CN111223761A - 一种沉积多晶硅表面颗粒质量改善方法 - Google Patents

一种沉积多晶硅表面颗粒质量改善方法 Download PDF

Info

Publication number
CN111223761A
CN111223761A CN202010035880.1A CN202010035880A CN111223761A CN 111223761 A CN111223761 A CN 111223761A CN 202010035880 A CN202010035880 A CN 202010035880A CN 111223761 A CN111223761 A CN 111223761A
Authority
CN
China
Prior art keywords
gas
polycrystalline silicon
deposition
furnace tube
sih
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010035880.1A
Other languages
English (en)
Other versions
CN111223761B (zh
Inventor
黄建晟
唐胜
王振宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN202010035880.1A priority Critical patent/CN111223761B/zh
Publication of CN111223761A publication Critical patent/CN111223761A/zh
Application granted granted Critical
Publication of CN111223761B publication Critical patent/CN111223761B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • C30B28/14Production of homogeneous polycrystalline material with defined structure directly from the gas state by chemical reaction of reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823871Complementary field-effect transistors, e.g. CMOS interconnection or wiring or contact manufacturing related aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了一种沉积多晶硅表面颗粒质量改善方法,具体包括如下步骤:(1)选用炉管加热装置;(2)通入净化气体N2;(3)多晶硅沉积。本发明属于半导体制造技术领域,具体是提供了一种通过变更输入气体管道及载气N2流量,改善多晶硅沉积薄膜品质,并通过此方法解决沉积多晶硅产生表面颗粒及薄膜厚度不均匀的问题的沉积多晶硅表面颗粒质量改善方法;改善后并且优化的菜单在沉积多晶硅时能够实现产生较少的表面颗粒及高均匀度的膜厚,进而使产品质量的得到提升,以解决沉积多晶硅后所产生的表面颗粒及薄膜厚度不均匀的问题。

Description

一种沉积多晶硅表面颗粒质量改善方法
技术领域
本发明属于半导体制造技术领域,具体是指一种沉积多晶硅表面颗粒质量改善方法。
背景技术
多晶硅被使用于互补型金属氧化半导体(CMOS)技术中栅极电极及局部联机接线和电阻,多晶硅因具有良好的热稳定性,与SiO2有良好的接触接口及良好的厚度均匀性而便于沉积及加工。目前,SiH4气体因可以在非晶材料(例如SiO2)上得到较好的阶梯覆盖率而常被用于多晶硅沉积,现有技术中因为H2在低温下会导致SiH4分解为Si与H2造成逆反应降低SiH4的沉积速率,所以常采用N2作为稀释气体或载气。N2作为稀释气体或载气时须在低温下进行反应,可以降低晶圆的热预算,也可以让气体反应完全而得到附着性较佳的薄膜。
多晶硅沉积过程中,细微的气体流量、沉积温度、反应压力和掺杂浓度是主要的工艺参数,上述工艺参数的设定影响多晶硅沉积速率及表面均匀度,若工艺参数设置不当极易导致产品报废,未达到报废标准的产品良率也有较大的影响;同时,多晶硅沉积制备过程中每次出现产品报废状况,均需调整机差,从而严重影响机台工作效率,随着产能的增加需要进行机差调整的次数越来越频繁,且现有设备、工艺条件会导致后续工艺污染增加,造成每一道制程中所需时间增加而导致产能下降。现有技术中未掺杂多晶硅沉积大多使用SiH4及N2为制程气体,SiH4及N2作为主要反应气体,过多过少都会导致表面颗粒或缺陷的产生。
沉积系统环境对低压化学气相沉积生长多晶硅薄膜的表面质量好坏的影响主要由如下原因引起:(1)反应气体的质量较差:可能是源气体受污染或是真空系统较差,使得沉积反应出现杂质;(2)不合适的沉积温度或沉积压力:当温度或压力过高时,沉积速率明显加快,均匀性会降低颗粒度增大,会导致薄膜表面产生雾状使的器件的电性受影响;(3)源气体(SiH4)流量不稳定:源气体(SiH4)流量在某一瞬间超过规定的流量值,并且与规定的流量值相差较大,会使得炉内的SiH4浓度瞬间增加超过饱和状态,薄膜的颗粒度加大,会使得薄膜产生针孔(PinHole)状和发雾现象;(4)硅片表面质量较差:沉积多晶硅之前,热生长的二氧化硅或是氮化硅薄膜质量、硅片表面的洁净度对多晶硅的生成影响较大,水渍、刮伤、表面颗粒都会使得多晶硅沉积过程中造成表面的不均匀或是突起颗粒的形成。
综上可知,多晶硅的沉积质量直接影响到了器件的特性及可靠性,因此挑选适合的工艺条件及保持高洁净度的环境是非常重要的。
发明内容
为解决上述现有技术难题,本发明提供了一种沉积多晶硅表面颗粒质量改善方法,该方法通过改造设备结构使反应气体SiH4及净化气体N2流量得到更精准的控制,以改善产能下降的问题;同时,通过变更输入气体管道及载气N2流量来改善多晶硅沉积薄膜品质,并通过此方法解决沉积多晶硅产生表面颗粒及薄膜厚度不均匀的问题,改善后并且优化的工艺参数在沉积多晶硅时能够实现产生较少的表面颗粒及高均匀度的膜厚,进而使产品质量的得到提升,以解决沉积多晶硅后所产生的表面颗粒及薄膜厚度不均匀的问题。
本发明采用的技术方案如下:一种沉积多晶硅表面颗粒质量改善方法,具体包括如下步骤:
步骤一、选用炉管加热装置:所述炉管加热装置包括气瓶及FM21、FM22、FM23、FM24四组气体管线,所述气瓶内装有SiH4源气体,所述炉管加热装置内设有加热器和底座,所述底座上设有晶舟,所述晶舟上设有晶圆;
步骤二、通入净化气体N2:经FM21、FM22、FM23、FM24四组气体管线通入高纯净度的净化气体N2,高纯净度的N2气体具备良好的化学稳定性及方便性,净化气体N2作为加热系统的净化清理气体将炉管内的残余的生成物或是残留气体吹拂干净,净化气体为SiH4气体进行沉积反应准备条件;
步骤三、多晶硅沉积:将气瓶中SiH4源气体同样通过FM21、FM22、FM23、FM24四组气体管线传输至炉管内部,SiH4经由管线进入到炉管内部后,以5℃/min的速率开始持续加热至沉积温度,施加反应压力,SiH4受热分解并形成多晶硅薄膜沉积在晶舟的晶圆表面上,具体反应式如下:
Figure BDA0002365981810000021
Figure BDA0002365981810000022
进一步地,所述多晶硅沉积步骤中晶舟进入/退出炉管时FM21、FM22、FM23、FM24四组气体管线通过的净化气体N2流量分别为19000sccm、500sccm、0sccm、0sccm;晶舟进入主工艺前及晶舟退出后会产生温度升高及降低的变化,由于温度的变化会导致多晶硅薄膜因受热后在管壁上剥落,再加上N2流量过大将其垂落,造成颗粒的污染较严重,因此将FM23、FM24气体管线中流入N2的流量关闭,并将FM22管线中的N2流量降低,此方法经由多次的实验验证后可有效的降低炉管在低压化学气相沉积时所造成颗粒的污染。
进一步地,所述多晶硅沉积过程包括下列步骤:
(1)硅烷分子被传输到沉积区域;
(2)硅烷分子扩散到基板表面;
(3)硅烷分子在衬底表面吸附;
(4)吸附的硅烷分子之间或硅烷分子和气相分子间进行化学反应,生产硅原子及其副产物,Si原子沿衬底表面进行迁移,结合到晶体点阵内部;
(5)反应产生的副产物从表面解析;
(6)反应副产物由表面外扩散进入主气流并排出。
进一步地,所述多晶硅沉积过程采用纯硅烷气体,所述沉积温度范围为580~630℃,所述反应压力为100~400mTorr,沉积反应是在恒温恒压下进行的,这样有利于增加质量转移率,加大了分子间的平均自由路径,使得气体分子的扩散速率增加,有利于薄膜均匀性的提高。
进一步地,所述多晶硅薄膜沉积速率范围为5~20nm/min,多晶硅沉积生长过程及晶粒大小与CVD分子动力学相关。
进一步地,所述晶舟上水平设有垂直式炉管硅片,所述垂直式炉管硅片采用与气流方向垂直的水平密集式装片方式摆放。
进一步地,所述加热器采用精准控制炉温的电阻加热炉。
进一步地,所述晶舟采用石英晶舟。
采用上述方案本发明取得的有益效果如下:本发明通过变更输入气体管道及载气N2流量,改善多晶硅沉积薄膜品质,并通过此方法解决沉积多晶硅产生表面颗粒及薄膜厚度不均匀的问题,改善后并且优化的菜单在沉积多晶硅时能够实现产生较少的表面颗粒及高均匀度的膜厚,进而使产品质量的得到提升,以解决沉积多晶硅后所产生的表面颗粒及薄膜厚度不均匀的问题。
附图说明
图1为本发明一种沉积多晶硅表面颗粒质量改善方法的炉管加热装置结构示意图;
图2为本发明一种沉积多晶硅表面颗粒质量改善方法未更改菜单条件下N2气体造成的颗粒影响扫描电镜图;
图3为本发明一种沉积多晶硅表面颗粒质量改善方法更改菜单条件下N2气体造成的颗粒影响扫描电镜图。
其中,1、加热器,2、底座,3、晶舟,4、晶圆。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例:
步骤一、选用炉管加热装置:所述炉管加热装置包括气瓶及FM21、FM22、FM23、FM24四组气体管线,所述气瓶内装有SiH4源气体,所述炉管加热装置内设有加热器1和底座2,所述底座2上设有晶舟3,所述晶舟3上设有若干组晶圆4;
步骤二、通入净化气体N2:将净化用的高纯净度的N2通过气体管线经FM21、FM22、FM23、FM24输入到炉管内部,净化气体N2作为加热系统的净化清理气体将炉管内的残余的生成物或是残留气体吹拂干净,为SiH4气体进行沉积反应准备条件;
步骤三、多晶硅沉积:将气瓶中的SiH4源气体同样通过FM21、FM22、FM23、FM24四组气体管线传输至炉管内部,SiH4经由管线进入到炉管内部后,以5℃/min的速率开始持续加热至沉积温度,于特定的反应压力下,SiH4受热分解并形成多晶硅薄膜沉积在晶舟的硅晶圆表面上,反应式如下:
Figure BDA0002365981810000041
Figure BDA0002365981810000042
现有技术中,晶舟进入前及出来后,用于净化的N2流量分别为FM21:19000sccm、FM22:3000sccm、FM23:3000sccm、FM24:3000sccm,上述工艺参数条件下,晶舟进入主工艺前及晶舟退出后会有温度升高及降低的步骤,由于温度的变化会导致多晶硅薄膜因为受热后在管壁上剥落再加上N2流量过大将其垂落,造成颗粒的污染较严重,经上述工艺参数条件下沉积获得的多晶硅,后续对其表面颗粒进行扫描发现晶圆表面含有大量的颗粒,其原因为当晶圆传递到传递盒时,N2的流量较大导致管线中未反应完全的气体残留物一并被吹拂掉落;如表1和表2,调整净化N2气体在晶舟进入(步骤03)及晶舟退出(步骤24)之间的菜单工艺参数,将FM22管线的N2流量由3000sccm调整至500sccm,同时,关闭FM23、FM24两组节点N2流量的气体管线,将原先的N2流量FM21:19000sccm、FM22:3000sccm、FM23:3000sccm、FM24:3000sccm调整至FM21:19000sccm、FM22:500sccm、FM23:0sccm、FM24:0sccm,此方法经由多次的实验验证后可有效的降低炉管在低压化学气相沉积时所造成颗粒的污染。
所述多晶硅沉积过程采用纯硅烷气体,所述沉积温度范围为580~630℃,所述反应压力为100~400mTorr,沉积反应是在恒温恒压下进行的,这样有利于增加质量转移率,加大了分子间的平均自由路径,使得气体分子的扩散速率增加,有利于薄膜均匀性的提高。
所述多晶硅薄膜沉积速率范围为5~20nm/min,多晶硅沉积生长过程及晶粒大小与CVD分子动力学相关。
所述晶舟上水平设有垂直式炉管硅片,所述垂直式炉管硅片采用与气流方向垂直的水平密集式装片方式摆放。
所述加热器采用精准控制炉温的电阻加热炉。
所述晶舟采用石英晶舟。
作为一种实施例,更改前净化的N2菜单工艺参数条件及更改后菜单工艺参数条件分别如表1和表2所示:
表1
项目 步骤名称 FM21 FM22 FM23 FM24
步骤00 准备 5000 5000 5000 5000
步骤01 WF-CG 5000 5000 5000 5000
步骤02 等待 5000 5000 5000 5000
步骤03 晶舟进入 19000 3000 3000 3000
…… …… …… …… …… ……
步骤24 晶舟退出 19000 3000 3000 3000
步骤25 冷却 5000 5000 5000 5000
步骤26 WF-CG 5000 5000 5000 5000
步骤27 结束 5000 5000 5000 5000
表2
项目 步骤名称 FM21 FM22 FM23 FM24
步骤00 准备 5000 5000 5000 5000
步骤01 WF-CG 5000 5000 5000 5000
步骤02 等待 5000 5000 5000 5000
步骤03 晶舟进入 19000 500 0 0
…… …… …… …… …… ……
步骤24 晶舟退出 19000 500 0 0
步骤25 冷却 5000 5000 5000 5000
步骤26 WF-CG 5000 5000 5000 5000
步骤27 结束 5000 5000 5000 5000
由图2可知,在未更改设备菜单工艺参数之前沉积的多晶硅表面有各种大小凸起颗粒,呈现出典型的聚合薄膜剥离现象。
由图3可知,经更改设备菜单工艺参数之后沉积的多晶硅表面凸起颗粒数明显减少,多晶硅薄膜质量得到明显提升。
通过对净化用N2管线的更改及工艺菜单调整,降低了产品的废品率,预计每年会减少报废损失为8.4万。
以上对本发明及其实施方式进行了描述,这种描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。总而言之如果本领域的技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (7)

1.一种沉积多晶硅表面颗粒质量改善方法,其特征在于,具体包括如下步骤:
步骤一、选用炉管加热装置:所述炉管加热装置包括气瓶及FM21、FM22、FM23、FM24四组气体管线,所述气瓶内装有SiH4源气体,所述炉管加热装置内设有加热器和底座,所述底座上设有晶舟,所述晶舟上设有晶圆;
步骤二、通入净化气体N2:经FM21、FM22、FM23、FM24四组气体管线通入高纯净度的净化气体N2,净化气体N2作为加热系统的净化清理气体将炉管内的残余的生成物或是残留气体吹拂干净,净化气体N2为SiH4气体进行沉积反应准备条件;
步骤三、多晶硅沉积:将气瓶中SiH4源气体同样通过FM21、FM22、FM23、FM24四组气体管线传输至炉管内部,SiH4经由管线进入到炉管内部后,以5℃/min的速率开始持续加热至沉积温度,施加反应压力,SiH4受热分解并形成多晶硅薄膜沉积在晶舟的晶圆表面上,具体反应式如下:
Figure FDA0002365981800000011
Figure FDA0002365981800000012
2.根据权利要求1所述的一种沉积多晶硅表面颗粒质量改善方法,其特征在于,所述多晶硅沉积步骤中晶舟进入/退出炉管时FM21、FM22、FM23、FM24四组气体管线通过的净化气体N2流量分别为19000sccm、500sccm、0sccm、0sccm。
3.根据权利要求1所述的一种沉积多晶硅表面颗粒质量改善方法,其特征在于,所述多晶硅沉积过程采用纯硅烷气体,所述沉积温度范围为580~630℃,所述反应压力为100~400mTorr。
4.根据权利要求1所述的一种沉积多晶硅表面颗粒质量改善方法,其特征在于,所述多晶硅薄膜沉积速率范围为5~20nm/min。
5.根据权利要求1所述的一种沉积多晶硅表面颗粒质量改善方法,其特征在于,所述晶舟上水平设有垂直式炉管硅片,所述垂直式炉管硅片采用与气流方向垂直的水平密集式装片方式摆放。
6.根据权利要求1所述的一种沉积多晶硅表面颗粒质量改善方法,其特征在于,所述加热器采用精准控制炉温的电阻加热炉。
7.根据权利要求1所述的一种沉积多晶硅表面颗粒质量改善方法,其特征在于,所述晶舟采用石英晶舟。
CN202010035880.1A 2020-01-14 2020-01-14 一种沉积多晶硅表面颗粒质量改善方法 Expired - Fee Related CN111223761B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010035880.1A CN111223761B (zh) 2020-01-14 2020-01-14 一种沉积多晶硅表面颗粒质量改善方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010035880.1A CN111223761B (zh) 2020-01-14 2020-01-14 一种沉积多晶硅表面颗粒质量改善方法

Publications (2)

Publication Number Publication Date
CN111223761A true CN111223761A (zh) 2020-06-02
CN111223761B CN111223761B (zh) 2022-11-25

Family

ID=70831098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010035880.1A Expired - Fee Related CN111223761B (zh) 2020-01-14 2020-01-14 一种沉积多晶硅表面颗粒质量改善方法

Country Status (1)

Country Link
CN (1) CN111223761B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115142048A (zh) * 2022-06-30 2022-10-04 北海惠科半导体科技有限公司 晶圆载具及氮化硅介质膜的制备方法
CN115506011A (zh) * 2022-09-30 2022-12-23 中国电子科技集团公司第四十八研究所 一种改善立式lpcvd设备镀膜效果的方法
WO2024077865A1 (zh) * 2022-10-13 2024-04-18 上海中欣晶圆半导体科技有限公司 一种改善翘曲的成膜方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604152A (en) * 1994-11-23 1997-02-18 United Microelectronics Corporation CVD process for deposition of amorphous silicon
JPH09115833A (ja) * 1995-10-07 1997-05-02 Hyundai Electron Ind Co Ltd 半導体素子のポリシリコン膜製造方法
US5914000A (en) * 1996-02-06 1999-06-22 Mitsubishi Denki Kabushiki Kaisha Apparatus for manufacturing semiconductor device and method of removing silicon oxidation film
TW392212B (en) * 1998-09-21 2000-06-01 Mosel Vitelic Inc Low pressure silicon nitrides deposition method that can reduce particle production
CN103540909A (zh) * 2012-07-13 2014-01-29 无锡华润上华科技有限公司 一种lpcvd沉积多晶硅的方法
US20140322900A1 (en) * 2011-12-07 2014-10-30 Wuxi China Resources Huajing Microelectronics Co., Ltd Low-pressure chemical vapor deposition apparatus and thin-film deposition method thereof
CN108149216A (zh) * 2017-12-07 2018-06-12 上海申和热磁电子有限公司 一种改善低压化学气相淀积多晶硅薄膜质量的方法
CN109244010A (zh) * 2018-09-03 2019-01-18 武汉新芯集成电路制造有限公司 一种高温热氧化机台结构
CN109300777A (zh) * 2018-09-25 2019-02-01 上海申和热磁电子有限公司 一种改善硅片多晶硅薄膜翘曲的化学气相沉积方法
CN110257908A (zh) * 2019-05-28 2019-09-20 天津中环领先材料技术有限公司 一种多晶硅薄膜制备工艺

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604152A (en) * 1994-11-23 1997-02-18 United Microelectronics Corporation CVD process for deposition of amorphous silicon
JPH09115833A (ja) * 1995-10-07 1997-05-02 Hyundai Electron Ind Co Ltd 半導体素子のポリシリコン膜製造方法
US5914000A (en) * 1996-02-06 1999-06-22 Mitsubishi Denki Kabushiki Kaisha Apparatus for manufacturing semiconductor device and method of removing silicon oxidation film
TW392212B (en) * 1998-09-21 2000-06-01 Mosel Vitelic Inc Low pressure silicon nitrides deposition method that can reduce particle production
US20140322900A1 (en) * 2011-12-07 2014-10-30 Wuxi China Resources Huajing Microelectronics Co., Ltd Low-pressure chemical vapor deposition apparatus and thin-film deposition method thereof
CN103540909A (zh) * 2012-07-13 2014-01-29 无锡华润上华科技有限公司 一种lpcvd沉积多晶硅的方法
CN108149216A (zh) * 2017-12-07 2018-06-12 上海申和热磁电子有限公司 一种改善低压化学气相淀积多晶硅薄膜质量的方法
CN109244010A (zh) * 2018-09-03 2019-01-18 武汉新芯集成电路制造有限公司 一种高温热氧化机台结构
CN109300777A (zh) * 2018-09-25 2019-02-01 上海申和热磁电子有限公司 一种改善硅片多晶硅薄膜翘曲的化学气相沉积方法
CN110257908A (zh) * 2019-05-28 2019-09-20 天津中环领先材料技术有限公司 一种多晶硅薄膜制备工艺

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115142048A (zh) * 2022-06-30 2022-10-04 北海惠科半导体科技有限公司 晶圆载具及氮化硅介质膜的制备方法
CN115142048B (zh) * 2022-06-30 2023-07-07 北海惠科半导体科技有限公司 晶圆载具及氮化硅介质膜的制备方法
CN115506011A (zh) * 2022-09-30 2022-12-23 中国电子科技集团公司第四十八研究所 一种改善立式lpcvd设备镀膜效果的方法
CN115506011B (zh) * 2022-09-30 2024-04-26 中国电子科技集团公司第四十八研究所 一种改善立式lpcvd设备镀膜效果的方法
WO2024077865A1 (zh) * 2022-10-13 2024-04-18 上海中欣晶圆半导体科技有限公司 一种改善翘曲的成膜方法

Also Published As

Publication number Publication date
CN111223761B (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
CN111223761B (zh) 一种沉积多晶硅表面颗粒质量改善方法
US11549181B2 (en) Methods for atomic layer deposition of SiCO(N) using halogenated silylamides
US6197694B1 (en) In situ method for cleaning silicon surface and forming layer thereon in same chamber
JP2005536054A (ja) アモルファスケイ素含有膜の堆積
JP2003077845A (ja) 半導体装置の製造方法および基板処理装置
US10593545B2 (en) Method for substrate processing using exhaust ports
JP2005123532A (ja) 成膜装置及び成膜方法
US10262863B2 (en) Method for manufacturing SiC epitaxial wafer by simultaneously utilizing an N-based gas and a CI-based gas, and SiC epitaxial growth apparatus
WO2017123967A1 (en) Pecvd tungsten containing hardmask films and methods of making
US7029995B2 (en) Methods for depositing amorphous materials and using them as templates for epitaxial films by solid phase epitaxy
KR20130056595A (ko) 반도체 소자의 표면 처리 및 박막 성장 방법, 그리고 이를 구현하는 표면 처리 및 박막 성장 장치
WO2020189288A1 (ja) 成膜方法および成膜装置
JP2014058411A (ja) エピタキシャル炭化珪素ウエハの製造方法
US20080308036A1 (en) Vapor-phase growth apparatus and vapor-phase growth method
JP2005183514A (ja) 半導体装置の製造方法
US6537924B2 (en) Method of chemically growing a thin film in a gas phase on a silicon semiconductor substrate
JPH05315269A (ja) 薄膜の製膜方法
CN100537840C (zh) 形成cvd膜的方法
EP0240314B1 (en) Method for forming deposited film
JP2005039153A (ja) 基板処理装置および半導体デバイスの製造方法
JPH1197434A (ja) 成膜装置、クリーニング方法、及び成膜方法
JPH11260734A (ja) 半導体装置の製造方法
JPH1050613A (ja) エピタキシャル成長装置
JP3279459B2 (ja) 枚葉型半導体処理装置及び枚葉型半導体処理装置のガス供給制御方法
US11114297B2 (en) Method for forming semiconductor film and film forming device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221125