CN107021761B - 一种氮化硅基自润滑复合材料 - Google Patents

一种氮化硅基自润滑复合材料 Download PDF

Info

Publication number
CN107021761B
CN107021761B CN201710280311.1A CN201710280311A CN107021761B CN 107021761 B CN107021761 B CN 107021761B CN 201710280311 A CN201710280311 A CN 201710280311A CN 107021761 B CN107021761 B CN 107021761B
Authority
CN
China
Prior art keywords
composite material
ball mill
lubricating composite
pressure
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710280311.1A
Other languages
English (en)
Other versions
CN107021761A (zh
Inventor
王明智
邹芹
赵玉成
李晓普
柯雨蛟
唐虎
彭冲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201710280311.1A priority Critical patent/CN107021761B/zh
Publication of CN107021761A publication Critical patent/CN107021761A/zh
Application granted granted Critical
Publication of CN107021761B publication Critical patent/CN107021761B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

一种氮化硅基自润滑复合材料,它的化学成分的体积百分比为:OLC(碳纳米葱Onion‑like carbon)8‑12%、TiN0.38‑12%、其余为α‑Si3N4;上述自润滑复合材料的制备方法是将TiN0.3、OLC、α‑Si3N4放入行星式球磨机,球料比10:1,转速为300‑350r/min,顺时针转30min,停歇15min,逆时针转30min,停歇15min,循环4个周期;将混合粉料装入模具,压力20‑40MPa,保压10s,烘干8h,再进行高温高压烧结,压力为5GPa,加热到1480‑1520℃,保温14‑16min,随炉冷却,将所制备的毛坯磨削、去毛刺处理,得到Si3N4基自润滑复合材料。本发明制备的自润滑复合材料具有高硬度、强抗热震性、耐磨损、耐腐蚀等优点,还具备较高的韧性,适合于较高温度下无润滑界面之间的器件材料应用。

Description

一种氮化硅基自润滑复合材料
技术领域
本发明属于材料技术领域,特别涉及一种自润滑复合材料。
背景技术
普通Si3N4基材料具备高强高硬、抗热震性、剥落式疲劳磨损、耐磨损、耐酸碱腐蚀等一系列优异性质,但是存在韧性不高、难烧结、干摩擦因数高等缺点。为了改善Si3N4陶瓷韧性差、难烧结的情况,邹斌利用纳米TiN粉作为第二相添加剂,制备出氮化硅基纳米复合陶瓷刀具,其断裂韧性、维氏硬度和抗弯强度分别为9.1MPa·m1/2、15.47GPa和1079.8MPa,并提出纳米TiN可以降低烧结温度,提高粉体的烧结活性,提高力学性能和机械性能[邹斌.新型自增韧氮化硅基纳米复合陶瓷刀具及性能研究[D].济南:山东大学,2006];乔丽娜在TiN0.3与难溶化合物界面扩散行为及强韧化的研究中发现,两相之间存在扩散现象,并且发现在难熔化合物中引入TiN0.3,改善了其力学性能,尤其是断裂韧性[乔丽娜.TiN0.3与难熔化合物界面扩散行为及强韧化的研究[D].秦皇岛:燕山大学,2016];Wang L等人将氮化硅陶瓷(氮)与0.2wt%FeSi2混合粉末在1780℃下烧结2h,添加Al2O3和Y2O3促进烧结和增韧,获得高强度、高韧性烧结体,断裂韧性和抗弯强度分别达到9.8±0.5MPa·m1/2和1086±48MPa[Wang L,Qi Q,Cai P,et al.New route to improve the fracture toughness andflexural strength of Si3N4,ceramics by adding FeSi2[J].Scripta Materialia,126:11-14,2017]。上述这些烧结体复合材料都在一定程度上提高了复合材料的韧性,但综合性能不是最佳。
在航空航天技术和空间技术迅猛发展的今天,航空航天器械工作部件大多处于超高超低温、真空、高速、腐蚀介质等极端环境中,在这种极端工况下,常规润滑剂极容易蒸发,引发润滑机制失效;塑料基固体自润滑复合材料只适合在低速、低载、低温条件;金属基自润滑复合材料不能应对高低温重载、辐射、特种介质腐蚀、热震冲击等极端条件;因此,研究一种适用于太空极端工况下的自润滑复合材料作为滑动轴承材料具有实际意义。
发明内容
本发明的目的在于提供一种能够在极端环境中实现有效润滑、且高硬度、高韧性、强抗热震性、耐磨损、耐腐蚀的氮化硅基自润滑复合材料及制备方法。本发明主要是以碳纳米葱(Onion-like carbon,OLC)为润滑相制备新型Si3N4基自润滑复合材料。
本发明的氮化硅基自润滑复合材料的化学成分的体积百分比为:OLC(碳纳米葱Onion-like carbon)8-12%、TiN0.38-12%、其余为α-Si3N4
所述TiN0.3粉的粒度≤10μm;OLC的平均粒度为5nm;α-Si3N4的粒度为0.3~0.5μm。
上述氮化硅基自润滑复合材料的制备方法,包括以下步骤:
(1)混合粉末的制备
将TiN0.3、OLC、α-Si3N4放入行星式球磨机,对这些粉料进行均匀球混,混料过程在氩气氛围中进行,每100g混合粉料添加0.5ml酒精作为分散剂,球料比10:1,球磨机转速为300-350r/min,顺时针转30min,停歇15min,逆时针转30min,停歇15min,以此为一个周期,循环4个周期;
(2)预压烘干
将步骤(1)的混合粉料干燥后装入圆柱形模具中,压力20-40MPa,保压时间10s,随后将预压样在电热鼓风干燥箱中烘干8h;
(3)高温高压烧结
对步骤(2)的预压样进行高温高压烧结,压力设为5GPa,加热到1480-1520℃,保温14-16min,升温速率30℃/min,随后随炉冷却,得到毛坯。
(4)将步骤(3)所制备的毛坯进行表面磨削、去毛刺处理,得到Si3N4基自润滑复合材料。
本发明与现有技术相比具有以下优点:
1、改善纯Si3N4陶瓷具有较高干摩擦系数和磨损率的缺陷,降低摩擦系数,OLC在摩擦过程中会产生石墨碎片、无定形碳,甚至类金刚石镀膜(DLC),进一步丰富润滑机制;OLC中金刚石核心可以充当硬质相,增强基体的耐磨损能力。
2、TiN0.3的添加除可以促进Si3N4陶瓷烧结,降低烧结温度,还可以改善Si3N4陶瓷韧性差的状况。
3、所制备的氮化硅复合材料不但具有高硬度、抗热震性、耐磨损、耐腐蚀的优异性能,还同时具备较高的韧性,适合于较高温度下无润滑界面之间的器件材料应用,如航空滑动轴承等。
具体实施方式
实施例1
(1)混合粉末的制备:按照体积分数百分比9%TiN0.3、11%OLC、其余为α-Si3N4的比例,将粒度为≤10μm的TiN0.3粉、平均粒度为5nm的OLC、平均粒度为0.3μm的α-Si3N4的加入行星式球磨机进行均匀球混,混料过程在氩气氛围中进行,每100g混合粉料添加0.5ml酒精作为分散剂,球料比为10:1,球磨机转速为350r/min,顺时针转30min,停歇15min,逆时针转30min,停歇15min,以此为一个周期,循环4次。
(2)预压烘干:将步骤(1)的混合粉料干燥后装入直径为20mm的圆柱形模具中,压力20MPa,保压时间10s,随后将预压样在电热鼓风干燥箱烘干8h
(3)高温高压烧结:对步骤(2)预压样进行高温高压烧结,压力设为5GPa,升温速率30℃/min,加热到1480℃,保温15min,随后随炉冷却,得到毛坯。
(4)将(3)所制备的毛坯进行表面磨削、去毛刺处理,得到所述的新型Si3N4基自润滑复合材料,其性能见表1。
实施例2
(1)混合粉末的制备:按照体积分数百分比10%TiN0.3,10%OLC,其余为α-Si3N4的比例,将粒度为≤10μm的TiN0.3粉、平均粒度为5nm的OLC、平均粒度为0.4μm的α-Si3N4的加入行星式球磨机进行均匀球混,混料过程在氩气氛围中进行,每100g混合粉料添加0.5ml酒精作为分散剂,球料比为10:1,球磨机转速为300r/min,顺时针转30min,停歇15min,逆时针转30min,停歇15min,以此为一个周期,循环4次。
(2)预压烘干:将步骤(1)的混合粉料干燥后装入直径为20mm的圆柱形模具中,压力30MPa,保压时间10s。随后将预压样在电热鼓风干燥箱烘干8h
(3)高温高压烧结:对步骤(2)预压样进行高温高压烧结,压力设为5GPa,升温速率30℃/min,加热到1500℃,保温14min,随后随炉冷却,得到毛坯。
(4)将(3)所制备的毛坯进行表面磨削、去毛刺处理,得到所述的新型Si3N4基自润滑复合材料,其性能见表1。
实施例3
(1)混合粉末的制备:按照体积分数百分比11%TiN0.3,9%OLC,其余为α-Si3N4的比例,将粒度为≤10μm的TiN0.3粉、平均粒度为5nm的OLC、平均粒度为0.5μm的α-Si3N4的加入行星式球磨机进行均匀球混,混料过程在氩气氛围中进行,每100g混合粉料添加0.5ml酒精作为分散剂,球料比为10:1,球磨机转速为330r/min,顺时针转30min,停歇15min,逆时针转30min,停歇15min,以此为一个周期,循环4次。
(2)预压烘干:将步骤(1)的混合粉料干燥后装入直径为20mm的圆柱形模具中,压力40MPa,保压时间10s。随后将预压样在电热鼓风干燥箱烘干8h。
(3)高温高压烧结:对步骤(2)预压样进行高温高压烧结,压力设为5GPa,升温速率30℃/min,加热到1520℃,保温16min,随后随炉冷却,得到毛坯。
(4)将(3)所制备的毛坯进行表面磨削、去毛刺处理,得到所述的新型Si3N4基自润滑复合材料,其性能见表1。
实施例4
(1)混合粉末的制备:按照体积分数百分比8%TiN0.3,12%OLC,其余为α-Si3N4的比例,将粒度为≤10μm的TiN0.3粉、平均粒度为5nm的OLC、平均粒度为0.4μm的α-Si3N4的加入行星式球磨机进行均匀球混,混料过程在氩气氛围中进行,每100g混合粉料添加0.5ml酒精作为分散剂,球料比为10:1,球磨机转速为320r/min,顺时针转30min,停歇15min,逆时针转30min,停歇15min,以此为一个周期,循环4次。
(2)预压烘干:将步骤(1)的混合粉料干燥后装入直径为20mm的圆柱形模具中,压力35MPa,保压时间10s。随后将预压样在电热鼓风干燥箱烘干8h。
(3)高温高压烧结:对步骤(2)预压样进行高温高压烧结,压力设为5GPa,升温速率30℃/min,加热到1490℃,保温14min,随后随炉冷却,得到毛坯。
(4)将(3)所制备的毛坯进行表面磨削、去毛刺处理,得到所述的新型Si3N4基自润滑复合材料。
实施例5
(1)混合粉末的制备:按照体积分数百分比12%TiN0.3,8%OLC,其余为α-Si3N4的比例,将粒度为≤10μm的TiN0.3粉、平均粒度为5nm的OLC、平均粒度为0.5μm的α-Si3N4的加入行星式球磨机进行均匀球混,混料过程在氩气氛围中进行,每100g混合粉料添加0.5ml酒精作为分散剂,球料比为10:1,球磨机转速为340r/min,顺时针转30min,停歇15min,逆时针转30min,停歇15min,以此为一个周期,循环4次。
(2)预压烘干:将步骤(1)的混合粉料干燥后装入直径为20mm的圆柱形模具中,压力25MPa,保压时间10s。随后将预压样在电热鼓风干燥箱烘干8h。
(3)高温高压烧结:对步骤(2)预压样进行高温高压烧结,压力设为5GPa,升温速率30℃/min,加热到1510℃,保温16min,随后随炉冷却,得到毛坯。
(4)将(3)所制备的毛坯进行表面磨削、去毛刺处理,得到所述的新型Si3N4基自润滑复合材料。
表1 各实施例制得的Si3N4基自润滑复合材料的性能
项目 断裂韧性(MPa·m<sup>1/2</sup>) 维氏硬度(GPa)
实施例1 6.5 18.0
实施例2 6.6 18.6
实施例3 6.2 17.9

Claims (3)

1.一种Si3N4基自润滑复合材料,其特征在于:它的化学成分的体积百分比为:OLC(碳纳米葱Onion-like carbon)8-12%、TiN0.38-12%、其余为α-Si3N4;其制备方法如下:
(1)混合粉末的制备
将TiN0.3、OLC、α-Si3N4放入行星式球磨机,对这些粉料进行均匀球混,混料过程在氩气氛围中进行,每100g粉料添加0.5mL 酒精作为分散剂,球料比10:1,球磨机转速为300-350r/min,顺时针转30min,停歇15min,逆时针转30min,停歇15min,以此为一个周期,循环4个周期;
(2)预压烘干
将步骤(1)的混合粉料干燥后装入圆柱形模具中,压力20-40MPa,保压时间10s,随后将预压样在电热鼓风干燥箱中烘干8h;
(3)高温高压烧结
对步骤(2)的预压样进行高温高压烧结,压力设为5GPa,升温速率30℃/min,加热到1480-1520℃,保温14-16min,随后随炉冷却,得到毛坯;
(4)将步骤(3)所制备的毛坯进行表面磨削、去毛刺处理,得到Si3N4基自润滑复合材料。
2.根据权利要求1所述的Si3N4基自润滑复合材料,其特征在于:所述TiN0.3粉的平均粒度小于10μm;OLC的平均粒度为5nm;α-Si3N4的平均粒度为0.3~0.5μm。
3.权利要求1的Si3N4基自润滑复合材料的制备方法,其特征在于:其包括以下步骤:
(1)混合粉末的制备
将TiN0.3、OLC、α-Si3N4放入行星式球磨机,对这些粉料进行均匀球混,混料过程在氩气氛围中进行,每100g粉料添加0.5mL 酒精作为分散剂,球料比10:1,球磨机转速为300-350r/min,顺时针转30min,停歇15min,逆时针转30min,停歇15min,以此为一个周期,循环4个周期;
(2)预压烘干
将步骤(1)的混合粉料干燥后装入圆柱形模具中,压力20-40MPa,保压时间10s,随后将预压样在电热鼓风干燥箱中烘干8h;
(3)高温高压烧结
对步骤(2)的预压样进行高温高压烧结,压力设为5GPa,升温速率30℃/min,加热到1480-1520℃,保温14-16min,随后随炉冷却,得到毛坯;
(4)将步骤(3)所制备的毛坯进行表面磨削、去毛刺处理,得到Si3N4基自润滑复合材料。
CN201710280311.1A 2017-04-26 2017-04-26 一种氮化硅基自润滑复合材料 Active CN107021761B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710280311.1A CN107021761B (zh) 2017-04-26 2017-04-26 一种氮化硅基自润滑复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710280311.1A CN107021761B (zh) 2017-04-26 2017-04-26 一种氮化硅基自润滑复合材料

Publications (2)

Publication Number Publication Date
CN107021761A CN107021761A (zh) 2017-08-08
CN107021761B true CN107021761B (zh) 2021-01-08

Family

ID=59526661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710280311.1A Active CN107021761B (zh) 2017-04-26 2017-04-26 一种氮化硅基自润滑复合材料

Country Status (1)

Country Link
CN (1) CN107021761B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108191434B (zh) * 2018-03-01 2020-09-18 吉林师范大学 一种高热导率、高致密性氮化硅材料的高压快速制备方法
CN108893645B (zh) * 2018-07-23 2019-08-27 燕山大学 含多元润滑相TiAl基自润滑复合材料及其制备方法
CN109207835A (zh) * 2018-10-12 2019-01-15 燕山大学 一种Fe基宽应用温度自润滑复合材料及其制备方法
CN109321849B (zh) * 2018-10-12 2021-04-02 燕山大学 一种适用于高低温的Fe基自润滑复合材料及其制备方法
CN110760729B (zh) * 2019-10-08 2020-12-29 燕山大学 一种碳纳米葱润滑相TiNx基自润滑复合材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3007973B1 (ja) * 1999-03-18 2000-02-14 東京大学長 フラ―レン分散セラミックスの製造方法
CN103073300A (zh) * 2013-02-05 2013-05-01 中国科学院上海硅酸盐研究所 一种实现过渡金属氮化物陶瓷低温烧结的方法

Also Published As

Publication number Publication date
CN107021761A (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
CN107021761B (zh) 一种氮化硅基自润滑复合材料
CN108060314A (zh) 一种含有内生纳米TiB2颗粒的陶铝复合的制备方法
CN111218603B (zh) 一种高熵合金基高温固体润滑复合材料的制备方法
CN110760729B (zh) 一种碳纳米葱润滑相TiNx基自润滑复合材料及其制备方法
CN110923498B (zh) 一种含金属碳化物和金属氧化物复合陶瓷摩擦组元的铜基粉末冶金摩擦材料及其制备方法
CN103572087A (zh) 碳化硼颗粒增强铝基复合材料的制备方法
CN109868404B (zh) 一种硬质合金轴套及其制备方法
CN101767989A (zh) ZrO2/Ti(C,N)纳米复合陶瓷模具材料及其制备方法
CN105254283A (zh) 一种氧化铝陶瓷基材料的制备方法
CN111533561A (zh) 氮化硅基陶瓷球及其制备方法和应用
CN108863396B (zh) 一种氮化硅基连续功能梯度陶瓷球及其制备方法和应用
CN103173675A (zh) 一种铁铝碳化钛复合材料的制备方法
CN111393168A (zh) 一种TiCx增强Ti3SiC2复合材料及其制备方法
CN110565026A (zh) 一种Ti3AlC2-Fe合金基耐高温自润滑复合材料及其制备方法
CN102674844A (zh) 微波法还原合成纳米碳化钒/铬复合粉末的制备方法
CN106747433B (zh) 氧化锆基纳米陶瓷工模具材料及其制备方法
CN112062574B (zh) 一种高性能纳米碳化硅陶瓷及其制备方法和应用
CN110981489B (zh) 一种TiNx-Ti3SiC2复合材料及其制备方法
CN113149676A (zh) 一种利用两步法烧结原位增韧碳化硼基复相陶瓷的方法
CN116120082B (zh) 一种耐腐蚀日用陶瓷及其制备方法
CN109354502B (zh) 一种高温环境中具有高耐磨表面的自润滑氮化硅基复合材料
CN112062576A (zh) 一种石墨烯增韧的高熵硅化物陶瓷及其制备方法和应用
CN113174542B (zh) 多相陶瓷颗粒弥散增强铁基复合材料及其制备方法
CN113215446B (zh) 一种含有钼酸锶和钼酸锶镍的金属基固体润滑复合材料及其制备方法
CN108588496A (zh) 一种含有偏铝酸锶的复合材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant