CN109055803B - 一种高强抗磨铜基复合材料 - Google Patents

一种高强抗磨铜基复合材料 Download PDF

Info

Publication number
CN109055803B
CN109055803B CN201810938264.XA CN201810938264A CN109055803B CN 109055803 B CN109055803 B CN 109055803B CN 201810938264 A CN201810938264 A CN 201810938264A CN 109055803 B CN109055803 B CN 109055803B
Authority
CN
China
Prior art keywords
copper
sintering
composite material
based composite
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810938264.XA
Other languages
English (en)
Other versions
CN109055803A (zh
Inventor
乔竹辉
孙奇春
杨军
谈辉
于源
程军
朱圣宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai Zhongke advanced materials and green chemical industry technology Research Institute
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN201810938264.XA priority Critical patent/CN109055803B/zh
Publication of CN109055803A publication Critical patent/CN109055803A/zh
Application granted granted Critical
Publication of CN109055803B publication Critical patent/CN109055803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0094Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with organic materials as the main non-metallic constituent, e.g. resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种高强抗磨铜基复合材料,该复合材料通过以下方法制备得到:按照质量百分比称取80~95wt%的铜粉和5~20wt%的塞隆粉末,将粉末置于球磨机中混合,随后将混合粉末装入石墨模具中,置于放电等离子烧结炉中烧结;烧结参数为:真空度为10‑2~10‑1Pa,升温速度为50~150ºC/min,烧结温度为850~1000ºC,压力为20~35MPa,保温时间5~10min;烧结结束后,随炉冷却至室温得到铜基复合材料。本发明所述铜基复合材料兼具优异的力学性能(高强度)和摩擦学性能(低磨损),特别适用于在服役工况下要求高强度同时保持低磨损的特殊工件。

Description

一种高强抗磨铜基复合材料
技术领域
本发明涉及一种高强抗磨铜基复合材料,该材料具有优异机械性能,断裂强度可达400Mpa左右,应变率在15%以上,同时兼具良好的抗磨损性能,其磨损率低至10-6mm3/Nm。
背景技术
结构材料的可靠性和稳定性对于高端装备机械系统的安全、稳定、高效运行起关键因素。铜及铜合金以其良好的导电导热性、优异的抗蚀性及优良的塑形和冷热加工性能,被广泛的应用于电子电力、石油化工、机械、航海造船和低温制冷等领域。但作为结构材料也有其缺点,突出的问题在于强度低,耐磨性能差。紫铜的屈服强度和抗拉强度低,屈服强度不超过70MPa,尽管通过冷加工可提高其强度,但是由于自然时效的作用,强度难以长久的保持。磨损率高、承载能力差是紫铜在摩擦学领域应用中存在的主要问题。因此,如何有效的提高紫铜的强度,改善其抗磨性能,使其获得更广泛的应用,已经成为当前材料科学和摩擦学领域的前沿课题之一。
从材料的强化机理和摩擦学的基本理论出发,通过添加第二相颗粒,来改善材料的强度和摩擦学性能。一方面,第二相的掺杂不仅可以细化晶粒,而且可使复合材料兼具第二相颗粒的高强度来改善机械性能。另一方面,第二相颗粒通过改善机械性能以及摩擦过程中的接触状态来改善材料的抗磨损性能。
发明内容
本发明的目的在于提供一种高强抗磨铜基复合材料,该材料具有优异机械性能同时兼具良好的抗磨性能。
本发明掺杂与基体结合良好且分布均匀的塞隆陶瓷粉末,利用了铜跟塞隆粉末在制备过程中可以发生反应,生成结合良好的过渡层,对改善材料强度及其抗磨损性能具有重要的意义。
一种高强抗磨铜基复合材料,其特征在于该复合材料通过以下方法制备得到:按照质量百分比称取80~95wt%的铜粉和5~20wt%的塞隆粉末,将粉末置于球磨机中混合,随后将混合粉末装入石墨模具中,置于放电等离子烧结炉中烧结;烧结参数为:真空度为10-2~10-1Pa,升温速度为50~150ºC/min,烧结温度为850~1000ºC,压力为20~35MPa,保温时间5~10min;烧结结束后,随炉冷却至室温得到铜基复合材料。
所述混合粉末的粒径为0.55~15μm。
所述塞隆的组成为Si4Al2O2N6
采用DY35万能试验机测试合金的室温压缩强度。压缩试样尺寸为φ3mm×6mm,压头下移速度为0.1mm/min。摩擦磨损实验采用HT-1000高温摩擦磨损试验机进行评价,对偶球为304不锈钢球,载荷为5N,滑动线速度为0.10m/s,摩擦半径为4mm,行程为200m,测试温度为25ºC。压缩实验、摩擦系数和磨损率为3次试验平均值。
本发明所述高强抗磨铜基复合材料具有以下优点:
1、铜基复合材料由结合良好的铜、塞隆和两者反应的过渡层组成。这种材料的制备不仅是基于第二相颗粒可以细化晶粒来改善材料的强度,而且充分考虑到塞隆可与铜在高温烧结时发生反应,生成结合良好的铜-塞隆复合材料,进而赋予铜基复合材料优异的机械性能。该材料经压缩试验测试发现,在室温下具有优异的机械性能,其断裂强度可达400Mpa左右,应变率在15%以上。
2、通过掺杂塞隆,铜基复合材料在室温时具有优异的抗磨损性能,其磨损率低至10-6mm3/ Nm,实现了铜基复合材料的结构/抗磨功能一体化设计。
本发明所制备的铜基复合材料兼具优异的力学性能和摩擦学性能,特别适用于在服役工况下要求高强度同时保持低磨损的特殊工件。
附图说明
图1为本发明所述铜基复合材料CS1的压缩应力-应变曲线。
图2为本发明所述铜基复合材料CS3的压缩应力-应变曲线。
具体实施方式
实施例1:
按照质量百分比,分别称取95wt%的铜粉和5wt%的塞隆粉末,其中塞隆粉末的组成为Si4Al2O2N6;然后将粉末置于球磨机中混合,得到粒径为0.55~15μm的混合粉末。随后将混合粉末装入石墨模具中,置于等离子体烧结炉中烧结。烧结参数为:真空度低于5×10- 1Pa,升温速率100ºC/min,烧结温度950ºC,压力30MPa,保温时间7min。烧结结束后,随炉冷却至室温得到铜基复合材料CS1。然后采用DY35万能试验机测试合金的室温压缩强度。压缩试样尺寸为φ3mm×6mm,压头下移速度为0.1mm/min。其铜基复合材料压缩应力-应变曲线如图1所示。
实施例2:
按照质量百分比,分别称取90wt%的铜粉和10wt%的塞隆粉末,其中塞隆粉末的组成为Si4Al2O2N6;然后将粉末置于球磨机中混合,得到粒径为0.55~15μm的混合粉末。随后将混合粉末装入石墨模具中混合,置于放电等离子烧结炉中烧结。烧结参数为:真空度低于5×10-1Pa,升温速率100ºC/min,烧结温度950ºC,压力30 MPa,保温时间7 min。烧结结束后,随炉冷却至室温得到铜基复合材料。摩擦磨损实验采用HT-1000高温摩擦磨损试验机进行评价,对偶球为304不锈钢球,载荷为5N,滑动线速度为0.10m/s,摩擦半径为4mm,行程为200m,测试温度为25ºC。其磨损率见表1。
实施例3:
按照质量百分比,分别称取80wt%的铜粉和20wt%的塞隆粉末,其中塞隆粉末的组成为Si4Al2O2N6;然后将粉末置于球磨机中混合,得到粒径为0.55~15μm的混合粉末。随后将混合粉末装入石墨模具中,置于放电等离子烧结炉中烧结。烧结参数为:真空度低于5×10-1Pa,升温速率100ºC/min,烧结温度950ºC,压力30MPa,保温时间7min。烧结结束后,随炉冷却至室温得到铜基复合材料CS3。采用DY35万能试验机测试合金的室温压缩强度。压缩试样尺寸为φ3mm×6mm,压头下移速度为0.1mm/min。其铜基复合材料压缩应力-应变曲线如图2所示。摩擦磨损实验采用HT-1000高温摩擦磨损试验机进行评价,对偶球为304不锈钢球,载荷为5N,滑动线速度为0.10m/s,摩擦半径为4mm,行程为200m,测试温度为25ºC,其磨损率见表1。
表1:实施例2和实施例3的铜基复合材料与304不锈钢球配副的磨损率。
Figure 243248DEST_PATH_IMAGE001

Claims (2)

1.一种高强抗磨铜基复合材料,其特征在于该复合材料通过以下方法制备得到:按照质量百分比称取80~95wt%的铜粉和5~20wt%的塞隆粉末,将粉末置于球磨机中混合,随后将混合粉末装入石墨模具中,置于放电等离子烧结炉中烧结;烧结参数为:真空度为10-2~10-1Pa,升温速度为50~150ºC/min,烧结温度为850~1000ºC,压力为20~35MPa,保温时间5~10min;烧结结束后,随炉冷却至室温得到铜基复合材料;所述混合粉末的粒径为0.55~15μm。
2.如权利要求1所述的复合材料,其特征在于所述塞隆的组成为Si4Al2O2N6
CN201810938264.XA 2018-08-17 2018-08-17 一种高强抗磨铜基复合材料 Active CN109055803B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810938264.XA CN109055803B (zh) 2018-08-17 2018-08-17 一种高强抗磨铜基复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810938264.XA CN109055803B (zh) 2018-08-17 2018-08-17 一种高强抗磨铜基复合材料

Publications (2)

Publication Number Publication Date
CN109055803A CN109055803A (zh) 2018-12-21
CN109055803B true CN109055803B (zh) 2020-06-23

Family

ID=64687243

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810938264.XA Active CN109055803B (zh) 2018-08-17 2018-08-17 一种高强抗磨铜基复合材料

Country Status (1)

Country Link
CN (1) CN109055803B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2810417C1 (ru) * 2023-04-07 2023-12-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗ ГУ) Способ получения сплава из порошка свинцовой латуни ЛС58-3

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110952044A (zh) * 2019-11-11 2020-04-03 中国科学院上海硅酸盐研究所 一种增强型铜基复合材料及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145667A (ja) * 1982-02-23 1983-08-30 日本特殊陶業株式会社 機械部品に用いる複合構造体
US6589899B2 (en) * 2000-10-12 2003-07-08 National Institute For Research In Inorganic Materials Spinel type sialon, spinel type silicon oxynitride and methods for producing their powders
KR102367209B1 (ko) * 2014-03-06 2022-02-23 카나가와 인스티튜트 오브 인더스트리얼 사이언스 앤 테크놀로지 투명 형광 사이알론 세라믹스 및 그 제조 방법
CN107584125B (zh) * 2017-08-31 2019-07-19 中国科学院兰州化学物理研究所 一种高韧自润滑赛隆基复合材料的制备方法
CN108002844B (zh) * 2017-11-22 2020-11-03 中国科学院兰州化学物理研究所 一种宽温域自润滑赛隆基复合材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2810417C1 (ru) * 2023-04-07 2023-12-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗ ГУ) Способ получения сплава из порошка свинцовой латуни ЛС58-3

Also Published As

Publication number Publication date
CN109055803A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
CN111218603B (zh) 一种高熵合金基高温固体润滑复合材料的制备方法
CN109280792B (zh) 具有低摩擦系数BN/Cu复合材料的制备方法
CN112276076B (zh) 一种宽温域高熵合金基固体润滑复合材料的制备方法
CN108817388A (zh) 一种放电等离子烧结制备石墨烯增强铝基复合材料的方法
CN110923498A (zh) 一种含金属碳化物和金属氧化物复合陶瓷摩擦组元的铜基粉末冶金摩擦材料及其制备方法
CN101800089B (zh) 一种纳米NbSe2铜基固体自润滑复合材料及其制备方法
Shaik et al. Mechanical, tribological and electrical properties of ZrB2 reinforced Cu processed via milling and high-pressure hot pressing
CN109055803B (zh) 一种高强抗磨铜基复合材料
CN110257663A (zh) 一种石墨烯增强铜基复合材料的制备方法
Zhang et al. The dynamic properties of SiCp/Al composites fabricated by spark plasma sintering with powders prepared by mechanical alloying process
CN106011539B (zh) 一种镍铝/氧化钒/银宽温域自润滑复合材料及其制备方法
CN109593987A (zh) 一种铜基气凝胶增强型铜合金及其制备方法
CN112063880B (zh) 一种单轨车用铜基粉末冶金受电弓滑板材料及其制备方法
CN112342427A (zh) 一种钼铝硼陶瓷颗粒增强铜基复合材料及其制备方法、受电弓滑板
CN110893466B (zh) 石墨烯-钛铝碳复合耐磨材料
CN109354502B (zh) 一种高温环境中具有高耐磨表面的自润滑氮化硅基复合材料
CN101880814B (zh) 一种耐磨导电导热材料及其制备方法
CN108823444B (zh) 一种铜碳复合材料短流程制备方法
CN108002844B (zh) 一种宽温域自润滑赛隆基复合材料
Wieczorek et al. Silver Matrix Composites-Structure and Properties
CN109930021B (zh) 一种铜基二氧化硅复合材料及其制备方法
CN111926205B (zh) 一种Cu-C-Ag合金电触头材料的制备方法
CN114000007A (zh) 一种铜基自润滑复合材料及其制备方法
CN111875359A (zh) 一种耐高压绝缘定位陶瓷材料
CN116065052B (zh) 一种含碳氮化铪的铜基二元复合材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220415

Address after: 264006 5, R & D building, Yeda Science Park, No. 300, Changjiang Road, Yantai Economic and Technological Development Zone, Shandong Province

Patentee after: Yantai Zhongke advanced materials and green chemical industry technology Research Institute

Address before: 730000 No. 18 Tianshui Middle Road, Chengguan District, Gansu, Lanzhou

Patentee before: Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences