CN111215058A - 银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料 - Google Patents

银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料 Download PDF

Info

Publication number
CN111215058A
CN111215058A CN202010074780.XA CN202010074780A CN111215058A CN 111215058 A CN111215058 A CN 111215058A CN 202010074780 A CN202010074780 A CN 202010074780A CN 111215058 A CN111215058 A CN 111215058A
Authority
CN
China
Prior art keywords
titanium dioxide
photo
net
dioxide nano
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010074780.XA
Other languages
English (en)
Other versions
CN111215058B (zh
Inventor
侯军伟
周婧怡
黄秉轩
王雅斐
刘亚锋
程安迪
宋琪
皮婧婧
惠泽友
陈紫荆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum Beijing
Original Assignee
China University of Petroleum Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum Beijing filed Critical China University of Petroleum Beijing
Priority to CN202010074780.XA priority Critical patent/CN111215058B/zh
Publication of CN111215058A publication Critical patent/CN111215058A/zh
Application granted granted Critical
Publication of CN111215058B publication Critical patent/CN111215058B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • Plasma & Fusion (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种银表面修饰混合晶型二氧化钛纳米网光‑电催化复合材料。其制备方法包括:以钛网作为阳极,铂片作为阴极,将阳极和阴极置于电解液中进行阳极氧化反应,得到钛网基底的二氧化钛纳米网阵列;将钛网基底的二氧化钛纳米网阵列置于溶解有硝酸银的乙醇溶液中浸渍处理,取出后干燥,然后进行热处理,得到银纳米颗粒表面修饰混合晶型二氧化钛纳米网光‑电催化复合材料。本发明采用硝酸银的乙醇溶液作为银源进行表面修饰,无定型二氧化钛在乙醇中不会脱落。通过使银纳米颗粒沉积在二氧化钛纳米网上,占据部分晶格,可以降低TiO2本身的带隙宽度,使得光‑电催化活性得到显著提高。

Description

银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料
技术领域
本发明属于光-电联合催化材料技术领域,涉及一种银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料。
背景技术
TiO2凭借其生物化学惰性、无毒性、成本低廉以及抗腐蚀性能等,被视为环境污染处理方面合适的光催化材料,已经被广泛应用于有害物质、水中污染物的降解等方面,但是由于TiO2光催化剂的带隙宽度较宽(3.0~3.2eV),导致其对可见光的利用率低,只能利用紫外光激发产生电子-空穴对。目前用于污水处理的电催化氧化技术兼具氧化、还原、中和、凝聚、气浮等多种功能,在处理过程中不添加任何药物,不产生新的污染物质,大幅度减少了污泥量,可以和其它工艺技术配合达到综合治理的目的,被称为环境友好型新技术。尤其是近年来三维电极理论的出现大幅度提高了处理能力,进一步降低了能耗,显示出了强大的生命力。目前常用石墨、Pt、PbO2等析氧过电位较高的电极材料,使用TiO2纳米颗粒作为催化剂;使用活性炭等吸附能力强、导电的材料作为三维电极。然而,TiO2纳米颗粒含量较低,且带隙宽度较宽(3.0~3.2eV),为提高电极析氧、析氯过电位,需要对其进行改性表面修饰,耦合具有优异等离子体共振的贵金属纳米材料形成异质结是一个很有效的方式。
尽管目前二氧化钛纳米管的表面修饰改性方法众多:非金属表面修饰、贵金属表面修饰、过渡金属表面修饰、半导体复合修饰等,但其制备工艺复杂,原料稀有,极大限制了广泛应用。
发明内容
基于现有技术存在的缺陷,本发明的目的在于提供一种银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料的制备方法,该制备方法获得的光-电催化复合材料中二氧化钛呈现混合晶型,同时以硝酸银作为银源,将阳极氧化后的TiO2纳米网置于硝酸银的乙醇溶液中,通过高温退火实现银沉积在二氧化钛纳米网上,使得制备的光-电催化复合材料具有较高的光-电催化活性;而传统的方法要么使用硝酸银的水溶液做浸泡,然而无定型的TiO2在水中很容易碎裂脱落;要么使用钛板作为载体,然而钛板的比表面积比钛网要小很多,使得光催化效率低;要么只是在玻璃基底上沉积一层二维薄膜,比表面更小;要么合成的是TiO2纳米颗粒,会造成二次污染。本发明使用硝酸银的乙醇溶液,可以完美的解决无定型TiO2在水中容易碎裂脱落的问题,使用200目的二氧化钛纳米网,极大增加了比表面积,而且纳米网为块体材料,很容易替换,不会造成二次污染。
本发明的目的还在于提供该方法制备获得的银表面修饰混合晶型二氧化钛纳米管光-电催化复合材料;
本发明的目的还在于提供该银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料在光-电催化降解有机污染物中的应用。
本发明的目的通过以下技术手段得以实现:
一方面,本发明提供一种银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料的制备方法,其包括以下步骤:
以钛网作为阳极,铂片作为阴极,将阳极和阴极置于电解液中进行阳极氧化反应,得到钛网基底的二氧化钛纳米网阵列;
将钛网基底的二氧化钛纳米网阵列置于溶解有硝酸银的乙醇溶液中浸渍处理,取出后干燥,然后进行热处理,得到银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料。
TiO2的主要两种晶体结构为锐钛矿型与金红石型,金红石型的微成斜方晶,而锐钛矿型的八面体成明显的斜方晶畸变,其对称性低于前者;这种差异导致2种晶型具有不同的质量密度和电子能带结构,直接导致了金红石型TiO2表面吸附有机物及O2的能力不如锐钛矿型,且其比表面积小,产生的电子和空穴容易复合,所以锐钛矿型具有高于金红石型的电催化活性。本发明中,采取阳极氧化反应的方法能够获得金红石型二氧化钛和锐钛矿型二氧化钛混合晶型的二氧化钛相,此种混合晶型二氧化钛相能够获得更高的光-电催化反应活性。此外,本发明中,采取硝酸银的乙醇溶液作为银源,无定型的二氧化钛在乙醇中不会脱落,通过使银纳米颗粒沉积在二氧化钛纳米网上,可以降低TiO2本身的带隙宽度,使得光生电子和空穴出现转移,光生电子转移至表面修饰银上增加电荷分离效率,同时扩展光激发的能量范围,使得电催化活性得到提高。
上述的方法中,优选地,所述电解液为含有氟化铵的乙二醇水溶液。
上述的方法中,优选地,所述电解液中,氟化铵的含量为0.5~0.6wt%,水的含量为5~5.5%vol。
氟离子影响阳极氧化过程的化学刻蚀速率,进而影响二氧化钛纳米管的微观形态(管径、管长、排列有序性等),本发明采取含量为0.5~0.6wt%的氟化铵电解液能够获得较佳的阳极氧化效果。
上述的方法中,优选地,该方法还包括对所述钛网进行如下预处理:
将钛网超声处理并干燥,然后用氢氟酸和冰醋酸体积比为1:8的混酸处理,混酸处理后用水清洗获得预处理后的钛网。
上述的方法中,优选地,所述钛网的目数为200目。使用200目的钛网,极大增加了比表面积,而且纳米网为块体材料,很容易替换,不会造成二次污染。
上述的方法中,优选地,将钛网依次放入丙醇、甲醇、异丙醇中进行超声处理,超声处理后用水清洗并干燥。
上述的方法中,优选地,阳极氧化采取恒压直流电源并伴随恒温搅拌,阳极氧化的电压为60V,反应温度为25℃,电极间距为7cm,反应时间为120min。
发明人研究发现,当阳极氧化时间长达120min,能够获得颗粒较大的金红石型二氧化钛与微小颗粒的锐钛矿型二氧化钛混合相,此种光-电催化材料能够获得更高的电催化反应活性。但是,阳极氧化时间越长,无定型TiO2量越多,因为无定型态TiO2力学强度弱,时间长了很容易碎裂脱落,120min的氧化时间既能够获得颗粒较大的金红石型二氧化钛与微小颗粒的锐钛矿型二氧化钛混合相,又能够保证无定型TiO2避免脱落。
上述的方法中,优选地,所述硝酸银的乙醇溶液中,硝酸银的质量分数为1.3%~1.5%。
上述的方法中,优选地,浸渍处理的时间为5~10min,优选为8min。
上述的方法中,优选地,进行热处理的方法为:
采用马弗炉,于空气气氛中进行加热处理,然后保温处理,最后随炉冷却至室温。
上述的方法中,优选地,进行热处理的温度为450~650℃,升温速率为5~10℃/min,保温时间为2h;更加优选地,所述热处理的温度为550℃,升温速率为10℃/min。
另一方面,本发明还提供上述方法制备获得的银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料。
再一方面,本发明还提供上述银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料在光-电催化降解有机污染物中的应用。
上述的应用中,优选地,该应用具体为银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料在光-电催化降解亚甲基蓝以及罗丹明(优选罗丹明6G)中的应用。
本发明的银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料可广泛应用于废水、空气中有机污染物处理,净化效率高,性质稳定,可长期使用,安全环保。在紫外-可见光照射下,该光-电催化复合材料能够提高光源与电的利用效率,表现出优异的光-电联合催化降解有机染料亚甲基蓝、罗丹明6G(R6G)的活性和稳定性。
本发明的有益效果:
(1)本发明的银源中不含有水,而且电化学氧化后的无定型二氧化钛在水中很容易脱落,本发明采用硝酸银的乙醇溶液作为银源进行表面修饰,无定型二氧化钛在乙醇中不会脱落。本发明制备方法简单快速,可重复利用率高。
(2)本发明中,通过使10~20nm大小的银纳米颗粒沉积在二氧化钛纳米管上,占据部分晶格,可以降低TiO2本身的带隙宽度,使得光生电子和空穴出现转移,光生电子转移至表面修饰银上增加电荷分离效率,同时扩展光激发的能量范围,通过银的表面等离子体共振效果,使得光-电催化活性得到提高。
(3)本发明中,通过设置阳极氧化时间长达120min,能够获得颗粒较大的金红石型二氧化钛与微小颗粒的锐钛矿型二氧化钛混合相,此种光电联合催化材料能够获得更高的催化反应活性。
(4)本发明采用200目的钛网,极大增加了比表面积,而且纳米网为块体材料,很容易替换,不会造成二次污染。
(5)本发明制备获得的光-电催化复合材料发明可广泛应用于废水、空气中有机污染物处理,净化效率高,性质稳定,可长期使用,安全环保;尤其针对亚甲基蓝、罗丹明能够表现出优异的光-电催化降解有机染料亚甲基蓝的活性和稳定性。
附图说明
图1为实施例中Ag纳米颗粒表面修饰的TiO2纳米网阵列以及未经Ag表面修饰的纯TiO2纳米网光催化、光电联用催化性能测试曲线对比图;
图2为实施例1制备的具有两种混合晶型的银纳米颗粒表面修饰二氧化钛纳米网阵列XRD谱图;
图3为实施例1制备的具有两种混合晶型的银纳米颗粒表面修饰二氧化钛纳米网阵列UV扫描谱图;
图4(a)为实施例1制备的具有两种混合晶型的银表面修饰二氧化钛纳米网阵列透射电子显微镜TEM的图片以及元素分布图mapping;
图4(b)为银表面修饰二氧化钛纳米网阵列EDS分层图像;
图5为银表面修饰二氧化钛纳米网阵列电子显微镜TEM图像。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例1
本实施例提供了一种银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料的制备方法,其包括以下步骤:
(1)钛网预处理:将纯钛网依次置于丙醇、甲醇、异丙醇的烧杯中放在超声清洗仪中依次超声清洗10min,取出后,用去离子水超声清洗5min吹干备用;然后用混酸(HF:冰醋酸=1:8)超声清洗,去除外表氧化膜;再分别用去离子水、乙醇清洗2~5min,干燥,密封。
(2)以金属Pt片为阴极,以步骤(1)中预处理得到的表面光滑的钛网为阳极,两电极之间距离为7cm,在含有0.5wt%的NH4F、3%vol的H2O的乙二醇溶液的电解液中进行阳极氧化,整个氧化过程伴有恒温磁力搅拌,氧化温度为25℃,氧化电压为60V,氧化时间为120min,取出阳极,将其置于乙醇溶液中,干燥后,得到钛网基底的TiO2纳米网阵列。
(3)称取固体硝酸银置于乙醇溶液中,待其完全溶解后,硝酸银的浓度为0.15%,将步骤(2)制得的钛网基底的TiO2纳米网阵列浸入,静置8~10min,干燥。
(4)采用马弗炉,在空气气氛下加热至550℃,升温速率为10℃/min,保温2h后,随炉冷却,得到电催化复合材料,即银表面修饰的TiO2纳米网阵列。
本实施例还提供该银表面修饰的TiO2纳米网阵列在电催化降解有机染料亚甲基蓝、罗丹明6G中的应用,具体包括如下步骤:
以50mL,浓度为12mg/L的亚甲基蓝溶液、罗丹明6G为目标降解物,将银表面修饰的TiO2纳米网阵列置于其中,测试其光-电催化活性(光催化实验装置为北京中教金源科技有限公司的CEL-APR100H型号反应器,光源为500W氙灯),电催化电流为0.15A,采用Ag-TiO2复合材料作为阳极,铂电极作为阴极,电催化电极之间的距离为3cm,溶液矿化度为6000mg/L,室温条件下每隔10min取出上层清液于紫外可见分光光度计中测其吸光度,根据F因子计算其浓度,绘制降解率曲线。实验结果如图1、图2、图3、图4(a)~图4(b)和图5所示。
由图1可以看出,光电联用对亚甲蓝的降解率为90.9%,对罗丹明6G的光电联用催化降解效率为96.1%。
由图2可以看出,通过将该样品的XRD谱图与金红石相与锐钛矿相谱图标准卡片对比,即可得知该银表面修饰的TiO2纳米网阵列由金红石相,锐钛矿相以及Ag单质构成,银的(111),(220),(311)晶面衍射峰非常明显。
由图3可以看出,可明显的观察到该样品TiO2的带边吸收峰为380nm,Ag纳米颗粒的吸收峰在400nm,可以证明有Ag纳米颗粒存在。
由图4(a)~图4(b)可以看出,该样品表面主要有Ti、O、Ag三种元素,且分布很均匀,可证实该样品有Ag的存在,图4(b)中白色发亮的颗粒即为银纳米颗粒。
图5中镶嵌在TiO2纳米网表面的即为银纳米颗粒,银纳米颗粒的大小约为10-20nm。
对比例1
对Ag-TiO2纳米网阵列进行了光催化性能测试,(光催化实验装置为北京中教金源科技有限公司的CEL-APR100H型号反应器,光源为500W氙灯)以50mL的浓度为12mg/L的亚甲基蓝溶液为目标降解物,测试所得材料的光催化性能,每隔10min将上层清液置于比色皿中测其吸光度,并根据F因子计算其浓度;绘制光催化降解率曲线。实验结果如图1所示。
由图1可以看出,纯光催化Ag-TiO2网对亚甲蓝1个小时的降解率为51%,光电联用对亚甲蓝的降解率为90.9%,对罗丹明6G的光电联用催化降解效率为96.1%。
对比例2
该对比例为实施例1上述步骤(1)至(2)制备获得的钛网基底的TiO2纳米网阵列。将该钛网基底的TiO2纳米网阵列在空气气氛下加热至550℃,升温速率为10℃/min,保温2h后,随炉冷却,得到纯TiO2纳米网阵列。因此,对纯TiO2纳米网阵列和Ag-TiO2纳米网阵列进行了光催化性能测试,由图1可以看出:纯TiO2纳米网阵列光电联合1小时对亚甲蓝的降解率为75%,Ag-TiO2复合材料的光电联用对亚甲蓝的降解率为90.9%。

Claims (10)

1.一种银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料的制备方法,其包括以下步骤:
以钛网作为阳极,铂片作为阴极,将阳极和阴极置于电解液中进行阳极氧化反应,得到钛网基底的二氧化钛纳米网阵列;
将钛网基底的二氧化钛纳米网阵列置于溶解有硝酸银的乙醇溶液中浸渍处理,取出后干燥,然后进行热处理,得到银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料。
2.根据权利要求1所述的方法,其中,所述电解液为含有氟化铵的乙二醇水溶液。
3.根据权利要求2所述的方法,其中,所述电解液中,氟化铵的含量为0.5~0.6wt%,水的含量为5~5.5%vol。
4.根据权利要求1所述的方法,其中,该方法还包括对所述钛网进行如下预处理:
将钛网超声处理并干燥,然后用氢氟酸和冰醋酸体积比为1:8的混酸处理,混酸处理后用水清洗获得预处理后的钛网;
优选地,所述钛网的目数为200目;
优选地,将钛网依次放入丙醇、甲醇、异丙醇中进行超声处理,超声处理后用水清洗并干燥。
5.根据权利要求1所述的方法,其中,阳极氧化采取恒压直流电源并伴随恒温搅拌,阳极氧化的电压为60V,反应温度为25℃,电极间距为7cm,反应时间为120min。
6.根据权利要求1所述的方法,其中,所述硝酸银的乙醇溶液中,硝酸银的质量浓度为1.3%~1.5%;
优选地,浸渍处理的时间为5~10min,优选为8min。
7.根据权利要求1所述的方法,其中,进行热处理的方法为:
采用马弗炉,于空气气氛中进行加热处理,然后保温处理,最后随炉冷却至室温;
优选地,进行热处理的温度为450~650℃,升温速率为5~10℃/min,保温时间为2h;更加优选地,所述热处理的温度为550℃,升温速率为10℃/min。
8.权利要求1~7任一项所述方法制备获得的银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料。
9.权利要求8所述银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料在光-电联用催化降解有机污染物中的应用。
10.根据权利要求9所述的应用,其中,该应用具体为银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料在光-电联用催化降解亚甲基蓝、罗丹明中的应用。
CN202010074780.XA 2020-01-22 2020-01-22 银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料 Active CN111215058B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010074780.XA CN111215058B (zh) 2020-01-22 2020-01-22 银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010074780.XA CN111215058B (zh) 2020-01-22 2020-01-22 银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料

Publications (2)

Publication Number Publication Date
CN111215058A true CN111215058A (zh) 2020-06-02
CN111215058B CN111215058B (zh) 2021-06-11

Family

ID=70809514

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010074780.XA Active CN111215058B (zh) 2020-01-22 2020-01-22 银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料

Country Status (1)

Country Link
CN (1) CN111215058B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116116405A (zh) * 2022-11-04 2023-05-16 佛山东佛表面科技有限公司 一种用于co还原no的单原子团簇型贵金属整体式丝网催化剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087966A (zh) * 2014-06-09 2014-10-08 内蒙金属材料研究所 一种光催化分解水制氢电极材料的制备方法
CN106219687A (zh) * 2016-08-15 2016-12-14 浙江大学 一种光电催化还原处理水体中污染物的方法
CN106564993A (zh) * 2016-10-23 2017-04-19 吉林建筑大学 一种基于紫外光驱动的光电催化电极的制备方法
CN109295487A (zh) * 2018-11-20 2019-02-01 鲁东大学 用于水体污染物去除的三维二氧化钛光电极的制备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087966A (zh) * 2014-06-09 2014-10-08 内蒙金属材料研究所 一种光催化分解水制氢电极材料的制备方法
CN106219687A (zh) * 2016-08-15 2016-12-14 浙江大学 一种光电催化还原处理水体中污染物的方法
CN106564993A (zh) * 2016-10-23 2017-04-19 吉林建筑大学 一种基于紫外光驱动的光电催化电极的制备方法
CN109295487A (zh) * 2018-11-20 2019-02-01 鲁东大学 用于水体污染物去除的三维二氧化钛光电极的制备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116116405A (zh) * 2022-11-04 2023-05-16 佛山东佛表面科技有限公司 一种用于co还原no的单原子团簇型贵金属整体式丝网催化剂

Also Published As

Publication number Publication date
CN111215058B (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
Wu et al. A solar-driven photocatalytic fuel cell with dual photoelectrode for simultaneous wastewater treatment and hydrogen production
Dubale et al. Heterostructured Cu 2 O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction
Liu et al. Enhanced photoelectrochemical properties of Cu 2 O-loaded short TiO 2 nanotube array electrode prepared by sonoelectrochemical deposition
Li et al. Serial hole transfer layers for a BiVO 4 photoanode with enhanced photoelectrochemical water splitting
CN111068639A (zh) 氧化锌掺杂混合晶型二氧化钛纳米管光催化复合材料
Hu et al. The hydrophilic treatment of a novel co-catalyst for greatly improving the solar water splitting performance over Mo-doped bismuth vanadate
CN101575713B (zh) 用于光电化学分解水制氢的光阳极及其制备方法
Guo et al. A NiO/TiO2 junction electrode constructed using self-organized TiO2 nanotube arrays for highly efficient photoelectrocatalytic visible light activations
CN107986380B (zh) 一种N掺杂包裹型TiO2光催化剂降解废水的工艺
CN111229223A (zh) 氧化铁掺杂混合晶型二氧化钛纳米网光催化复合材料
CN108579768B (zh) 少层MoS2修饰Ag-TiO2纳米复合薄膜的制备方法
CN110272100A (zh) Ti4O7涂层的陶瓷微滤膜电极的制备方法
CN108193219B (zh) 磷化铜修饰二氧化钛光电极及其制备方法和在光电催化分解水中的应用
Liang et al. Effects of cathodic electrodeposition conditions on morphology and photoelectrochemical response of α-Fe2O3 photoanode
CN110042452B (zh) 一种光阳极复合膜、其制备方法及其用途
CN102718491B (zh) 一种纳米管/粉共混态金属氧化物
Wang et al. Influence of grain size on photoelectrocatalytic performance of CuBi2O4 photocathodes
CN111215058B (zh) 银表面修饰混合晶型二氧化钛纳米网光-电催化复合材料
Jiang et al. A visible-light-active CuInSe 2: Zn/gC 3 N 4/TiO 2 nanowires for photoelectrocatalytic bactericidal effects
CN107841763B (zh) 一种基于表面氢氧壳层调控的光电极及其制备方法
CN111003760A (zh) 一种以TNTs为基底的光电催化阳极材料的制备方法
CN107268020A (zh) 一种Ta3N5薄膜的制备方法及Ta3N5薄膜的应用
CN107973367B (zh) 一种Fe掺杂包裹型TiO2光催化剂降解废水的工艺
Ferrari et al. Photoactive multilayer WO3 electrode synthesized via dip-coating
CN106745534B (zh) 一种光还原金属修饰四氧化三钴/二氧化钛p-n异质结的复合光催化电极及其制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant