CN111218603B - 一种高熵合金基高温固体润滑复合材料的制备方法 - Google Patents

一种高熵合金基高温固体润滑复合材料的制备方法 Download PDF

Info

Publication number
CN111218603B
CN111218603B CN202010162188.5A CN202010162188A CN111218603B CN 111218603 B CN111218603 B CN 111218603B CN 202010162188 A CN202010162188 A CN 202010162188A CN 111218603 B CN111218603 B CN 111218603B
Authority
CN
China
Prior art keywords
entropy alloy
composite material
temperature
preparation
alcocrfeni
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010162188.5A
Other languages
English (en)
Other versions
CN111218603A (zh
Inventor
杨军
刘维民
程军
耿钰山
朱圣宇
谈辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN202010162188.5A priority Critical patent/CN111218603B/zh
Publication of CN111218603A publication Critical patent/CN111218603A/zh
Application granted granted Critical
Publication of CN111218603B publication Critical patent/CN111218603B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种高熵合金基高温固体润滑复合材料的制备方法,该方法是指:按质量分数计,将97%~85%的AlCoCrFeNi高熵合金粉末与3~15%的Ag粉末放入不锈钢罐中,依次经球磨混匀、放电等离子烧结后冷却至室温即得AlCoCrFeNi‑Ag高熵合金基高温固体润滑复合材料。本发明制备工艺简单、成本低、可靠性高,所得高熵合金基复合材料兼备良好的力学性能、宽温域自润滑和耐磨损性能,能够满足航空航天等领域中机械运动传动部件高温真空苛刻工况下的应用需求。

Description

一种高熵合金基高温固体润滑复合材料的制备方法
技术领域
本发明涉及固体润滑耐磨损材料领域,尤其涉及一种高熵合金基高温固体润滑复合材料的制备方法。
背景技术
高熵合金是近年来打破传统合金设计理念所提出的一种新型合金体系,其主要特点是“多主元”和“化学无序”。与传统合金材料固溶体结构(由溶质和溶剂组成)相比,高熵合金是“质剂不分”的高浓度固溶体,从热力学角度分析其具有更低的吉布斯自由能,更优异的高温相和组织结构稳定性;从动力学角度分析,高熵合金材料在原子级微观扩散的过程中表现出缓慢和迟滞的特性。因而,高熵合金较传统金属材料具有更优异的硬度、强度、韧性和热稳定性等性能,有望在汽车、兵器和航空航天等领域获得重要应用。
近十年来,许多性能卓越、多主元新型高熵合金材料被陆续设计出来,从相结构来划分主要可以分为FCC相、BCC相或者FCC+BCC耦合相三类高熵合金材料。FCC相高熵合金由于具有更多的滑移带和更低的堆积层错能,通常具有较好的韧性和加工硬化能力;BCC相高熵合金由于严重的晶格畸变,通常具有较高的高温硬度、屈服强度和抗磨损性能,是一种新型高温耐磨损材料。
目前,有关BCC相高熵合金摩擦学研究和性能设计工作已经得到初步展开,其中,AlCoCrFeNi高熵合金被证实在高温大气环境下磨损表面能够形成釉质保护层从而具有优异的耐磨损性能(Journal of Alloys and Compounds,2019, 777: 180-189),另外在AlCoCrFeNi高熵合金中掺杂其它合金元素如Cu、Mn或调控Al组元含量的比例可以进一步提升其耐磨损性能(Journal of Materials Science & Technology, 2019, 35: 917-925;Wear,2013, 297: 1045-1051)。然而,研究发现,AlCoCrFeNi高熵合金在高温环境下表现出非常高的摩擦系数、与接触面之间黏着转移非常严重(Wear, 2019, 428-429: 32-44),极易造成运动部件和空间机构的失效,严重限制其在航空航天领域的应用。
Au、Ag等软金属材料因其优异的易剪切特性,常在解决空间运动机构低摩擦、耐磨损和防冷焊等问题方面具有独一无二的优势,常用于空间润滑功能薄膜材料和复合材料固体润滑剂。但将固体润滑剂Ag与高熵合金复合化时,由于Ag与高熵合金大部分金属元素的结合焓相对较高,易形成偏析组织,导致材料整体的力学性能显著下降。Zhang等(Journalof Alloys and Compounds, 2017, 725: 700-710)利用SPS技术制备了CoCrFeNi-Ag-BaF2/CaF2高熵合金基复合材料,该材料在室温至800℃大气环境下摩擦系数低于0.3,磨损率在10-5(mm3/Nm)数量级,但屈服强度仅为468MPa。Gao等(Tribology International, 2019,131: 508-519)通过高能球磨和SPS技术制备的NiCoCrAl-Ag-MoS2-LaF3/CeF3高熵合金基复合材料,虽然屈服强度可达到1014MPa,但塑性应变率只有10.8%;室温至800℃大气环境下摩擦系数在0.3~0.5之间,并且在400℃时磨损较大。中国专利CN 109161710 A公开了一种通过高能球磨和真空热压烧结法制备的FeCoCrNiAl-CaF2高熵合金基复合材料,从RT到800℃,复合材料的摩擦系数和磨损率随着CaF2的质量分数从0%增加到10%而逐渐减小;但是其制备工艺主要通过高能球磨法制备高熵合金粉末,成本较高,难以规模化生产。
由此可见,目前报道的高熵合金基固体润滑耐磨损材料难以实现力学和摩擦学性能的协调统一,同时制备工艺复杂,成本较高。
发明内容
本发明所要解决的技术问题是提供一种工艺简单、成本低、可靠性高的高熵合金基高温固体润滑复合材料的制备方法。
为解决上述问题,本发明所述的一种高熵合金基高温固体润滑复合材料的制备方法,其特征在于:按质量分数计,将97%~85%的AlCoCrFeNi高熵合金粉末与3~15%的Ag粉末放入不锈钢罐中,依次经球磨混匀、放电等离子烧结后冷却至室温即得AlCoCrFeNi-Ag高熵合金基高温固体润滑复合材料。
所述AlCoCrFeNi高熵合金粉末为氩气雾化球形合金粉末,粒度为20~50μm。
所述Ag粉末为电解球形粉末,粒度为20~50μm。
所述球磨的条件是指采用行星式低能球磨机,以直径为5mm和10mm的不锈钢球为磨球,在球料比为1:1~2:1、转速为300~350r/min的条件下混合4~6h。
所述放电等离子烧结的条件是指真空度低于5Pa,烧结温度为1100℃~1200℃,施加压力为30~35MPa,平均加热速率为70℃/min,保温时间为5~10min。
所述放电等离子烧结中加热过程:由室温升到900℃的加热速率为70~90℃/min,由900℃升到1100℃~1200℃的加热速率为25~35℃/min。
所述放电等离子烧结中压力加载过程:在室温加压至15MPa,在800℃~900℃缓慢加压至20~25MPa,在1000℃加压至30~35MPa。
本发明与现有技术相比具有以下优点:
1、本发明以一定尺寸的AlCoCrFeNi高熵合金粉末和Ag粉末为原料,通过低能球磨混料和放电等离子烧结(SPS)固化技术,调控制备工艺,获得高性能高熵合金基高温固体润滑复合材料,该高熵合金基固体润滑复合材料保持了AlCoCrFeNi高熵合金中BCC相和B2相的纳米耦合组织,因而具有高的强度,室温下的屈服强度不低于1048MPa,塑性应变不低于18%。同时,本发明所得的高熵合金基复合材料在室温至800℃真空环境下的摩擦系数在0.25~0.56范围内,磨损率在10-7~10-5mm3/Nm数量级,解决了AlCoCrFeNi高熵合金在高温或高温真空环境下的高摩擦、与金属材料配副间的高黏着同时兼具优异的力学性能的问题。
2、本发明制备工艺简单、成本低、可靠性高,所得高熵合金基复合材料兼备良好的力学性能、宽温域自润滑和耐磨损性能,能够满足航空航天等领域中机械运动传动部件高温真空苛刻工况下的应用需求。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1为本发明实施例2制备的AlCoCrFeNi-5 wt.%Ag复合材料的XRD衍射图谱。
图2为本发明实施例2制备的AlCoCrFeNi-5 wt.%Ag复合材料的低倍(a)和高倍(b)的背散射电子图像。
图3为本发明实施例3制备的AlCoCrFeNi-10 wt.%Ag复合材料的低倍(a)和高倍(b)的背散射电子图像。
图4为本发明实施例2、3制备的AlCoCrFeNi-5 wt.%Ag和AlCoCrFeNi-10 wt.%Ag两种复合材料的室温工程应力-应变曲线。
图5为本发明实施例2、3制备的AlCoCrFeNi-5 wt.%Ag和AlCoCrFeNi-10 wt.%Ag两种复合材料在室温至800℃和真空环境下的摩擦系数。
图6为本发明实施例2、3制备的AlCoCrFeNi-5 wt.%Ag和AlCoCrFeNi-10 wt.%Ag两种复合材料在室温至800℃和真空环境下的磨损率。
具体实施方式
实施例1 一种高熵合金基高温固体润滑复合材料的制备方法,该方法是指:按质量分数(kg)计,将97%的AlCoCrFeNi高熵合金粉末与3%的Ag粉末放入不锈钢罐中,采用行星式低能球磨机,以直径为5mm和10mm的不锈钢球为磨球,在球料比为1:1、转速为350r/min的条件下混合4h,得到均匀的混合粉末。
该混合粉末放入周围垫有石墨纸的石墨模具(φ50mm)中,置于放电等离子烧结(SPS)炉中,在15MPa的压力下预压10min后开始烧结。烧结参数为:真空度低于5Pa,烧结温度为1200℃,施加压力为35MPa,保温时间为5min,烧结结束后随炉冷却至室温,即得高性能AlCoCrFeNi-3wt%Ag高熵合金基高温固体润滑复合材料。
SPS烧结过程由室温升到900℃的加热速率为80℃/min,由900℃升到1200℃的加热速率为25℃/min;在室温加压至15MPa,在800℃~900℃缓慢加压至25MPa,在1000℃加压至35MPa。
所得复合材料主要由FCC相和BCC/B2相构成,晶界处为FCC相和Ag相,晶内为BCC相和B2相耦合的互穿纳米网状组织。
实施例2 一种高熵合金基高温固体润滑复合材料的制备方法,该方法是指:按质量分数(kg)计,将95%的AlCoCrFeNi高熵合金粉末与5%的Ag粉末放入不锈钢罐中,采用行星式低能球磨机,以直径为5mm和10mm的不锈钢球为磨球,在球料比为1.5:1、转速为300r/min的条件下混合6h,得到均匀的混合粉末。
该混合粉末放入周围垫有石墨纸的石墨模具(φ50mm)中,置于放电等离子烧结(SPS)炉中,在15MPa的压力下预压10min后开始烧结。烧结参数为:真空度低于5Pa,烧结温度为1150℃,施加压力为35MPa,保温时间为8min,烧结结束后随炉冷却至室温,即得高性能AlCoCrFeNi-5 wt%Ag高熵合金基高温固体润滑复合材料。
SPS烧结过程由室温升到900℃的加热速率为85℃/min,由900℃升到1150℃的加热速率为35℃/min;在室温加压至15MPa,在800℃~900℃缓慢加压至25MPa,在1000℃加压至35MPa。
所得复合材料通过X射线衍射(XRD)分析,该复合材料的衍射峰主要由无序BCC相(A2)、有序B2相、FCC相、σ相和Ag相组成。这证明复合材料基本保持了AlCoCrFeNi高熵合金的主要相结构,且在SPS烧结过程中Ag未发生反应或固溶(参见图1)。
所得复合材料通过扫描电子显微镜(SEM)表征,如图2所示,复合材料主要由FCC相和BCC/B2相构成,晶界处为FCC相,晶内为BCC相和B2相耦合的互穿纳米网状组织,Ag相在晶界处偏析。
所得复合材料制成φ3×6mm的圆柱棒作为压缩强度测试样品,使用INSTRON 3382型压缩万能试验机进行压缩测试,压头下降速率为0.01mm/min,测试至少重复4次。复合材料的室温工程应力-应变曲线如图4所示,该复合材料的极限压缩断裂强度、条件屈服强度和塑性应变分别为2044.5MPa、1277.9MPa和18.6%。实验结果表明AlCoCrFeNi-5 wt%Ag复合材料具有优异的强度-塑性组合性能。
所得复合材料通过GHT-1000E销盘式高温真空摩擦机测试室温至800℃和真空环境下的摩擦系数。配副为718耐高温合金,测试时间为30min,施加载荷为5N,摩擦半径为5.5mm,滑动速度为0.19m/s。采用10℃/min的加热速率使摩擦机内部达到指定温度后开始保温,在保温过程中进行摩擦测试并由摩擦机配备的计算机自动记录摩擦过程中的摩擦系数。测试完成后,通过循环水冷却至室温。摩擦测试中通过机械泵和分子泵的协同作用保持摩擦机内部的真空度在加热、保温和降温的全过程中都维持在4Pa以内。如图5所示,该复合材料的摩擦系数随温度上升而增大。在室温到600℃的温度范围内,其摩擦系数保持在0.29~0.52;当温度上升至800℃时,摩擦系数增大到最大值0.74。实验结果表明AlCoCrFeNi-5wt%Ag复合材料具有优异的宽温域自润滑性能。
所得复合材料通过MicroXAM-800型非接触式三维轮廓仪测试室温至800℃和真空环境下的磨损率。磨损率是由磨损体积除以滑动距离和施加的载荷得出的。如图6所示,该复合材料的室温磨损率为7.2 × 10-7 mm3/Nm,在200℃和400℃分别增大到3.2 × 10-5mm3/Nm和9.1 × 10-5 mm3/Nm,当温度升高到600℃~800℃的范围内,其磨损率保持在(13.4~14.0) × 10-5 mm3/Nm。实验结果表明AlCoCrFeNi-5 wt%Ag复合材料在宽温域摩擦过程中表现出良好的抗磨损性能。
实施例3 一种高熵合金基高温固体润滑复合材料的制备方法,该方法是指:按质量分数(kg)计,将90%的AlCoCrFeNi高熵合金粉末与10%的Ag粉末放入不锈钢罐中,采用行星式低能球磨机,以直径为5mm和10mm的不锈钢球为磨球,在球料比为2:1、转速为300r/min的条件下混合5h,得到均匀的混合粉末。
该混合粉末放入周围垫有石墨纸的石墨模具(φ50mm)中,置于放电等离子烧结(SPS)炉中,在15MPa的压力下预压10min后开始烧结。烧结参数为:真空度低于5Pa,烧结温度为1100℃,施加压力为30MPa,保温时间为10min,烧结结束后随炉冷却至室温得到高性能AlCoCrFeNi-10 wt %Ag高熵合金基高温固体润滑复合材料。
SPS烧结过程由室温升到900℃的加热速率为70℃/min,由900℃升到1100℃的加热速率为30℃/min;在室温加压至15MPa,在800℃~900℃缓慢加压至20MPa,在1000℃加压至30MPa。
所得复合材料主要由FCC相和BCC/B2相构成,晶界处为FCC相和Ag相,晶内为BCC相和B2相耦合的互穿纳米网状组织。
所得复合材料通过扫描电子显微镜(SEM)表征,如图3所示,复合材料主要由FCC相和BCC/B2相构成,晶界处为FCC相,晶内为BCC相和B2相耦合的互穿纳米网状组织,Ag相在晶界处偏析。
所得复合材料制成φ3×6mm的圆柱棒作为压缩强度测试样品,使用INSTRON 3382型压缩万能试验机进行压缩测试,压头下降速率为0.01mm/min,测试至少重复4次。复合材料的室温工程应力-应变曲线如图4所示,该复合材料的极限压缩断裂强度、条件屈服强度和塑性应变分别为1941.3MPa、1048.1MPa和19.8%。实验结果表明AlCoCrFeNi-10 wt%Ag复合材料具有优异的强度-塑性组合性能。
所得复合材料通过GHT-1000E销盘式高温真空摩擦机测试室温至800℃和真空环境下的摩擦系数。配副为718耐高温合金,测试时间为30min,施加载荷为5N,摩擦半径为5.5mm,滑动速度为0.19m/s。采用10℃/min的加热速率使摩擦机内部达到指定温度后开始保温,在保温过程中进行摩擦测试并由摩擦机配备的计算机自动记录摩擦过程中的摩擦系数。测试完成后,通过循环水冷却至室温。摩擦测试中通过机械泵和分子泵的协同作用保持摩擦机内部的真空度在加热、保温和降温的全过程中都维持在4Pa以内。如图5所示,该复合材料的摩擦系数与测试温度显示出弱的正相关性。在室温到600℃的温度范围内,其摩擦系数保持在0.25~0.50;当温度上升至800℃时,摩擦系数略微增大到0.56。实验结果表明AlCoCrFeNi-10 wt%Ag复合材料在室温到800℃的摩擦过程中具有优异的自润滑性能。
所得复合材料通过MicroXAM-800型非接触式三维轮廓仪测试室温至800℃和真空环境下的磨损率。磨损率是由磨损体积除以滑动距离和施加的载荷得出的。如图6所示,该复合材料的室温磨损率为5.9 × 10-7 mm3/Nm,在200℃增大到1.6 × 10-5 mm3/Nm,当温度升高到400℃~800℃的范围内,其磨损率保持在(12.6~14.0) × 10-5 mm3/Nm。实验结果表明AlCoCrFeNi-10 wt%Ag复合材料在宽温域摩擦过程中表现出良好的抗磨损性能。
