CN111211697A - 一种基于高频变压器的模块化多电平大功率交交变流器 - Google Patents

一种基于高频变压器的模块化多电平大功率交交变流器 Download PDF

Info

Publication number
CN111211697A
CN111211697A CN202010042971.8A CN202010042971A CN111211697A CN 111211697 A CN111211697 A CN 111211697A CN 202010042971 A CN202010042971 A CN 202010042971A CN 111211697 A CN111211697 A CN 111211697A
Authority
CN
China
Prior art keywords
bridge arm
converter
power
phase
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010042971.8A
Other languages
English (en)
Inventor
孟永庆
孔颖
黄阮明
郭明星
李锦�
王海波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Economic and Technological Research Institute of State Grid Shanghai Electric Power Co Ltd
Original Assignee
Xian Jiaotong University
Economic and Technological Research Institute of State Grid Shanghai Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University, Economic and Technological Research Institute of State Grid Shanghai Electric Power Co Ltd filed Critical Xian Jiaotong University
Priority to CN202010042971.8A priority Critical patent/CN111211697A/zh
Publication of CN111211697A publication Critical patent/CN111211697A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/2932Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage, current or power
    • H02M5/2937Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage, current or power using whole cycle control, i.e. switching an integer number of whole or half cycles of the AC input voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

本发明公开了一种基于高频变压器的模块化多电平大功率交交变流器,包括第一桥臂、第二桥臂及第三桥臂,第一桥臂、第二桥臂及第三桥臂均由n个子模块级联而成,其中,各子模块均包括依次相连接的两个H桥变换器、高频变压器及周波变换器,该换流器具有模块化设计、易于扩展、输出电压波形质量好、无环流、功率密度高和成本造价低的优点,且桥臂数少,IGBT总容量小,电容数量少,直流电压最低次谐波分量频率高。

Description

一种基于高频变压器的模块化多电平大功率交交变流器
技术领域
本发明属于大功率电力变换装置结构设计领域,涉及一种基于高频变压器的模块化多电平大功率交交变流器。
背景技术
大功率高电压交交变流器实际工程应用非常广泛,在异步联网、海上风电、远距离分频输电、海底油气开采及未来海底输配电系统建设等方面都具有不可代替的作用。此外,在轨道交通、采矿、冶炼、轧钢等行业所需的电机传动装置、矿石破碎机、轧机等大型工业设备中,大功率交交变频器同样不可或缺。
模块化多电平矩阵式变换器(modular multilevel matrix converter,M3C)由美国科罗拉多大学的R.W.Erickson和O.A.Al-Naseem于2001年提出。M3C保留了模块化多电平换流器(modular multilevel converter,MMC)的模块化多电平优点,同样具备高电压大容量的特性,但M3C拓扑结构复杂,9个桥臂的所有子模块电容电压需要同时进行均压控制,且M3C内部环流通道众多,其环流分析及抑制策略复杂。此外,由M3C连接的两侧三相交流系统之间耦合程度高,一侧系统的每一相都经由一个桥臂与另一侧系统的三相相连接,若一侧系统的任何一相发生故障,M3C均无法实现功率传输。德国汉诺威-莱布尼茨大学的LennartBaruschka和Axel Mertens于2011年提出了一种可应用于高电压大功率场合的新型六边形模块化多电平交交变流器(Hexverter)。与MMC和M3C相比,Hexverter只使用6个桥臂就可以实现两个不同频率和幅值的三相交流系统的连接,降低了设备体积和生产成本,但Hexverter的拓扑结构决定了其内部环流通道只有一条,使其正常运行时系统必须满足严格的无功约束条件,从而大大限制了此新型交交变流器在实际工程中的应用。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种基于高频变压器的模块化多电平大功率交交变流器,该换流器具有模块化设计、易于扩展、输出电压波形质量好、无环流、功率密度高和成本造价低的优点,且桥臂数少,IGBT总容量小,电容数量少,直流电压最低次谐波分量频率高。
为达到上述目的,本发明所述的基于高频变压器的模块化多电平大功率交交变流器设置于两个三相交流系统之间,包括第一桥臂、第二桥臂及第三桥臂,其中,第一桥臂的输入端与第一个三相交流系统的u端相连接,第一桥臂的输出端与第二个三相交流系统的a端相连接,第二桥臂的输入端与第一个三相交流系统的v端相连接,第二桥臂的输出端与第二个三相交流系统的b端相连接,第三桥臂的输入端与第一个三相交流系统的w端相连接,第三桥臂的输出端与第二个三相交流系统的c端相连接;
第一桥臂、第二桥臂及第三桥臂均由n个子模块级联而成,其中,各子模块均包括依次相连接的两个H桥变换器、高频变压器及周波变换器。
该交交变流器采用基于电网电压定向的前馈dq解耦控制策略,通过PI调节实现有功电流和无功电流的闭环控制。
该交交换流器采用定功率和定电压的控制策略实现外环控制,即对于第一个三相交流系统,采用定有功功率和定交流电压控制,对于第二个三相交流系统,采用定直流电压和定交流电压控制,实现并网模式下的功率控制。
采用定V/f的孤岛控制模式,作为电压源输出0Hz-50Hz的低频电压,实现该交交换流器的外环控制。
第一个三相交流系统与第二个三相交流系统的频率及幅值均不同。
在工作时,根据输入电压幅值、输出电压幅值以及系统输送功率的要求,调整各桥臂中子模块的个数及参数,在正常运行时,通过对各桥臂的子模块进行调制,使桥臂输出相应电压,以实现输入输出侧的控制目标。
在逆变侧进行输出脉冲的高频翻转,实现输出基波的高频化。
当输出侧采用直流调制时,将输出三相桥臂依次串联,该交交换流器能够作为AC/DC变流器或DC/AC变流器用于直流输电换流站中。
本发明具有以下有益效果:
本发明所述的基于高频变压器的模块化多电平大功率交交变流器在具体操作时,通过引入高频变压器,可同时实现输入输出模块的直接串联,并且省去体积和重量大、成本高的输入换流变压器,具有模块化设计、易于扩展、输出电压波形质量好、无环流、功率密度高和成本造价低的优点,较之现有的大功率交交变流器拓扑,该变流器桥臂数少,IGBT总容量小,电容数量少,直流电压最低次谐波分量频率高,本发明能够有效降低设备体积、重量和成本,能够广泛适用于高电压大功率且功率密度要求高的从0Hz-50Hz的电力传动、变频电源、交直流电力电子变压器、低频输电以及直流输电等领域。
附图说明
图1为本发明的简化电路模型图;
图2为本发明的输入侧控制策略框图;
图3为本发明的输出侧控制策略框图;
图4为本发明的桥臂内均压控制策略示意图;
图5为本发明的整流侧PWM调制策略示意图;
图6为本发明的逆变侧PWM调制策略示意图;
图7为本发明的共态导通时间形成示意图;
图8为本发明中周波变换器的调制策略示意图;
图9为本发明的输入侧电压波形图;
图10为本发明的输出侧电压波形图;
图11为本发明的输入侧电流波形图;
图12为本发明的输出侧电流波形图;
图13为本发明的传送有功功率和无功功率波形图;
图14为本发明的桥臂直流电容电压波形图;
图15为本发明的单个模块整流侧输出电压波形图;
图16为本发明的单个模块逆变侧输出电压波形图;
图17为本发明的单个模块周波变换器侧输出电压波形图;
图18为本发明的输入侧电压调制波波形图;
图19为本发明的输出侧电压调制波波形图。
具体实施方式
下面结合附图对本发明做进一步详细描述:
参考图1,本发明所述的本发明所述的基于高频变压器的模块化多电平大功率交交变流器设置于两个三相交流系统之间,包括第一桥臂、第二桥臂及第三桥臂,其中,第一桥臂的输入端与第一个三相交流系统的u端相连接,第一桥臂的输出端与第二个三相交流系统的a端相连接,第二桥臂的输入端与第一个三相交流系统的v端相连接,第二桥臂的输出端与第二个三相交流系统的b端相连接,第三桥臂的输入端与第一个三相交流系统的w端相连接,第三桥臂的输出端与第二个三相交流系统的c端相连接;第一桥臂、第二桥臂及第三桥臂均由n个子模块级联而成,其中,各子模块均包括依次相连接的两个H桥变换器、高频变压器及周波变换器。
根据输入输出电压幅值以及系统输送功率的要求,HFT-MMC(本发明)可以灵活选择桥臂子模块的个数和参数,在正常运行时通过对各桥臂的子模块进行调制,使桥臂输出相应电压,以实现输入输出侧的控制目标。对于一个子模块,可以分解为整流和逆变两大部分,整流侧为一个H桥,逆变侧由一个H桥、一个高频变压器和一个周波变换器构成,其中,高频变压器和周波变换器只起到脉冲翻转的作用,为方便HFT-MMC的数学建模,HFT-MMC桥臂中的n个子模块的整流侧和逆变侧可分别等效为一个受控电压源,由此可得HFT-MMC的简化电路模型如图1所示。
将系统输入侧电压的中性点定义为O点,输出侧电压的中性点定义为O'点,根据基尔霍夫电路定理,由图1列出HFT-MMC系统的回路电压方程为:
Figure BDA0002368401530000061
Figure BDA0002368401530000062
其中,Vdc为变流器电容电压的平均值。
首先,采用等功率变换,从abc到αβo的变换矩阵为Cabc/αβo
Figure BDA0002368401530000063
从αβo到abc的变换矩阵Cαβo/abc为:
Figure BDA0002368401530000064
将式(1)-式(2)左乘等功率变换矩阵Cabc/αβo,得系统在αβ坐标系下的电压方程为:
Figure BDA0002368401530000071
Figure BDA0002368401530000072
其中,V及V为输入侧电压的αβ分量,V及V为输出侧电压和电流的αβ分量,Vsα_fs及Vsβ_fs为输入侧桥臂电压的αβ分量,Vlα_fl及Vlβ_fl为输出侧桥臂电压的αβ分量。
将式(5)-式(6)写为矩阵形式,得:
Figure BDA0002368401530000073
Figure BDA0002368401530000074
针对不同的频率分量,分别采用如下的同步旋转坐标变换矩阵:
Figure BDA0002368401530000075
Figure BDA0002368401530000076
其中,ωs为输入侧电网角频率,ωl为输出侧电网角频率,将式(7)左乘式(9),式(8)左乘式(10),并将桥臂电压的dq分量移至等式左侧,得系统在dq坐标系下的数学模型为:
Figure BDA0002368401530000077
Figure BDA0002368401530000078
1、系统稳态值的计算:
设输入和输出系统为三相三线,即输入输出系统中性点之间无电气连接,进一步设系统输入输出均为三相对称,为不失一般性,假设HFT-MMC稳态工作时输入输出系统的电压和电流为:
Figure BDA0002368401530000081
采用前文所述的等功率变换矩阵以及同步旋转坐标变换矩阵,得HFT-MMC变流器的稳态解为:
Figure BDA0002368401530000082
将式(14)代入式(11)~式(12)可解得
Figure BDA0002368401530000083
Figure BDA0002368401530000084
Figure BDA0002368401530000085
Figure BDA0002368401530000086
式(15)-式(18)为系统稳态工作时桥臂电压dq分量的解析表达式。
Figure BDA0002368401530000091
Figure BDA0002368401530000092
Figure BDA0002368401530000093
Figure BDA0002368401530000094
Figure BDA0002368401530000095
Figure BDA0002368401530000096
2、控制策略:
观察式(11)-式(12),可知,HFT-MMC数学模型中桥臂电压各dq分量表达式的结构与传统VSC的控制结构一致,因此可采用典型的基于电网电压定向的前馈dq解耦控制策略,通过PI调节来实现输入输出侧有功无功的独立控制,内环电流控制器设计为:
Figure BDA0002368401530000101
Figure BDA0002368401530000102
Figure BDA0002368401530000103
Figure BDA0002368401530000104
对于HFT-MMC换流器的外环控制策略,可采用传统的功率和电压控制策略,即对于输入侧系统采用定有功功率和定交流电压控制,对于输出侧系统可采用定直流电压和定交流电压控制。
3、桥臂内均压控制策略:
桥臂内各子模块的电容值不完全相同,子模块投的切时间也有差异,因此桥臂电流给各子模块充放电情况会有所不同,桥臂内各子模块的电容电压会出现不均衡问题。基于调制波修正的均压控制策略,可以在保证桥臂电压外特性不变的情况下,实现桥臂内电容电压均衡,控制框图如图4所示。
图4中,Vcxy为桥臂模块电压平均值,Vcxy,j为各子模块电容电压值;ixy为桥臂电流,ΔVxy1,j为各模块调整波修正值,j=1...N,N为桥臂的子模块数,修正量的数学表达式为:
ΔVxy1,j=Kp1(Vcxy-Vcxy,j)ixy (29)
当子模块电压值比平均电压值小时,ΔV1,j为正的修正量,会使该子模块充电时间增加,子模块电容电压提升;当子模块电压值比平均电压值大时,ΔV1,j为负的修正量,会使该子模块的充电时间减少,子模块额电容电压降低,以此达到电压均衡,该表达式的物理意义在于给电压参考值加入一个与桥臂电流同相或反相的修正量,子模块的电容电压低时,修正电压与桥臂电流同相,给电容注入能量;子模块的电容电压高时,修正电压与桥臂电流反相,电容释放能量,下面考虑整个桥臂的电压特性:
Figure BDA0002368401530000111
由式(30)可得,在加入修正量后,各桥臂输出特性不变,以上策略实现了单个桥臂内部的模块电压均衡。
4、PWM调制策略:
载波移相PWM调制是一种优秀的开关调制策略,适用于大功率组合变流器和级联型多电平功率控制。其基本原理是用同一调制波与多个相位均匀移动的三角载波分别进行比较,当调制波在载波上方时导通对应的H桥单元开关管,当调制波在载波下方时关断对应的H桥单元开关管。由于输出的电压波形是几个波形的叠加,这就可以实现用较低的开关频率来实现输出电压的高频率,使得输出波形更接近正弦波。
整流侧采用载波移相PWM调制,单个模块中整流侧的脉冲生成框图如图5所示。
逆变侧在传统的载波移相PWM调制的基础上,加入一个选择环节,通过对触发脉冲的选择实现H桥开关管的高频控制,从而对逆变输出的PWM波进行高频控制和翻转,实现逆变侧输出电压的高频化,单个模块逆变侧的脉冲生成框图如图6所示。
对于周波变换器,两个反向串接的IGBT组成一个双向开关,并对其施加相同的脉冲,对上下两组双向开关施加相反的脉冲,以上面的一组双向开关为例,当触发脉冲为高电平时开关管双向导通,输出电压与输入电压相同;当触发脉冲为低电平时开关管双向关断,输出电压相对于输入电压进行翻转,可以实现高频电压信号的还原。
在周波变换器的调制中增加关断延时环节,形成共态导通时间t,即使同一桥臂的上下两个开关管在时间t内处于同时导通的状态,从而解决高频变压器励磁电感和漏感中电流的续流问题。共态导通时间形成示意图如图7所示。
单个模块周波变换器的触发脉冲生成框图如图8所示,仿真模型参数如表1所示:
表1
Figure BDA0002368401530000131
仿真结果参考图9至图19。

Claims (8)

1.一种基于高频变压器的模块化多电平大功率交交变流器,其特征在于,设置于两个三相交流系统之间,包括第一桥臂、第二桥臂及第三桥臂,其中,第一桥臂的输入端与第一个三相交流系统的u端相连接,第一桥臂的输出端与第二个三相交流系统的a端相连接,第二桥臂的输入端与第一个三相交流系统的v端相连接,第二桥臂的输出端与第二个三相交流系统的b端相连接,第三桥臂的输入端与第一个三相交流系统的w端相连接,第三桥臂的输出端与第二个三相交流系统的c端相连接;
第一桥臂、第二桥臂及第三桥臂均由n个子模块级联而成,其中,各子模块均包括依次相连接的两个H桥变换器、高频变压器及周波变换器。
2.根据权利要求1所述的基于高频变压器的模块化多电平大功率交交变流器,其特征在于,该交交变流器采用基于电网电压定向的前馈dq解耦控制策略,通过PI调节实现有功电流和无功电流的闭环控制。
3.根据权利要求1所述的基于高频变压器的模块化多电平大功率交交变流器,其特征在于,该交交换流器采用定功率和定电压的控制策略实现外环控制,即对于第一个三相交流系统,采用定有功功率和定交流电压控制,对于第二个三相交流系统,采用定直流电压和定交流电压控制,实现并网模式下的功率控制。
4.根据权利要求1所述的基于高频变压器的模块化多电平大功率交交变流器,其特征在于,采用定V/f的孤岛控制模式,作为电压源输出0Hz-50Hz的低频电压,实现该交交换流器的外环控制。
5.根据权利要求1所述的基于高频变压器的模块化多电平大功率交交变流器,其特征在于,第一个三相交流系统与第二个三相交流系统的频率及幅值均不同。
6.根据权利要求1所述的基于高频变压器的模块化多电平大功率交交变流器,其特征在于,在工作时,根据输入电压幅值、输出电压幅值以及系统输送功率的要求,调整各桥臂中子模块的个数及参数,在正常运行时,通过对各桥臂的子模块进行调制,使桥臂输出相应电压,以实现输入输出侧的控制目标。
7.根据权利要求1所述的基于高频变压器的模块化多电平大功率交交变流器,其特征在于,在逆变侧进行输出脉冲的高频翻转,实现输出基波的高频化。
8.根据权利要求1所述的基于高频变压器的模块化多电平大功率交交变流器,其特征在于,当输出侧采用直流调制时,将输出三相桥臂依次串联,该交交换流器能够作为AC/DC变流器或DC/AC变流器用于直流输电换流站中。
CN202010042971.8A 2020-01-15 2020-01-15 一种基于高频变压器的模块化多电平大功率交交变流器 Pending CN111211697A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010042971.8A CN111211697A (zh) 2020-01-15 2020-01-15 一种基于高频变压器的模块化多电平大功率交交变流器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010042971.8A CN111211697A (zh) 2020-01-15 2020-01-15 一种基于高频变压器的模块化多电平大功率交交变流器

Publications (1)

Publication Number Publication Date
CN111211697A true CN111211697A (zh) 2020-05-29

Family

ID=70790127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010042971.8A Pending CN111211697A (zh) 2020-01-15 2020-01-15 一种基于高频变压器的模块化多电平大功率交交变流器

Country Status (1)

Country Link
CN (1) CN111211697A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111669069A (zh) * 2020-06-02 2020-09-15 国网山西省电力公司电力科学研究院 带中点电位波动抑制的交直流母线接口变换器控制方法
CN112953252A (zh) * 2021-02-20 2021-06-11 国网重庆市电力公司电力科学研究院 一种t型交-直-交九电平变换器的控制及调制策略
CN113258793A (zh) * 2021-05-31 2021-08-13 东南大学 一种并联矩阵变换器的环流和无功控制方法
CN113541456A (zh) * 2021-09-16 2021-10-22 华邦创科(惠州市)智能科技有限公司 全电压高频直接变换隔离型安全电源
CN114156933A (zh) * 2021-12-03 2022-03-08 西安端怡科技有限公司 一种mmmc桥臂故障后应对方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437772A (zh) * 2012-01-06 2012-05-02 盐城工学院 高频脉冲交流环节逆变器的双极性调制控制装置
CN105048850A (zh) * 2015-07-02 2015-11-11 南京航空航天大学 一种单级zvs型推挽式高频环节dc/ac变换器
CN107863889A (zh) * 2017-11-29 2018-03-30 中国电力科学研究院 一种电网扰动装置
CN108155825A (zh) * 2018-01-26 2018-06-12 东北电力大学 隔离型模块化多电平变换器
US20190115849A1 (en) * 2017-10-17 2019-04-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Converter, electrical polyphase system and method for efficient power exchange
CN109687514A (zh) * 2018-12-28 2019-04-26 浙江华云清洁能源有限公司 高频隔离型多低压直流母线汇集光伏中压并网发电系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437772A (zh) * 2012-01-06 2012-05-02 盐城工学院 高频脉冲交流环节逆变器的双极性调制控制装置
CN105048850A (zh) * 2015-07-02 2015-11-11 南京航空航天大学 一种单级zvs型推挽式高频环节dc/ac变换器
US20190115849A1 (en) * 2017-10-17 2019-04-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Converter, electrical polyphase system and method for efficient power exchange
CN107863889A (zh) * 2017-11-29 2018-03-30 中国电力科学研究院 一种电网扰动装置
CN108155825A (zh) * 2018-01-26 2018-06-12 东北电力大学 隔离型模块化多电平变换器
CN109687514A (zh) * 2018-12-28 2019-04-26 浙江华云清洁能源有限公司 高频隔离型多低压直流母线汇集光伏中压并网发电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘勃: "一种新的Y 型大功率模块化多电平交交变流器及其控制策略", 《中国电机工程学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111669069A (zh) * 2020-06-02 2020-09-15 国网山西省电力公司电力科学研究院 带中点电位波动抑制的交直流母线接口变换器控制方法
CN112953252A (zh) * 2021-02-20 2021-06-11 国网重庆市电力公司电力科学研究院 一种t型交-直-交九电平变换器的控制及调制策略
CN112953252B (zh) * 2021-02-20 2023-08-08 国网重庆市电力公司电力科学研究院 一种t型交-直-交九电平变换器的控制及调制方法
CN113258793A (zh) * 2021-05-31 2021-08-13 东南大学 一种并联矩阵变换器的环流和无功控制方法
CN113258793B (zh) * 2021-05-31 2022-03-22 东南大学 一种并联矩阵变换器的环流和无功控制方法
CN113541456A (zh) * 2021-09-16 2021-10-22 华邦创科(惠州市)智能科技有限公司 全电压高频直接变换隔离型安全电源
CN114156933A (zh) * 2021-12-03 2022-03-08 西安端怡科技有限公司 一种mmmc桥臂故障后应对方法

Similar Documents

Publication Publication Date Title
CN111211697A (zh) 一种基于高频变压器的模块化多电平大功率交交变流器
Deng et al. Voltage-balancing method for modular multilevel converters under phase-shifted carrier-based pulsewidth modulation
CN105048788B (zh) 一种混合级联结构的多端口电力电子变压器及其控制方法
CN101860319B (zh) 一种多目标的大功率逆变器共模电压抑制方法
CN103973121A (zh) 单相电力电子变压器
US11121641B1 (en) High-power machine drive system based on modular multilevel converter
CN107947599A (zh) 电力电子变流器
CN103904876A (zh) 具备同期并网功能的模块化多电平换流器平滑启动方法
CN103366053B (zh) 一种电压定向矢量控制策略的改进及数学建模方法
CN114567191B (zh) 一种基于混合mmc的btb换流器及其控制方法
Dang et al. Advanced integration of multilevel converters into power system
CN203827195U (zh) 单相电力电子变压器
CN107612398B (zh) 一种五电平npc型逆变器无源控制系统及方法
Meng et al. A new modular multilevel AC/AC converter using HF transformer
Gabriel et al. Input current shaping of five-level multiple-pole VIENNA rectifier topologies with reduced component and better performance
Demirdelen et al. A modular cascaded multilevel inverter based shunt hybrid active power filter for selective harmonic and reactive power compensation under distorted/unbalanced grid voltage conditions
CN214591178U (zh) 一种基于电力电子变压器的复合矿用变频器
Liang et al. Improved hybrid reactive power compensation system based on FC and STATCOM and its control method
Gobinath et al. Novel cascaded H-bridge multilevel inverter with harmonics elimination
CN113241962A (zh) 一种基于三相四桥臂mmc的电力电子变压器及其控制方法
Albatran et al. A hybrid 2D-3D SVM control algorithm for three phase voltage source inverters
Ghosh et al. A Simplified Space Vector PWM Technique of Three-Level Diode Clamped Inverter with Rectifier Side Direct Power Control Topology
Zhang et al. Research on the control strategy of STATCOM based on modular multilevel converter
CN113890032B (zh) 用于台区电能质量治理的电力电子变压器控制方法及系统
Baazouzi et al. Impact of the MMC level number to reduce THD rate and improve the power quality transmitted to the electrical grid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200529