一项所述的方法制备的电池正极在铝离子电池中的应用。
9.根据权利要求8所述的应用,其特征在于,所述铝离子电池,包括:
正极;所述正极选自根据权利要求1至7任一项所述的方法制备的电池正极的至少一种;
负极;和
电解液;所述电解液包括1-乙基-3-甲基咪唑氯盐和三氯化铝;
优选地,所述电解液中1-乙基-3-甲基咪唑氯盐和三氯化铝的摩尔比为1:1.0-1:1.6。
10.根据权利要求8所述的应用,其特征在于,所述铝离子电池还包括隔膜;所述隔膜在正极和负极之间,并将正极和负极隔开;
优选地,所述隔膜包括1-6层玻璃纤维;
优选地,所述负极包括铝箔、铝片、泡沫铝中的一种。
CN201911282439.7A 2019-12-13 2019-12-13 一种基于电化学阴极剥离的石墨烯纳米片的电池正极的制备方法及一种铝离子电池 Pending CN111224149A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911282439.7A CN111224149A (zh) 2019-12-13 2019-12-13 一种基于电化学阴极剥离的石墨烯纳米片的电池正极的制备方法及一种铝离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911282439.7A CN111224149A (zh) 2019-12-13 2019-12-13 一种基于电化学阴极剥离的石墨烯纳米片的电池正极的制备方法及一种铝离子电池

Publications (1)

Publication Number Publication Date
CN111224149A true CN111224149A (zh) 2020-06-02

Family

ID=70827844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911282439.7A Pending CN111224149A (zh) 2019-12-13 2019-12-13 一种基于电化学阴极剥离的石墨烯纳米片的电池正极的制备方法及一种铝离子电池

Country Status (1)

Country Link
CN (1) CN111224149A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103991862A (zh) * 2013-12-27 2014-08-20 杭州金马能源科技有限公司 电化学高效剥离制备高质量石墨烯的方法
CN105449270A (zh) * 2015-12-09 2016-03-30 江苏科技大学 一种含石墨烯电极的二次离子电池及其制备方法
CN107324316A (zh) * 2017-06-30 2017-11-07 杭州高烯科技有限公司 一种石墨烯膜正极材料的制备方法及其在铝离子电池中的应用
US20190194023A1 (en) * 2017-10-31 2019-06-27 Wisconsin Alumni Research Foundation Method to make flexible, free-standing graphene paper and product formed thereby
CN110289444A (zh) * 2019-06-24 2019-09-27 北京科技大学 一种采用液态金属镓为负极的铝离子电池
CN110371961A (zh) * 2019-08-20 2019-10-25 中钢集团南京新材料研究院有限公司 一种电解制备高本征度石墨烯的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103991862A (zh) * 2013-12-27 2014-08-20 杭州金马能源科技有限公司 电化学高效剥离制备高质量石墨烯的方法
CN105449270A (zh) * 2015-12-09 2016-03-30 江苏科技大学 一种含石墨烯电极的二次离子电池及其制备方法
CN107324316A (zh) * 2017-06-30 2017-11-07 杭州高烯科技有限公司 一种石墨烯膜正极材料的制备方法及其在铝离子电池中的应用
US20190194023A1 (en) * 2017-10-31 2019-06-27 Wisconsin Alumni Research Foundation Method to make flexible, free-standing graphene paper and product formed thereby
CN110289444A (zh) * 2019-06-24 2019-09-27 北京科技大学 一种采用液态金属镓为负极的铝离子电池
CN110371961A (zh) * 2019-08-20 2019-10-25 中钢集团南京新材料研究院有限公司 一种电解制备高本征度石墨烯的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FATEMEH ROSTAMIAN等: "An Optimum Electrochemical Production Method of Few-Layers", 《ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY》 *
夏永康等: "CVD法制备三维石墨烯的电化学储能性能", 《电化学》 *

Similar Documents

Publication Publication Date Title
WO2018103386A1 (zh) 一种片状氮磷共掺杂多孔碳材料及其制备方法与用途
CN104393304B (zh) 锂硒电池正极材料及其制备方法以及锂硒电池
WO2020006788A1 (zh) 一种金属有机框架碳纳米管复合材料的制备方法
CN110010895B (zh) 碳纤维负载氧化镁颗粒交联纳米片阵列复合材料及其制备方法和应用
CN105470450A (zh) 一种锂离子动力电池硅负极极片及其制备方法
CN108832122A (zh) 应用铜/石墨烯改善磷酸铁锂电化学性能的方法
CN114464873B (zh) 无负极醚类高电压钠二次电池及其制备方法
CN109686928B (zh) 一种应用于二次电池的碳硅复合负极材料的制备方法
CN109256544B (zh) 一种锂硅电池电极材料及其制备方法和一种锂硅电池
CN109768218A (zh) 一种氮掺杂的硬碳锂离子电池负极材料及其制备方法及锂离子电池负极片和锂离子电池
CN108807911A (zh) 一种铝离子电池及其制备方法
CN109560244A (zh) 磷酸铁锂锂离子电池制备方法及磷酸铁锂锂离子电池
CN103367765B (zh) 多层石墨的制备方法和应用该多层石墨制备锂空气电池阴极的方法
CN111848892A (zh) 碳纳米管负载二维共价有机框架电极材料的制备方法
CN111224102A (zh) 一种低温电池的制备方法
CN110707286A (zh) 一种高能量密度锂离子电池一体化电极及其制备方法
CN114613613B (zh) 聚多巴胺/石墨烯复合材料锂离子混合电容器及制备方法
CN107026269B (zh) 一种集流体、电极和隔膜一体化结构和半液态锂硫电池
CN111217358A (zh) 一种还原氧化石墨烯的制备方法及其应用
JP2015008166A (ja) キャパシタ
CN109449440B (zh) 微孔超薄软碳纳米片及其制备方法和应用
CN108598627B (zh) 一种高容量钾-氧气电池
CN110350152B (zh) 石墨炔/二氧化锰纳米片阵列材料及其制备方法和应用
CN111224149A (zh) 一种基于电化学阴极剥离的石墨烯纳米片的电池正极的制备方法及一种铝离子电池
CN114824206B (zh) 一种长寿命高首效硬碳复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200602