实施例4 一种高熵合金基高温固体润滑复合材料的制备方法,该方法是指:按质量分数(kg)计,将85%的AlCoCrFeNi高熵合金粉末与15%的Ag粉末放入不锈钢罐中,采用行星式低能球磨机,以直径为5mm和10mm的不锈钢球为磨球,在球料比为2:1、转速为300r/min的条件下混合5h,得到均匀的混合粉末。
该混合粉末放入周围垫有石墨纸的石墨模具(φ50mm)中,置于放电等离子烧结(SPS)炉中,在15MPa的压力下预压10min后开始烧结。烧结参数为:真空度低于5Pa,烧结温度为1100℃,施加压力为30MPa,保温时间为10min,烧结结束后随炉冷却至室温得到高性能AlCoCrFeNi-15 wt %Ag高熵合金基高温固体润滑复合材料。
SPS烧结过程由室温升到900℃的加热速率为90℃/min,由900℃升到1100℃的加热速率为25℃/min;在室温加压至15MPa,在800℃~900℃缓慢加压至20MPa,在1000℃加压至30MPa。
所得复合材料主要由FCC相和BCC/B2相构成,晶界处为FCC相和Ag相,晶内为BCC相和B2相耦合的互穿纳米网状组织。
实施例5 一种高熵合金基高温固体润滑复合材料的制备方法,该方法是指:按质量分数(kg)计,将93%的AlCoCrFeNi高熵合金粉末与7%的Ag粉末放入不锈钢罐中,采用行星式低能球磨机,以直径为5mm和10mm的不锈钢球为磨球,在球料比为1.5:1、转速为320r/min的条件下混合5h,得到均匀的混合粉末。
该混合粉末放入周围垫有石墨纸的石墨模具(φ50mm)中,置于放电等离子烧结(SPS)炉中,在15MPa的压力下预压10min后开始烧结。烧结参数为:真空度低于5Pa,烧结温度为1120℃,施加压力为32MPa,保温时间为5min,烧结结束后随炉冷却至室温得到高性能AlCoCrFeNi-7 wt%Ag高熵合金基高温固体润滑复合材料。
SPS烧结过程由室温升到900℃的加热速率为85℃/min,由900℃升到1120℃的加热速率为30℃/min;在室温加压至15MPa,在800℃~900℃缓慢加压至22MPa,在1000℃加压至32MPa。
所得复合材料主要由FCC相和BCC/B2相构成,晶界处为FCC相和Ag相,晶内为BCC相和B2相耦合的互穿纳米网状组织。
上述实施例1~5中,AlCoCrFeNi高熵合金粉末为氩气雾化球形合金粉末,粒度为20~50μm。Ag粉末为电解球形粉末,粒度为20~50μm。

Claims (4)

1.一种高熵合金基高温固体润滑复合材料的制备方法,其特征在于:按质量分数计,将97%~85%的AlCoCrFeNi高熵合金粉末与3~15%的Ag粉末放入不锈钢罐中,依次经球磨混匀、放电等离子烧结后冷却至室温即得AlCoCrFeNi-Ag高熵合金基高温固体润滑复合材料;所述AlCoCrFeNi高熵合金粉末为氩气雾化球形合金粉末,粒度为20~50μm;所述Ag粉末为电解球形粉末,粒度为20~50μm;所述放电等离子烧结的条件是指真空度低于5Pa,烧结温度为1100℃~1200℃,施加压力为30~35MPa,平均加热速率为70℃/min,保温时间为5~10min。
2.如权利要求1所述的一种高熵合金基高温固体润滑复合材料的制备方法,其特征在于:所述球磨的条件是指采用行星式低能球磨机,以直径为5mm和10mm的不锈钢球为磨球,在球料比为1:1~2:1、转速为300~350r/min的条件下混合4~6h。
3.如权利要求1所述的一种高熵合金基高温固体润滑复合材料的制备方法,其特征在于:所述放电等离子烧结中加热过程:由室温升到900℃的加热速率为70~90℃/min,由900℃升到1100℃~1200℃的加热速率为25~35℃/min。
4.如权利要求1所述的一种高熵合金基高温固体润滑复合材料的制备方法,其特征在于:所述放电等离子烧结中压力加载过程:在室温加压至15MPa,在800℃~900℃缓慢加压至20~25MPa,在1000℃加压至30~35MPa。
CN202010162188.5A 2020-03-10 2020-03-10 一种高熵合金基高温固体润滑复合材料的制备方法 Active CN111218603B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010162188.5A CN111218603B (zh) 2020-03-10 2020-03-10 一种高熵合金基高温固体润滑复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010162188.5A CN111218603B (zh) 2020-03-10 2020-03-10 一种高熵合金基高温固体润滑复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN111218603A CN111218603A (zh) 2020-06-02
CN111218603B true CN111218603B (zh) 2022-03-29

Family

ID=70826358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010162188.5A Active CN111218603B (zh) 2020-03-10 2020-03-10 一种高熵合金基高温固体润滑复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN111218603B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111979009B (zh) * 2020-08-27 2022-08-19 北京工业大学 一种用于低碳低合金钢无镀铜焊丝的改性纳米复合物及制备方法
CN112276076B (zh) * 2020-11-02 2022-01-11 中国科学院兰州化学物理研究所 一种宽温域高熵合金基固体润滑复合材料的制备方法
CN112322942B (zh) * 2020-11-04 2021-11-19 东北大学 一种高强高韧抗氧化金属基自润滑复合材料及其制备方法
CN113481398B (zh) * 2021-07-05 2022-03-22 中国科学院兰州化学物理研究所 一种高含铜、无偏析的耐腐蚀、防污、高塑性多主元合金的制备方法
CN113481397B (zh) * 2021-07-05 2022-03-22 中国科学院兰州化学物理研究所 一种多功能海洋工程合金的制备方法
CN113681009B (zh) * 2021-08-23 2022-07-05 东北大学 摩擦氧化调控表面生成自补充润滑相复合材料及制备方法
CN115341127B (zh) * 2022-09-20 2023-12-15 中国科学院兰州化学物理研究所 一种自润滑高熵合金及其制备方法和应用
CN115627403B (zh) * 2022-11-21 2023-11-10 中国科学院兰州化学物理研究所 一种高韧润滑一体化高熵陶瓷基复合材料及其制备方法
CN116441527B (zh) * 2023-02-28 2024-03-15 四川大学 一种抗高温氧化的复合高熵合金粉及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105908049A (zh) * 2016-06-20 2016-08-31 中国科学院兰州化学物理研究所 一种高熵合金基自润滑复合材料及其制备方法
CN109161710A (zh) * 2018-09-12 2019-01-08 福州大学 一种含自润滑相的高熵合金复合材料及其制备方法
CN109702199A (zh) * 2019-02-26 2019-05-03 中国科学院兰州化学物理研究所 一种高熵合金基自润滑含油轴承材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106086568A (zh) * 2016-07-26 2016-11-09 中国科学院兰州化学物理研究所 一种宽真空耐高温自润滑复合材料及其制备方法
CN107130125A (zh) * 2017-04-27 2017-09-05 中国科学院兰州化学物理研究所 一种高熵合金的制备方法
CN109338172A (zh) * 2018-12-11 2019-02-15 西安工业大学 一种高熵合金增强的2024铝基复合材料及其制备方法
CN110257684B (zh) * 2019-07-22 2021-05-04 合肥工业大学 一种FeCrCoMnNi高熵合金基复合材料的制备工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105908049A (zh) * 2016-06-20 2016-08-31 中国科学院兰州化学物理研究所 一种高熵合金基自润滑复合材料及其制备方法
CN109161710A (zh) * 2018-09-12 2019-01-08 福州大学 一种含自润滑相的高熵合金复合材料及其制备方法
CN109702199A (zh) * 2019-02-26 2019-05-03 中国科学院兰州化学物理研究所 一种高熵合金基自润滑含油轴承材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A novel CoCrFeNi high entropy alloy matrix self-lubricating composite;Aijun Zhang等;《Journal of Alloys and Compounds》;20170720;第725卷;全文 *
Microstructure and Tribological Properties of Plasma-Sprayed Al0.2Co1.5CrFeNi1.5Ti-Ag Composite Coating from 25 to 750 °C;Hang Li等;《Journal of Materials Engineering and Performance》;20200304;第29卷(第3期);第1641页左栏 *

Also Published As

Publication number Publication date
CN111218603A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
CN111218603B (zh) 一种高熵合金基高温固体润滑复合材料的制备方法
EP0620286B1 (en) Ceramic-particle-dispersed metallic member, manufacturing method of same and use of same
CN112276076B (zh) 一种宽温域高熵合金基固体润滑复合材料的制备方法
CN111995400B (zh) 一种具有优异摩擦学性能的高熵陶瓷材料及其制备方法
CN110923498B (zh) 一种含金属碳化物和金属氧化物复合陶瓷摩擦组元的铜基粉末冶金摩擦材料及其制备方法
CN105112760B (zh) 一种TiAl基高温自润滑合金材料的制备方法及其应用
CN114346238B (zh) 一种超高温自润滑抗磨复合材料及其制备方法和应用
CN109280818B (zh) 一种耐磨减摩铝基复合材料
CN104763749A (zh) 一种耐温金属基镶嵌固体自润滑轴承及其制备方法
CN107021761B (zh) 一种氮化硅基自润滑复合材料
CN110964940B (zh) 一种高熵合金浸银复合材料及其制备方法和应用
CN110565026A (zh) 一种Ti3AlC2-Fe合金基耐高温自润滑复合材料及其制备方法
CN106939381A (zh) 一种铜银基自润滑复合材料及其制备方法
CN110592414B (zh) 一种自润滑铝基复合材料的制备方法
CN111001811B (zh) 一种以Cu@Ni核壳结构为润滑相的宽温域Ni3Al基自润滑复合材料及其制备方法
CN112342427A (zh) 一种钼铝硼陶瓷颗粒增强铜基复合材料及其制备方法、受电弓滑板
CN113681009B (zh) 摩擦氧化调控表面生成自补充润滑相复合材料及制备方法
CN115925423A (zh) 一种高性能单相自润滑高熵陶瓷材料及其制备方法
CN109055803B (zh) 一种高强抗磨铜基复合材料
CN106521394B (zh) 一种石墨烯改性自润滑耐磨涂层
CN114000007B (zh) 一种铜基自润滑复合材料及其制备方法
US20170226614A1 (en) Self-organized metal alloys for wear applications
CN109930021B (zh) 一种铜基二氧化硅复合材料及其制备方法
CN115652170B (zh) 一种具有近等体积分数高熵耦合相的固体润滑复合材料
CN112322942B (zh) 一种高强高韧抗氧化金属基自润滑复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant