CN111193550A - 光纤通信系统和方法 - Google Patents

光纤通信系统和方法 Download PDF

Info

Publication number
CN111193550A
CN111193550A CN202010036210.1A CN202010036210A CN111193550A CN 111193550 A CN111193550 A CN 111193550A CN 202010036210 A CN202010036210 A CN 202010036210A CN 111193550 A CN111193550 A CN 111193550A
Authority
CN
China
Prior art keywords
laser
transmitter
optical
signal
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010036210.1A
Other languages
English (en)
Other versions
CN111193550B (zh
Inventor
贾振生
路易斯·阿尔贝托·坎波斯
柯蒂斯·迪恩·尼特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cable Television Laboratories Inc
Original Assignee
Cable Television Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cable Television Laboratories Inc filed Critical Cable Television Laboratories Inc
Publication of CN111193550A publication Critical patent/CN111193550A/zh
Application granted granted Critical
Publication of CN111193550B publication Critical patent/CN111193550B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/504Laser transmitters using direct modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/502LED transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/532Polarisation modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/63Homodyne, i.e. coherent receivers where the local oscillator is locked in frequency and phase to the carrier signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/64Heterodyne, i.e. coherent receivers where, after the opto-electronic conversion, an electrical signal at an intermediate frequency [IF] is obtained
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/03WDM arrangements
    • H04J14/0305WDM arrangements in end terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本申请涉及光纤通信系统和方法。一种用于光通信网络的注入锁定发射机,包括基本上局限于单个纵向模式的主种子激光源输入、输入数据流、以及包括至少一个从激光器的激光注入调制器,该从激光器具有注入锁定到主种子激光源的单个纵向模式的频率的谐振器频率。激光注入调制器被配置为接收主种子激光源输入和输入数据流,并输出激光调制数据流。

Description

光纤通信系统和方法
本申请是申请日为2017年3月21日,申请号为201780032594.6,发明名称为“光纤通信系统和方法”的申请的分案申请。
相关申请的交叉引用
本申请要求于2016年10月3日提交的序列号为15/283,632的美国专利申请的利益和优先权,该序列号为15/283,632的美国专利申请要求于2016年4月12日提交的序列号为62/321,211的美国临时专利申请的利益和优先权,这两个专利申请通过引用以其整体并入本文。
背景
本公开的领域大体上涉及光纤通信网络,且更具体地涉及利用波分复用的光网络。
电信网络包括接入网络,终端用户订户通过该接入网络连接到服务提供商。对于通过接入网络传输高速数据和视频服务的带宽需求正在迅速增加,以满足不断增长的消费者需求。目前,对于住宅订户来说,接入网络上的数据传输以千兆位(Gb)/秒增长,而对于商业订户来说,数据传输以多个Gb/s增长。目前的接入网络基于无源光网络(PON)接入技术,该技术已经成为满足终端用户日益增长的高容量需求的主导系统架构。
千兆位PON和以太网PON架构是传统上已知的,并且目前为下行传输提供大约2.5Gb/s的数据速率,为上行传输提供1.25Gb/s的数据速率(下行速率的一半)。10Gb/s PON(XG-PON或IEEE 10G-EPON)已经开始用于高带宽应用,并且基于时分和波分复用(TWDM和WDM)的40Gb/s PON方案最近已经标准化。因此,越来越需要开发每个订户更高/更快的数据速率,以满足未来的带宽需求,并且同样增加对于服务和应用的覆盖范围,但同时还要最小化提供更高容量和性能的接入网络所需的资本和运营支出。
增加PON的容量的一种已知解决方案是使用WDM技术向终端用户发送专用波长信号。然而,当前的检测方案WDM技术受限于其低的接收器灵敏度,且也受限于可用于升级和扩展该技术的少数选项,特别是在与低质量遗留光纤环境结合使用方面。传统光纤环境要求运营商从现有光纤基础设施中挤出更多容量,以避免与不得不缩减新光纤安装相关联的成本。传统的接入网络通常每个节点包括六根光纤,服务多达500个终端用户,如家庭订户。常规节点不能被进一步分割,并且通常不包含多余(未使用的)光纤,因此需要以更有效和成本效益的方式利用有限的光纤可用性。
在棕色和绿色地带部署(brown and green field deployments)中,相干技术已经被提出作为提高对于WDM-PON光接入网络的接收器灵敏度和总容量的一种解决方案。相干技术提供了卓越的接收器灵敏度和扩展的功率预算,以及高频选择性,其提供了密集或超密集的WDM,而不需要窄带滤光器。此外,相干技术经历的多维恢复信号提供了额外的益处,以补偿线性传输损伤,诸如色散(CD)和偏振模色散(PMD),并通过使用多级高级调制格式有效地利用频谱资源来促进未来的网络升级。然而,使用相干技术的长距离传输需要复杂的后处理,包括信号均衡和载波恢复,以适用于沿着传输路径所经历的损伤,从而通过显著增加系统复杂性而带来重大挑战。
在长距离光学系统中的相干技术通常需要大量使用高质量的分立的光子和电子组件,诸如数模转换器(DAC)、模数转换器(ADC)和数字信号处理(DSP)电路,诸如利用CMOS技术的专用集成电路(ASIC),以补偿噪声、频率漂移和影响长距离光传输中传输的信道信号的其他因素。用于城域网(metro)解决方案的相干可插拔模块已经通过多源协议(MSA)标准化经历了C形因子可插拔(CFP)到CFP2和未来的CFP4,以减少其占用空间、降低成本,并另外降低功率耗散。然而,这些模块仍然需要相当大的工程复杂性、费用、尺寸和操作能力,因此在接入应用中实施起来并不高效或不实用。
简要概述
在一个方面中,用于光通信网络的注入锁定发射机包括基本上局限于单个纵向模式的主种子激光源输入、输入数据流、以及包括至少一个从激光器的激光注入调制器,该从激光器具有注入锁定到主种子激光源的单个纵向模式的频率的谐振器频率。激光注入调制器被配置为接收主种子激光源输入和输入数据流,并输出激光调制数据流。
在另一方面中,一种光网络通信系统包括输入信号源、被配置成接收输入信号源并输出多个相位同步相干音调对的光频梳状波发生器。多个相位同步相干音调对中的每一个包括第一未调制信号和第二未调制信号。该系统还包括:第一发射机,其被配置为接收多个相位同步相干音调对中的所选择一个的第一未调制信号作为种子源,并输出第一调制数据流;以及第一接收器,其被配置为从第一发射机接收第一调制数据流,并接收多个相位同步相干音调对中的所选择一个的第二未调制信号作为本地振荡器源。
在又一方面中,一种光网络通信系统包括光集线器,该光集线器包括被配置为输出具有第一未调制信号和第二未调制信号的至少一个相位同步相干音调对的光频梳状波发生器,以及被配置为接收第一未调制信号作为种子源并输出下行调制数据流的下行发射机。该系统还包括光纤节点和终端用户,该终端用户包括下行接收器,该下行接收器被配置为从下行发射机接收下行调制数据流,并接收第二未调制信号作为本地振荡器源。
在又一方面中,一种光网络处理方法包括以下步骤:生成至少一对第一和第二未调制相位同步相干音调;将第一未调制相位同步相干音调作为种子信号传送到第一发射机;在第一发射机中将下行数据附着到第一未调制相位同步相干音调以生成第一调制数据流信号;在集线器的光多路复用器内,将第一调制数据流信号和第二未调制相位同步相干音调光复用在一起;以及将复用的第一调制数据流信号和第二未调制相位同步相干音调通过光纤传达到第一发射机,以用于下行外差检波。
附图简述
当参考附图阅读下面的详细描述时,本公开的这些和其它特征、方面和优点将变得更好理解,在所有附图中,相似的字符表示相似的部分,其中:
图1是根据本公开的示例性实施例的示例性光纤通信系统的示意图。
图2是描绘可与图1中所描绘的光纤通信系统一起使用的示例性发射机的示意图。
图3是描绘可与图1中所描绘的光纤通信系统一起使用的可替代发射机的示意图。
图4是描绘可与图1中所描绘的光纤通信系统一起使用的可替代发射机的示意图。
图5是描绘可与图1中描绘的光纤通信系统一起使用的可选发射机的示意图。
图6是描绘可与图1中所描绘的光纤通信系统一起使用的示例性上行连接的示意图。
图7是描绘使用图1中所描绘的光纤通信系统实现的示例性处理架构的示意图。
图8是示例性下行光网络过程的流程图。
图9是可以使用图8中所描绘的下行过程实现的示例性上行光网络过程的流程图。
除非另有指示,本文中所提供的附图意在图示本公开的实施例的特征。这些特征被认为可应用于包括本公开的一个或更多个实施例的各种系统中。因此,附图并不意味着包括本领域中的那些普通技术人员已知的用于实践本文公开的实施例所需的所有常规特征。
详细描述
在下面的说明书和权利要求书中,将参考许多术语,这些术语应被定义为具有以下含义。
单数形式“一(a)”、“一(an)”、和“该(the)”包括复数参考,除非上下文另有明确规定。
“可选的”或“可选择地”指的是接下来描述的事件或情况可以发生或可以不发生,且描述包括事件发生的实例和事件不发生的实例。
本文在整个说明书和权利要求书中所使用的近似语言可以用来修改任何数量表示,这些数量表示可以允许变化,而不会导致与之相关的基本功能的变化。因此,由一个或更多个术语(诸如“大约”、“近似”和“基本上”)修改的值不限于指定的精确值。在至少一些情况下,近似语言可以对应于用于测量值的仪器的精度。在这里和整个说明书和权利要求书中,范围限制可以组合和/或互换;除非上下文或语言另有指示,否则这些范围被识别并包括其中包含的所有子范围。
图1是根据本公开的示例性实施例的示例性光纤通信系统100的示意图。系统100包括光集线器102、光纤节点104和终端用户106。光集线器102例如是中央办公室、通信集线器或光线路终端(OLT)。在所示的实施例中,图示了光纤节点104用于与无源光网络(PON)一起使用。终端用户106是下行终端单元,其可以代表例如客户设备、客户驻地(例如,公寓大楼)、商业用户或光网络单元(ONU)。在示例性实施例中,系统100利用相干密集波分复用(DWDM)PON架构。
光集线器102通过下行光纤108与光纤节点104通信。可选地,在希望沿系统100进行上行通信的情况下,光集线器102还通过上行光纤110与光纤节点104连接。在操作中,下行光纤108和上行光纤110通常为30km或更短。然而,根据本文呈现的实施例,考虑更长的长度,诸如介于100km和1000km之间。在示例性实施例中,光纤节点104通过光纤112与终端用户106连接。可替代地,光纤节点104和终端用户106可以集成为单个设备,诸如虚拟化电缆调制解调器终端系统(vCMTS),其可以位于用户驻地处。在光纤节点104和终端用户106是分开的设备的情况下,光纤112通常跨越大约5000英尺或更短的距离。
光集线器102包括光频梳状波发生器114,其被配置为从外部激光器118接收高质量源信号116,从而生成多个相干音调120(1)、120(1')、…120(N)、120(N')。光频梳状波发生器114利用例如锁模激光器、增益切换激光器或电光调制,并且被构造成使得多个相干音调120被生成为同时具有已知且可控间隔的低线宽波长信道。如下面进一步描述的,进入系统100的上行输入信号的这一有利方面允许系统100的整个下行部分的简化架构。
生成的相干音调120被馈送到放大器122,并且来自放大器122的放大信号被输入到第一集线器光解多路复用器124。在示例性实施例中,放大器122是掺铒光纤放大器(EDFA)。光集线器102还包括下行发射机126和集线器光多路复用器128。在实施例中,光集线器102可选地包括集线器光分离器130、上行接收器132和第二集线器光解多路复用器134。
下行发射机126包括下行光循环器136和下行调制器138。在示例性实施例中,下行调制器138是注入锁定的激光调制器。上行接收器132包括上行集成相干接收器(ICR)140、上行模数转换器(ADC)142和上行数字信号处理器(DSP)144。在示例性实施例中,光纤节点104包括节点光解多路复用器146。在期望上行传输的可替代实施例中,光纤节点104还包括节点光多路复用器148。在示例性实施例中,节点光解多路复用器146和节点光多路复用器148是无源设备。
终端用户106还包括下行接收器150。在示例性实施例中,下行接收器150具有与上行接收器132类似的架构,并且包括下行ICR 152、下行ADC 154和下行DSP 156。对于上行传输,终端用户106可选地包括终端用户光分离器158和上行发射机160,该终端用户光分离器158可以位于下行接收器150内或单独设置。在示例性实施例中,上行发射机160具有与下行发射机126相似的架构,并且包括上行光循环器162和上行调制器164。
在操作中,系统100利用光频梳状波发生器114和放大器122将输入的高质量源信号116转换成多个相干音调120(例如,32个音调、64个音调等),这些相干音调然后被输入到第一集线器光解多路复用器124中。在示例性实施例中,高质量源信号116具有足够的幅度和窄带宽,使得所选择的纵向模式的信号116被发送到光频梳状波发生器114中,而没有相邻的纵向模式,这在由梳状波发生器114处理之前被抑制。然后,第一集线器光解多路复用器124输出多个相位同步相干音调对166(1)、166(2)......166(N)。也就是说,所生成的相干频率音调120被放大器122放大以增强光功率,然后被解复用成多个独立的单独的相位同步相干音调源对166。为了简化讨论,以下描述仅涉及对应于用于第一信道输出的同步对信号的相干音调对166(1),其包括Ch1的第一未调制信号168和Ch1’的第二未调制信号170,以及它们通过系统100的路由。
对于高质量、窄带且基本上在单个纵向模式内的源信号116,包括第一未调制信号168(Ch1)和第二未调制信号170(Ch1')的相干音调对166(1)作为高质量窄带信号输出,然后,该信号用作对于系统100的下行和上行发送和接收方向的种子和本地振荡器(LO)信号的源。也就是说,通过示例性配置,光频梳状波发生器114的架构有利地产生高质量连续波(CW)信号。具体而言,第一未调制信号168(Ch1)可以在整个系统100中充当下行种子和上行LO,而第二未调制信号170(Ch1')可以同时充当系统100的上行种子和下行LO。
根据示例性实施例,在光集线器102内,第一未调制信号168(Ch1)被集线器光分离器130分割,并作为“纯”信号分别输入到下行发射机126和上行接收器132,即,基本上低幅度、窄带宽的连续波不包括粘附数据(adhered data)。因此,第一未调制信号168(Ch1)成为下行发射机126的种子信号和上行接收器132的LO信号。在示例性实施例中,在下行发射机126内,第一未调制信号168(Ch1)通过下行光循环器136进入到下行调制器138中,其中一个或更多个激光二极管(图1中未示出,下面参照图2-图5描述)被激励,并将数据(图1中也未示出,下面参照图2-图5描述)粘附到信号上,然后该信号作为下行调制数据流172(Ch1)离开下行光循环器136。
在示例性实施例中,下行光循环器136位于下行发射机126内。可替代地,下行光循环器136可以在物理上定位成独立于下行发射机126,或者在下行调制器138的范围内。然后,下行调制数据流172(Ch1)在集线器光多路复用器128中与来自其他信道(未示出)的多个调制/未调制数据流对组合,并通过下行光纤108发送到光纤节点104中的节点光解多路复用器174,该节点光解多路复用器174然后分离不同的信道流对以传输到不同的相应终端用户106。在终端用户106处,因为进入下行接收器150的数据流对170、172是相位同步的,所以如下面参照图7所述,下行DSP 156处的数字信号处理被大大简化。
在光集线器102处可选地寻求上行接收的情况下,第二未调制信号170(Ch1')在终端用户106内被终端用户光分离器158分割,并且作为Ch1'的“纯”未调制信号被分别输入到下行接收器150和上行发射机160。在该可替代实施例中,第二未调制信号170(Ch1')因此起到上行发射机160的种子信号和用于Ch1的相干检测的下行接收器150的“伪LO信号”的作用。出于本讨论的目的,第二未调制信号170(Ch1')被称为“伪LO信号”,因为它使用来自远程源(从第一集线器光解多路复用器124输出)的LO信号,并且不需要在终端用户106处本地产生LO信号。该特定配置通过减少必要的电子部件进一步显著降低了系统100的架构的成本和复杂性。
对于上行传输,在示例性实施例中,对于上行发射机160实现了与对于下行发射机126所使用的类似的相干检测方案。也就是说,第二未调制信号170(Ch1')被输入到上行光循环器162,并由上行调制器164调制,以利用一个或更多个从激光器(未示出,下面参照图6描述)粘附对称或非对称数据(也未示出,下面参照图6描述),然后作为上行调制数据流176(Ch1')输出,随后由光纤节点104中的节点多路复用器178将该数据流与来自其他信道(未示出)的类似调制数据流组合。然后,第二未调制信号170(Ch1')在上行光纤110上进行上行传输,通过第二集线器光解多路复用器134与其他信道信号分离,作为上行接收器132的输入,用于简化数字信号处理,类似于上文关于下行接收器150描述的过程。
通过该示例性配置,来自不同终端用户106的多个上行信道可以在光纤节点104(或远程节点)处被复用,并被发送回光集线器102。因此,在光集线器102内,除了上行接收器132利用作为LO的第一未调制信号168(Ch1)和上行调制数据流176(Ch1')来运载数据,而下行接收器150相反地利用数据流对(Ch1,Ch1'),可以在上行接收器132处使用与下行接收器150相同的相干检测方案。也就是说,下行接收器150利用作为LO的第二未调制信号170(Ch1')和下行调制数据流172(Ch1)来运载数据。
本文所描述的实施例的实现对于将混合光纤-同轴(HFC)架构迁移到其他类型的光纤架构以及更深的光纤架构是有用的。典型的HFC架构倾向于具有从光纤节点到集线器可用的非常少的光纤束(例如,光纤108,110),但是可以部署许多光纤束来覆盖通常从传统HFC节点到终端用户(例如,光纤112)的较短距离。在本文所描述的示例性实施例中,图示了光纤集线器102和光纤节点104之间的两根光纤(即,光纤108、110),该光纤节点104可以是传统的HFC光纤节点。也就是说,一根光纤(即,下行光纤108)用于下行信号和上行种子/下行LO,而另一根光纤(即,上行光纤110)用于上行信号。另外,图示了从光纤节点104(例如,传统的HFC光纤节点)到终端用户106的用于每个终端用户的三根光纤(即,光纤112A-112C)。通过利用本文的有利配置,更深的光纤或全光纤迁移方案可以利用HFC光纤节点作为光纤分布节点,从而极大地最小化了对于从HFC节点到光集线器的光纤缩减的需求。
因此,通过避免对常规的补偿硬件的需要,本文描述的架构可以被构造为比常规设备便宜得多且更紧凑的物理设备。这种新型且有利的系统和子系统布置允许具有简单性、可靠性和低成本的多波长发射。具有高质量输入源信号116的光频梳状波发生器114的实现还允许对由常规分立激光器没有实现的多个源的同时控制。根据本文的实施例,基于可用的信号带宽占用,信道间隔例如可以是25GHz、12.5GHz或6.25GHz。
本文描述的实施例通过利用保持恒定波长间隔的梳状波发生器(即,光频梳状波发生器114)实现了进一步的优点,从而避免了在单个光纤上同时传输的情况下可能普遍存在的光拍干扰(OBI)。在图1所图示的示例性实施例中,光纤节点104示为无源系统,因此期望保持比其他迁移方法更高的可靠性。然而,在阅读和理解本申请之后,本领域的普通技术人员将理解本文公开的实施例如何也可适用于远程PHY解决方案,或者适用于包括在光纤节点中的远程电缆调制解调器终端系统(CMTS)。
如本文所图示和所描述的,系统100可以利用结合新型解决方案的相干DWDM-PON的架构来满足接入环境的独特要求,但是具有常规硬件系统中不可见的成本效益的结构。光频梳状波发生器114产生具有受控间距的多个同时的窄宽波长信道,从而允许对整个波长梳的简化调谐。因此,光集线器102中的这种集中化梳状光源在外差检测配置中为下行和上行方向二者提供主播种源和LO信号,以便在整个系统100中重新使用光源。例如,与长距离系统中的内差检测方案相比,这种有利的配置实现了显著的成本节约和硬件复杂性的降低。
图2是描绘可与图1中描绘的光纤通信系统100一起使用的示例性下行发射机200的示意图。下行发射机200包括与激光注入调制器202双向通信的下行光循环器136(参见以上图1),该激光注入调制器202包括激光二极管204,该激光二极管204从外部数据源208接收数据206。在可替代实施例中,下行发射机200可包括两个单独的光纤接收器(未示出),这将替代并消除对所示结构配置中的下行光循环器136的需要。
在操作中,下行发射机200执行与下行发射机126(如上所述图1)相同的一般功能。激光注入调制器202利用作为“从激光器”的激光二极管204。也就是说,激光二极管204被外部激光器118注入锁定,该外部激光器118充当单个频率或纵向模式主激光器或种子激光器,以保持激光二极管204的谐振器模式的频率足够接近主激光器(即,激光器118)的频率,从而允许频率锁定。下行发射机200的原理也被称为“激光克隆”,其中单个高质量主激光器(即,激光器118)发射窄带宽、低噪声的信号(即,源信号116),并且相对便宜的从激光器(例如,激光二极管204)可以在整个系统100中用于发射数据调制信号,诸如下行调制数据流172(Ch1)。在示例性实施例中,与常规使用的昂贵得多的分布式反馈激光二极管(DFB Ld)相比,激光二极管204是法布里-珀罗激光二极管(FP LD)或垂直腔面发射激光器(VCSEL)。在可替代实施例中,激光二极管204是LED,其由于利用了在整个系统100中一致使用的高质量源信号116而可以作为根据本文的实施例的充分的从激光源来执行。
更具体地,离开集线器光分离器130的第一未调制信号168(Ch1)被输入到下行光循环器136中,该下行光循环器136然后激励激光二极管204,即激光二极管204以指定的调制率发射光。激光注入调制器202将数据206粘附到经激励的Ch1信号,并且从下行光循环器136输出具有粘附数据的合成调制Ch1信号作为下行调制数据流172(Ch1)。根据该示例性实施例,第一未调制信号168(Ch1)作为未调制的、低幅度、窄带宽、低噪声的“纯”源被输入到下行发射机126,并且由激光二极管204调制,该激光二极管204是高幅度、宽带宽设备,并且合成的下行调制数据流172(Ch1)是高幅度、窄带宽、低噪声的“纯”信号,其可以在整个系统100中传输,而不需要进一步的常规补偿手段(硬件和编程)。例如,不需要抑制来自激光二极管204的相邻纵向模式,因为激励的源信号(即,信号168)具有如此高的质量和窄的带宽,以致输出的下行调制数据流172(Ch1)基本上仅在外部激光器118的窄带宽内被放大。在图2所示的示例性实施例中,激光注入调制器202实现直接调制。
因此,本文描述的光注入锁定在光谱带宽和噪声特性方面改善了相对较便宜的多纵向从激光源(即,激光二极管204)的性能。关于外差相干检测,入射信号(上行或下行)可以与LO或伪LO组合,并被带到中频(IF)以用于电子处理。根据该示例性配置,LO/伪LO光功率的一部分也可以在光集线器102处和在终端用户106处用作对于反向传输方向的主/种子激光器(下面参照图6描述),因此与常规系统相比,可以以相对有成本效益的方式实现具有从光集线器传输的主种子和LO的完全相干系统。
图3是描绘可与图1中描绘的光纤通信系统100一起使用的可替代下行发射机300的示意图。下行发射机300类似于下行发射机200(图2),包括直接调制的实现,除了下行发射机300可选地利用偏振分复用将Ch1信号调制成下行调制数据流172(Ch1)。
下行发射机300包括与激光注入调制器302双向通信的下行光循环器136(参见以上图1),该激光注入调制器302包括可以是单个设备的偏振光束分离器(PBS)/偏振光束组合器(PBC)304。激光注入调制器302还包括被配置为从外部数据源(图3中未示出)接收第一数据308的第一激光二极管306,以及被配置为从相同或不同的外部数据源接收第二数据312的第二激光二极管310。
在操作中,下行发射机300在实现直接调制和主/从激光注入锁定方面类似于下行发射机200。然而,可替代地,下行发射机300实现来自PBS/PBC304的分离器部分的双偏振,该分离器部分将第一未调制信号168(Ch1)分离成其x偏振分量P1和y偏振分量P2,它们分别单独地激励第一激光二极管306和第二激光二极管310。类似于下行发射机200(图2),在下行发射机300中,离开集线器光分离器130的第一未调制信号168(Ch1)被输入到下行光循环器136,其分离的偏振分量然后分别以指定的调制率激励激光二极管306、310。激光注入调制器302将第一数据和第二数据308、312粘附到Ch1信号的相应激励的偏振分量,这些分量由PBS/PBC 304的组合器部分组合。具有粘附数据的合成调制Ch1信号作为下行调制数据流172(Ch1)从下行光循环器136输出。
在示例性实施例中,由第一和第二激光二极管306、310接收的偏振光分量是正交的(90度和/或非交互的)。也就是说,第一激光二极管306和第二激光二极管310被优化为从激光器,以锁定到与外部(主)激光器118相同的波长,但是具有垂直偏振方向。通过这种配置,大数据包(例如,第一数据308和第二数据312)可以被分离,并且在重组为下行调制数据流172(Ch1)之前沿着单独的路径同时发送。可替代地,第一数据308和第二数据312可以来自两个(或更多个)独立的不相关源。正交分离防止偏振信号分量之间的数据干扰。然而,本领域的普通技术人员将认识到,根据图3的实施例,第一未调制信号168(Ch1)也可以利用幅度和相位以及波长划分的类似原理以60度进行偏振。可替代地,第一未调制信号168(Ch1)可以根据螺旋或涡流偏振或轨道角动量进行复用。另外,尽管所示实施例具有偏振复用的特征,但是也可以替代地实现空分复用和模分复用。
根据该示例性实施例,Ch1的主连续波信号(即,第一未调制信号168)从光频梳状波发生器114接收,并被分离以在第一部分中用作上行接收器132的LO,且在第二部分中用于通过相应的x偏振和y偏振光部分同步两个从激光器(即,第一激光二极管306和第二激光二极管310),使得两个从激光器根据主激光器(即,外部激光器118)的波长振荡。数据(即,第一数据308和第二数据312)分别被直接调制到两个从激光器上。因此,这种注入锁定技术进一步允许从主激光器到从激光器的频率调制(FM)噪声频谱控制,并且进一步能够实现FM噪声/相位抖动抑制和发射线宽减小的显著改进。
如本文所述,利用双偏振光发射机(即,下行发射机300)的光注入,通过直接调制,可以有利地实现成本相对较低的激光器来执行成本相当高的常规激光器的功能。根据通过半导体激光器的直接调制以及相干检测的双偏振光发射机的这种配置,本实施例在其较低的成本和架构紧凑性方面对于短距离应用特别有用。对于长距离应用也可以实现类似的优点。
图4是描绘可与图1中描绘的光纤通信系统100一起使用的可替代下行发射机400的示意图。下行发射机400类似于下行发射机200(图2),除了下行发射机400可替代地实现外部调制,而不是直接调制,以将Ch1信号调制成下行调制数据流172(Ch1)。下行发射机400包括下行光循环器136(参见以上图1)和激光注入调制器402。下行光循环器136与单独的外部光循环器404单向直接通信,该外部光循环器404可以包含在激光注入调制器402内或者是单独的。激光注入调制器402还包括激光二极管406,其接收低幅度、窄带宽的第一未调制信号168(Ch1),并将激励的高幅度、窄带宽的光信号408发射回到外部光循环器404。激光注入调制器402还包括外部调制元件410,其从外部数据源414接收数据412,并将数据412与光信号408粘附在一起,以待由下行光循环器136单向地接收回来,并作为下行调制数据流172(Ch1)输出。
在该示例性实施例中,下行发射机400执行与下行发射机126(以上所述的图1)相同的一般功能,但是使用外部调制作为注入锁定机构来将激光二极管406锁定到主激光源(例如,外部激光器118)的波长。为了实现外部调制,该实施例调节穿过主要单向的光循环器(即,下行光循环器136、外部光循环器404)的光信号流。可选地,外部调制元件410可以包括解复用滤波器(未示出)作为整体部件,或者在由下行接收器150输入之前沿着下行调制数据流172(Ch1)的信号路径分开。在示例性实施例中,外部调制元件410是监控光电二极管,并且通过后激光面执行注入锁定。
图5是描绘可与图1中描绘的光纤通信系统100一起使用的可替代下行发射机500的示意图。下行发射机500类似于下行发射机300(图3),包括直接调制和偏振分复用的实现,除了下行发射机500还实现了正交幅度调制(QAM)以将Ch1信号调制成下行调制数据流172(Ch1)。也就是说,每个偏振分支可以利用另外的外部调制元件(以上图2)来生成QAM信号。
下行发射机500包括与激光注入调制器502双向通信的下行光循环器136(参见以上图1),该激光注入调制器502包括PBS/PBC 504,该PBS/PBC504可以是单个设备或两个单独的设备。另外,激光注入调制器502的所有部件本身可以是独立的设备,或者可替代地,全部都包含在单个光子芯片内。激光注入调制器502还包括:第一激光二极管506,其被配置为从外部数据源(图5中未示出)接收第一数据508;第二激光二极管510,其被配置为从相同或不同的外部数据源接收第二数据512;第三激光二极管514,其被配置为从相同/不同的外部数据源接收第三数据516;以及第四激光二极管518,其被配置为从相同/不同的外部数据源接收第四数据520。
在操作中,下行发射机500实现来自PBS/PBC 504的分离器部分的双偏振,该分离器部分将第一未调制信号168(Ch1)分成其x偏振分量(P1)和y偏振分量(P2)。然后,每个偏振分量P1、P2分别被输入到第一非偏振光分离器/组合器522和第二非偏振光分离器/组合器524。然后,第一和第二光分离器/组合器522、524各自进一步将它们各自的偏振分量P1、P2分别分离成它们的I-信号526、528,并且还分别分离成它们的Q-信号530、532。然后,生成的I-信号526、528分别直接激励激光二极管506、514。在分别与激光二极管510、518直接通信之前,生成的Q-信号530、532首先分别穿过第一和第二正交相移元件534、536,每个正交相移元件在每个方向上将Q-信号移位45度,使得当相应的Q-信号在分离器/组合器522、524处重组时,与其相应的I-信号偏移90度。
具有粘附数据的合成调制Ch1信号从下行发射机500的下行光循环器136作为下行调制数据流172(Ch1)并作为偏振复用的QAM信号输出。根据该示例性实施例,光子集成电路的使用允许复用的相干系统的直接调制偏振,但是使用比常规架构实现的成本低得多的硬件配置。在示例性实施例中,激光二极管506、510、514、516是能够生成16-QAM偏振复用信号的PAM-4调制激光二极管。
图6是描绘可与图1中描绘的光纤通信系统100一起使用的示例性上行发射机600的示意图。在图6所示的实施例中,上行发射机600在结构和功能上类似于下行发射机300(图3)。具体而言,上行发射机600包括与激光注入调制器602(在图6中未单独示出)双向通信的上行光循环器162(参见图1,如上),该激光注入调制器602包括PBS/PBC 604,该PBS/PBC 504可以是单个设备或两个单独的设备。激光注入调制器602还包括被配置为从外部数据源(图6中未示出)接收第一数据608的第一激光二极管606,以及被配置为从相同或不同的外部数据源接收第二数据612的第二激光二极管610。类似于以上图2-图5的实施例,上行发射机600也可以通过使用至少两个单独的光纤接收器(未示出)来消除上行光循环器162。
因此,上行发射机600几乎与下行发射机300(图3)相同,除了上行发射机600在激光注入调制器602中利用第二未调制信号170(Ch1')作为终端用户种子源,以与数据(例如,第一数据608、第二数据612)组合或粘附,以生成上行调制数据流176(Ch1'),从而将上行数据信号运载到上行接收器(例如,上行接收器132)。在操作中,第一激光二极管606和第二激光二极管610还通过对来自外部激光器118的主信号注入锁定而充当从激光器。也就是说,Ch1’的对称或非对称数据(例如,第一数据608、第二数据612)通过偏振复用被调制到两个从激光器(即,第一激光二极管606和第二激光二极管610)上,这与针对光集线器102中的下行发射机300(图3)实现的过程非常相似。
在该示例中,上行发射机600被示为基本上模仿下行发射机300(图3)的架构。可替代地,上行发射机600可以在不脱离本公开的范围的情况下等效地模仿下行发射机200(图2)、400(图4)或500(图5)中的一个或更多个的架构。此外,上行发射机600可以符合由图2-图5公开的任何实施例,而不管在光集线器102内使用的特定下行发射机的特定架构。通过利用高质量、窄带宽、低噪声的外部激光源118,主/从激光器关系贯穿整个系统100,以及接收调制/未调制信号对(其可能是来自例如下行光纤108和上行光纤110的单个光纤线路对的32、64、128,或者多达256个)的多个终端用户106。
因此,当考虑到完全实现来自单个光集线器102的所有可用实产对可能需要多达512个下行发射机(例如,下行发射机126,图1)和上行发射机(例如,上行发射机160,图1)时,可以最好地实现根据本实施例的显著成本节约。本实施例实现了显著较低的成本和没那么复杂的硬件架构,以利用从高质量外部激光器118的实现中获得的好处,而不必添加昂贵的单个纵向模式激光二极管或抑制来自廉价激光器的相邻纵向模式或由此产生的噪声分量所必需的其它补偿硬件。
图7是描绘可以针对图1中描绘的上行接收器132、下行接收器150和光纤通信系统100实现的示例性处理架构的示意图。上行接收器132和下行接收器150的各自架构在形式和功能上相似(参照图1如上所述),除了上行接收器132接收与下行接收器150接收的第二数据流对702相反的Ch1、Ch1’的第一数据流对700。换句话说,如上所述,第一数据流对700包括作为LO的第一未调制信号168(Ch1)和用于运载数据的上行调制数据流176(Ch1’),而第二数据流对702包括作为LO的未调制信号170(Ch1’)和用于运载数据的下行调制数据流172(Ch1)。
第一和第二数据流对700、702,分别对由ICR 140和ICR 152转换成模拟电信号的光信号的调制/未调制的复用相位同步对。然后,各个模拟信号被ADC 142和ADC 154转换成数字域,以用于由DSP 144和DSP 156进行数字信号处理。在示例性实施例中,数字信号处理可以由采用非常大量的门阵列的CMOS ASIC来执行。例如,常规的CMOS ASIC可以利用多达7000万个门来处理进入的数字化数据流。在常规系统中,Ch1和Ch1’的调制数据流被独立处理,这需要大量资源来估计频率偏移、漂移和数字下变频补偿因子(例如,e^-jωt,其中ω表示第一未调制信号168和上行调制数据流176之间的频率差,并且对于扩展到整个系统100的相干音调对166ω保持恒定)。
另一方面,根据本文公开的示例性实施例,来自Ch1和Ch1’的调制和未调制信号被相位同步在一起,使得信号对的ω之间的差值总是已知的,并且相位同步以保持恒定的关系。相比之下,如上所讨论,常规系统需要不断估计载波相位,以补偿需要大量处理资源的因素,诸如漂移。然而,根据本实施例,由于Ch1和Ch1’作为第一和第二数据流对700、702同步在一起,因此不需要估计对700、702之间的偏移ω,因为它可以通过DSP144和DSP 156中的简化减法处理而容易地导出,因为信号对将以恒定的关系一起漂移相同的量。通过这种有利的配置和处理,可以利用少至一百万个门来通过CMOS ASIC执行数字信号处理,从而大大提高各个DSP的处理速度,和/或减少执行处理所需的物理芯片的数量(或类似地增加可由同一芯片执行的单独处理的量)。目前,本文描述的实施例的实现可以将下行和上行数据传输速度提高到比常规系统快5000倍。
图8是可以通过图1中描绘的光纤通信系统100实现的示例性下行光网络过程800的流程图。过程800在步骤802处开始。在步骤802中,由光频梳状波发生器114、放大器122和第一集线器光解多路复用器124生成并输出相干音调对166。类似于上面的讨论,出于简化目的,下面的讨论解决Ch1、Ch1’的特定相干音调对166(1)。相干音调对166包括第一未调制信号168(Ch1)和第二未调制信号170(Ch1’)。一旦生成相干音调对166,过程800就从步骤802前进到步骤804和806,这可以一起或同时执行。
在步骤804中,第一未调制信号168(Ch1)被输入到光分离器,例如图1中的光分离器130。在步骤806中,第二未调制信号170(Ch1’)被发送到多路复用器,例如图1中的集线器光多路复用器128。返回步骤804,第一未调制信号168(Ch1)被分离以既充当用于上行检测的LO,又充当用于下行数据传输的种子。对于上行检测,步骤804进行到步骤808,其中第一未调制信号168(Ch1)由上行接收器(即,图1的上行接收器132)接收。对于下行数据传输,步骤804单独并同时进行到步骤810。
步骤810是可选步骤,其中需要偏振分复用。在步骤810中,第一未调制信号168(Ch1)分别被分成其x分量部分P1和y分量部分P2(例如,通过图3的PBS/PBC 304或图5的PBS/PBC 504),以用于单独的直接调制或外部调制。在不使用偏振分复用的情况下,过程800跳过步骤810,而是直接从步骤804前进到步骤812。在步骤812中,通过直接调制(例如,图2、图3、图5)或外部调制(例如,图4)来调制第一未调制信号168(Ch1),或者如果实施可选步骤810,则调制其偏振分量。然后,过程800从步骤812前进到步骤814。步骤814是可选步骤,其在可选步骤810也被实现用于偏振分复用时被执行。在步骤814中,x分量部分P1和y分量部分P2被重新组合(例如,通过图3的PBS/PBC 304或图5的PBS/PBC504),以作为下行调制数据流172(Ch1)输出。在不使用偏振分复用的情况下,过程800跳过步骤814,而是直接从步骤812前进到步骤816。
在步骤816中,第二未调制信号170(Ch1’)和下行调制数据流172(Ch1)被光复用,即通过图1的集线器光多路复用器128,作为相位同步数据流对(例如,图7的第二数据流对702)。然后,过程800从步骤816前进到步骤818,在步骤818中,相位同步数据流对通过光纤(即,图1的下行光纤108)发送。然后,过程800从步骤818前进到步骤820,在步骤820中,同步数据流对被光解复用,例如,由光纤节点104中的节点光解复用器174进行。然后,过程800从步骤820前进到步骤822,在步骤822中,下行接收器(例如,图1的下行接收器150)接收解复用的数据流对的两个分量(例如,第二未调制信号170(Ch1’)和下行调制数据流172(Ch1)),以用于外差相干检测。
在终端用户(例如,终端用户106)还包括上行传输能力的情况下,过程800还包括可选步骤824和826。在步骤824中,并且在步骤822中的下行接收之前,第二未调制信号170(Ch1’)被光分离(例如,由图1的终端用户光分离器158),并且在步骤826中另外被发送到终端用户的上行发射机(例如,图1的上行发射机160),如下面参照图9进一步解释的,作为用于上行数据传输的调制器(例如,图1的调制器164)的种子信号。
图9是可以通过图1中描绘的光纤通信系统100可选地实现的示例性上行光网络过程900的流程图。过程900在可选步骤902处开始。在步骤902中,在上行发射机(例如,图1的上行发射机160)中使用偏振分复用的情况下,(来自图8中的步骤826的)第二未调制信号170(Ch1’)被分成其x分量部分和y分量部分(例如,通过图6的PBS/PBC 604),以用于单独的直接调制或外部调制。在不使用偏振分复用的情况下,跳过步骤902,而过程900在步骤904处开始。
在步骤904中,如果实施可选步骤902,则第二未调制信号170(Ch1’)或其偏振分量如上文关于图1和图6所述的被注入锁定到主源激光器(例如,图1的外部激光器118)。然后,步骤904进行到步骤906,其中通过直接调制或外部调制来调制注入锁定信号。过程900然后从步骤906前进到步骤908。步骤908是可选步骤,其在可选步骤902也被实现用于偏振分复用时被执行。在步骤908中,被激励的Ch1’信号的x分量部分和y分量部分被重新组合(例如,通过图6的PBS/PBC 604),以用于作为上行调制数据流176(Ch1’)输出。在不使用偏振分复用的情况下,过程900跳过步骤908,而是直接从步骤906前进到步骤910。
在步骤910中,上行调制数据流176(Ch1’)与其他上行数据流信号(未示出)被光复用,即,通过图1的节点光多路复用器178进行。然后,过程900从步骤910前进到步骤912,在步骤912中,上行调制数据流176(Ch1’)通过光纤(即,图1的上行光纤110)发送。然后,过程900从步骤912前进到步骤914,在步骤914中,上行调制数据流176(Ch1’)例如通过第二集线器光解多路复用器134被光解复用,该第二集线器光多解多路复用器134将所选择的数据流与其他上行数据流信号分离,以用于传输到被调谐以接收调制数据流的特定上行接收器。然后,过程900从步骤914前进到步骤916,在步骤916中,上行接收器(例如,图1的上行接收器和32)接收上行数据流对(例如,图7的第一数据流对700)的两个分量(例如,图8的第一未调制信号168(Ch1)和上行调制数据流176(Ch1’)),以用于外差相干检测。
如示例性实施例中所示,上行和下行信号传输之间的差别在于,整个同步调制/未调制信道对(例如,图7的第二数据流对702)可以在下行方向上传输,而在上行方向上,只有数据调制信号(例如,上行调制数据流176(Ch1’))将通过上行光纤连接(即,上行光纤110)传输。本配置的优点在于,用于上行相干检测的LO(例如,在图1的上行接收器132处)直接来自分离信号,即如图1所描绘的,在被第一集线器光解多路复用器124分离之后,从光集线器102内的光频梳状波发生器114生成的第一未调制信号168(Ch1)。常规系统通常需要在相应系统的每个阶段处的LO生成。另一方面,根据本公开,可以在整个系统架构中实现相对便宜的从激光器,以用于在光集线器102和终端用户106部件中进行调制和偏振复用,而不需要终端用户处的附加LO源。
根据本公开,利用双偏振光发射机以及通过相干检测直接调制半导体激光器,不仅对于长距离应用特别有益,而且对于短距离应用也特别有益,以降低电子硬件的成本,同时也使得整个网络系统架构更加紧凑。本系统和方法进一步解决了在长时间段内同步两个激光源的常见问题。在本文中使用相位同步数据流对和从激光器允许在整个系统的整个操作期间连续同步各个激光源。这些解决方案可以在用于接入网络的相干DWDM-PON系统架构中以成本有效的方式实现。
因此,在系统前端处使用高质量光学梳状源进一步允许以容易控制的间隔生成多个同时窄带宽波长信道,并且因此也简化了整个波长梳的调谐。光集线器中的这种集中梳状光源提供了主播种源和LO信号,其可以在整个系统中重复使用,并用于下行和上行传输。如本文所述,光注入的实现进一步改善了低成本多纵向从激光源在光谱带宽和噪声特性方面的性能。因此,根据本系统和方法的接入网络实现了波长通过光纤更有效的传输,从而增加了传输数据的容量,但是功率更低、灵敏度更高、硬件成本更低且色散、DSP补偿和纠错减少。
上面详细描述了光纤通信系统和方法的示例性实施例。然而,本公开的系统和方法不仅仅限于本文描述的特定实施例,而是它们的实现的部件和/或步骤可以与本文描述的其他部件和/或步骤独立且分开地使用。另外,示例性实施例可以结合在终端用户阶段处利用光纤和同轴传输的其他接入网络来实现和利用。
本书面描述使用示例来公开实施例,包括最佳模式,并且还使得本领域的任何技术人员能够实践这些实施例,包括制造和使用任何设备或系统以及执行任何结合的方法。本公开的专利性范围由权利要求限定,并且可以包括本领域技术人员想到的其他示例。如果这些其它示例具有与权利要求的字面语言没有不同的结构元件,或者如果它们包括与权利要求的字面语言没有实质性差异的等效结构元件,则这些其它示例旨在权利要求的范围内。
尽管本公开的各个实施例的特定特征可以在一些附图中示出,而在其他附图中没有示出,但这仅仅是为了方便。根据本公开的原理,附图中示出的特定特征可以结合其他附图的特征来引用和/或要求保护。例如,下面的示例权利要求列表仅代表了根据本文描述的系统和方法可能的元素的一些可能组合。
a(i).一种用于光通信网络的注入锁定发射机,包括:主种子激光源输入端,其基本上局限于单个纵向模式;输入数据流;以及激光注入调制器,其包括至少一个从激光器,所述从激光器具有注入锁定到所述主种子激光源的单个纵向模式的频率的谐振器频率,其中,所述激光注入调制器被配置为接收所述主种子激光源输入和所述输入数据流,并输出激光调制数据流。
b(i).根据a(i)所述的发射机,其中,所述激光注入调制器被配置为实现直接调制。
c(i).根据a(i)所述的发射机,其中,所述激光注入调制器被配置为实现外部调制。
d(i).根据a(i)所述的发射机,其中,所述至少一个从激光器包括LED、法布里-珀罗激光二极管和垂直腔面发射激光器中的至少一个。
e(i).根据a(i)所述的发射机,还包括与所述激光注入调制器和所述主种子激光源输入通信的第一光循环器。
f(i).根据e(i)所述的发射机,其中,所述激光注入调制器被配置为实现偏振分复用、空分复用和模分复用中的一种。
g(i).根据f(i)所述的发射机,其中,所述激光注入调制器被配置成以90度偏振、60度偏振、90度偏振、螺旋偏振、圆偏振、涡流偏振或轨道角动量中的一个对所述主种子激光源输入进行复用。
h(i).根据f(i)所述的发射机,还包括设置在所述第一光循环器和所述至少一个从激光器之间的偏振光束分离器和偏振光束组合器。
i(i).根据h(i)所述的发射机,其中,所述至少一个从激光器包括第一激光二极管和第二激光二极管,其中,所述第一激光二极管被配置为接收所述主种子激光源输入的x分量,并且其中,所述第二激光二极管被配置为接收所述主种子激光源输入的y分量。
j(i).根据i(i)所述的发射机,还包括:第一光分离器和光组合器,其设置在所述偏振光束分离器和所述第一激光二极管之间;以及第二光分离器和光组合器,其设置在所述偏振光束分离器和所述第二激光二极管之间,其中所述第一激光二极管包括第一子激光器和第二子激光器,其中所述第二激光二极管包括第三子激光器和第四子激光器,其中所述第一子激光器被配置为接收所述x分量的I-信号,其中所述第二子激光器被配置为接收所述x分量的Q-信号,其中所述第三子激光器被配置为接收所述y分量的I-信号,其中所述第四子激光器被配置为接收所述y分量的Q-信号.
k(i).根据j(i)所述的发射机,还包括:第一相移元件,其设置在所述第一光分离器和所述第二子激光器之间;以及第二相移元件,其设置在所述第二光分离器和所述第四子激光器之间。
l(i).根据e(i)所述的发射机,还包括:第二光循环器,其与所述第一光循环器单向通信并且与所述至少一个从激光器双向通信;以及外部调制元件,其设置在所述第一光循环器和所述第二光循环器之间,其中所述外部调制元件被配置为接收所述输入数据流和所述第二光循环器的输出,其中所述第一光循环器与所述外部调制元件的输出单向通信。
a(ii).一种光网络通信系统,包括:输入信号源;光频梳状波发生器,其被配置为接收所述输入信号源并输出多个相位同步相干音调对,所述多个相位同步相干音调对中的每一个都包括第一未调制信号和第二未调制信号;第一发射机,其被配置为接收所述多个相位同步相干音调对中所选择的一个相位同步相干音调对的所述第一未调制信号作为种子源,并输出第一调制数据流;以及第一接收器,其被配置为从所述第一发射机接收所述第一调制数据流,并接收所述多个相位同步相干音调对中所选择的一个相位同步相干音调对的所述第二未调制信号作为本地振荡器源。
b(ii).根据a(ii)所述的系统,其中,所述光频梳状波发生器包括放大器和光解多路复用器。
c(ii).根据a(ii)所述的系统,其中,所述光频梳状波发生器被配置为实现锁模激光器、增益切换激光器和电光调制中的一个。
d(ii).根据a(ii)所述的系统,其中,在整个系统中,所述多个相位同步相干音调对中的所选择的一个相位同步相干音调对相对于彼此能够控制在恒定的频率间隔下。
e(ii).根据a(ii)所述的系统,其中,所述系统被配置为执行外差检测。
f(ii).根据a(ii)所述的系统,其中,所述第一发射机包括第一激光注入调制器和第一光循环器。
g(ii).根据a(ii)所述的系统,其中,所述第一激光注入调制器被配置为实现直接调制。
h(ii).根据a(ii)所述的系统,其中,所述第一激光注入调制器被配置为实现外部调制。
i(ii).根据g(ii)所述的系统,其中,所述输入信号源包括外部主激光器。
j(ii).根据i(ii)所述的系统,其中,所述第一调制器包括第一激光二极管,所述第一激光二极管被配置为注入锁定到所述外部主激光器。
k(ii).根据y(ii)所述的系统,其中,所述第一激光二极管被配置为从第一外部数据源接收第一数据,以粘附到输出的第一调制数据流中。
l(ii).根据j(ii)所述的系统,其中,所述第一调制器还包括第一偏振光束分离器和第一偏振光束组合器。
m(ii).根据l(ii)所述的系统,其中,所述第一激光二极管包括第一从激光器和第二从激光器,其中所述第一从激光器和第二从激光器被配置为分别从所述第一偏振光束分离器接收第一偏振分量和第二偏振分量。
n(ii).根据m(ii)所述的系统,其中,所述第一调制器被配置为实现正交幅度调制。
o(ii).根据n(ii)所述的系统,其中,所述第一从激光器包括第一子激光器和第二子激光器,其中所述第二从激光器包括第三子激光器和第四子激光器,其中所述第一子激光器和第二子激光器被配置为分别接收所述第一偏振分量的I-信号和Q-信号,并且其中所述第三子激光器和第四子激光器被配置为分别接收所述第二偏振分量的I-信号和Q-信号。
p(ii).根据a(ii)所述的系统,还包括第二发射机,其被配置为接收所述多个相位同步相干音调对中的所选择的一个相位同步相干音调对的第二未调制信号作为种子源,并输出第二调制数据流。
q(ii).根据p(ii)所述的系统,其中,所述第二发射机被配置为实现直接调制和外部调制中的一种。
r(ii).根据p(ii)所述的系统,其中,所述第二发射机被配置为实现偏振分复用和正交幅度调制中的一个或更多个。
s(ii).根据p(ii)所述的系统,还包括第二接收器,其被配置为从所述第二发射机接收所述第二调制数据流,并接收所述多个相位同步相干音调对中所选择的一个相位同步相干音调对的所述第一未调制信号作为本地振荡器源。
a(iii).一种光网络通信系统,包括:光集线器,其包括被配置成输出具有第一未调制信号和第二未调制信号的至少一个相位同步相干音调对的光频梳状波发生器,以及被配置成接收所述第一未调制信号作为种子源并输出下行调制数据流的下行发射机;光纤节点;以及终端用户,其包括下行接收器,所述下行接收器被配置为从所述下行发射机接收所述下行调制数据流,并接收所述第二未调制信号作为本地振荡器源。
b(iii).根据a(iii)所述的系统,其中,在整个系统中,所述多个相位同步相干音调对中所选择的一个相位同步相干音调对相对于彼此能够控制在恒定的频率间隔下。
c(iii).根据a(iii)所述的系统,其中,所述光集线器还包括放大器、第一集线器光解多路复用器和集线器光多路复用器。
d(iii).根据c(iii)所述的系统,其中,所述光纤节点包括节点光解多路复用器,所述节点光解多路复用器被配置为对来自所述集线器光多路复用器的输出进行解复用。
e(iii).根据d(iii)所述的系统,其中,所述集线器光多路复用器被配置为通过下行光纤与所述节点光解多路复用器通信。
f(iii).根据d(iii)所述的系统,其中,所述节点光解多路复用器被配置为通过第一光纤与所述下行发射机通信。
g(iii).根据a(iii)所述的系统,其中,所述下行接收器包括下行集成相干接收器、下行模数转换器和下行数字信号处理器。
h(iii).根据f(iii)所述的系统,其中,所述终端用户还包括上行发射机,其中,所述光纤节点还包括节点光多路复用器,并且其中所述光集线器还包括第二集线器光解多路复用器和上行接收器。
i(iii).根据h(iii)所述的系统,其中,所述上行发射机被配置为通过第二光纤与所述节点光多路复用器通信,并且其中,所述节点光多路复用器被配置为通过上行光纤与所述第二集线器光解多路复用器通信。
j(iii).根据i(iii)所述的系统,其中,所述上行发射机被配置为接收所述第二未调制信号作为种子源,并将上行调制数据流输出到所述节点光多路复用器。
k(iii).根据i(iii)所述的系统,其中,所述上行接收器包括上行集成相干接收器、上行模数转换器和上行数字信号处理器。
l(iii).根据i(iii)所述的系统,其中,所述上行接收器被配置为从所述节点光多路复用器接收所述上行调制数据流作为数据源,并且从所述第一集线器光解多路复用器接收所述第一未调制信号作为本地振荡器源。
m(iii).根据a(iii)所述的系统,其中,在整个系统中,至少一个相位同步相干音调对相对于彼此能够控制在恒定的频率间隔下。
n(iii).根据a(iii)所述的系统,其中,所述终端用户包括客户设备、客户驻地、商业用户和光网络单元中的至少一个。
o(iii).根据a(iii)所述的系统,还被配置为实现相干密集波分复用无源光网络架构。
p(iii).根据i(iii)所述的系统,其中,所述下行数字信号处理器被配置为在计算数字下变频补偿因子e^-jωt时保持所述第二未调制信号和所述下行调制数据流之间的频率分离差ω恒定。
q(iii).根据k(iii)所述的系统,其中,所述上行数字信号处理器被配置为在计算数字下变频补偿因子e^-jωt时保持所述第一未调制信号和所述上行调制数据流之间的频率分离差ω恒定。
a(iv).一种光网络处理的方法,包括以下步骤:生成至少一对第一未调制相位同步相干音调和第二未调制相位同步相干音调;将所述第一未调制相位同步相干音调作为种子信号发送到第一发射机;在所述第一发射机中将下行数据粘附到所述第一未调制相位同步相干音调,以生成第一调制数据流信号;在集线器光多路复用器内,将所述第一调制数据流信号和所述第二未调制相位同步相干音调一起光复用;以及将复用的第一调制数据流信号和第二未调制相位同步相干音调通过光纤传送到第一接收器,以用于下行外差检测。
b(iv).根据a(iv)所述的方法,还包括在粘附下行数据的步骤之前,偏振光束分离所述第一未调制相位同步相干音调的步骤。
c(iv).根据b(iv)所述的方法,还包括在粘附下行数据的步骤之后,并且在光复用的步骤之前,偏振光束组合来自所述第一未调制相位同步相干音调的偏振光束分离的步骤的分离分量的步骤。
d(iv).根据a(iv)所述的方法,其中,粘附下行数据的步骤实现注入锁定。
e(iv).根据a(iv)所述的方法,还包括以下步骤:在传送的步骤之前,光分离所述第二未调制相位同步相干音调;以及由第二发射机接收光分离的第二未调制相位同步相干音调的一部分,作为用于上行检测的本地振荡器。
f(iv).根据e(iv)所述的方法,还包括在所述第二发射机中将上行数据粘附到所述第二未调制相位同步相干音调以生成第二调制数据流信号的步骤。
g(iv).根据f(iv)所述的方法,其中,粘附上行数据的步骤包括将从激光器注入锁定到外部主激光器的步骤。
h(iv).根据f(iv)所述的方法,还包括:在粘附上行数据的步骤之前,偏振光束分离所述第二未调制相位同步相干音调的步骤。
i(iv).根据h(iv)所述的方法,还包括:在粘附上行数据的步骤之后,偏振光束组合来自所述第二未调制相位同步相干音调的偏振光束分离的步骤的分离分量的步骤。
j(iv).根据f(iv)所述的方法,还包括通过光纤将所述第二调制数据流信号发送到第二接收器以用于上行外差检测的步骤。
一些实施例涉及使用一个或更多个电子或计算设备。这样的设备通常包括处理器或控制器,诸如通用中央处理单元(CPU)、图形处理单元(GPU)、微控制器、精简指令集计算机(RISC)处理器、专用集成电路(ASIC)、可编程逻辑电路(PLC)、现场可编程门阵列(FPGA)、DSP设备和/或能够执行本文描述的功能的任何其他电路或处理器。本文描述的过程可以被编码为体现在计算机可读介质中的可执行指令,该计算机可读介质包括但不限于储存设备和/或存储设备。当这些指令由处理器执行时,使处理器执行本文描述的方法的至少一部分。以上示例仅是示例性的,且因此并不旨在以任何方式限制术语“处理器”的定义和/或含义。
本书面描述使用示例来公开实施例,包括最佳模式,并且还使得本领域的任何技术人员能够实践这些实施例,包括制造和使用任何设备或系统以及执行任何结合的方法。本公开的专利性范围由权利要求限定,并且可以包括本领域技术人员想到的其他示例。如果这些其它示例具有与权利要求的字面语言没有不同的结构元件,或者如果它们包括与权利要求的字面语言没有实质性差异的等效结构元件,则这些其它示例旨在权利要求的范围内。

Claims (10)

1.一种用于光通信网络的注入锁定发射机,包括:
第一输入部分,其被配置为接收输入数据流;
第二输入部分,其被配置为从主种子激光源接收相位同步相干音调对的窄带宽输入第一相干音调,其中,所述窄带宽输入第一相干音调在所述主种子激光源处基本上局限于单个纵向模式;
激光注入调制器,其包括至少一个从激光器,所述从激光器具有注入锁定到来自所述主种子激光源的所述单个纵向模式的频率的谐振器频率;以及
输出部分,其被配置为从所述激光注入调制器输出激光调制数据流以用于与所述相干音调对的第二相干音调复用,
其中,所述激光调制数据流在所述输出部分处包括第一相干音调的调制形式,并且其中,所述第二相干音调在所述输出部分处是未调制的。
2.根据权利要求1所述的发射机,其中,所述激光注入调制器被配置为实现直接调制。
3.根据权利要求1所述的发射机,其中,所述激光注入调制器被配置为实现外部调制。
4.根据权利要求1所述的发射机,其中,所述至少一个从激光器包括LED、法布里-珀罗激光二极管和垂直腔面发射激光器中的至少一个。
5.根据权利要求1所述的发射机,还包括与所述激光注入调制器和所述窄带宽输入第一相干音调通信的第一光循环器。
6.根据权利要求5所述的发射机,其中,所述激光注入调制器被配置为实现偏振分复用、空分复用和模分复用中的一种。
7.根据权利要求6所述的发射机,其中,所述激光注入调制器被配置成以90度偏振、60度偏振、90度偏振、螺旋偏振、圆偏振、涡流偏振和轨道角动量中的一个对所述窄带宽输入第一相干音调进行复用。
8.根据权利要求6所述的发射机,还包括设置在所述第一光循环器和所述至少一个从激光器之间的偏振光束分离器和偏振光束组合器。
9.根据权利要求8所述的发射机,
其中,所述至少一个从激光器包括第一激光二极管和第二激光二极管,
其中,所述第一激光二极管被配置为接收所述窄带宽输入第一相干音调的x分量,以及
其中,所述第二激光二极管被配置为接收所述窄带宽输入第一相干音调的y分量。
10.根据权利要求9所述的发射机,还包括:
第一光分离器和光组合器,其设置在所述偏振光束分离器和所述第一激光二极管之间;以及
第二光分离器和光组合器,其设置在所述偏振光束分离器和所述第二激光二极管之间,
其中,所述第一激光二极管包括第一子激光器和第二子激光器,
其中,所述第二激光二极管包括第三子激光器和第四子激光器,
其中,所述第一子激光器被配置成接收所述x分量的I-信号,
其中,所述第二子激光器被配置成接收所述x分量的Q-信号,
其中,所述第三子激光器被配置成接收所述y分量的I-信号,
其中,所述第四子激光器被配置为接收所述y分量的Q-信号。
CN202010036210.1A 2016-04-12 2017-03-21 光纤通信系统、光处理方法和注入锁定发射机 Active CN111193550B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662321211P 2016-04-12 2016-04-12
US62/321,211 2016-04-12
US15/283,632 US9912409B2 (en) 2016-04-12 2016-10-03 Fiber communication systems and methods
US15/283,632 2016-10-03
CN201780032594.6A CN109247063B (zh) 2016-04-12 2017-03-21 光纤通信系统和方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201780032594.6A Division CN109247063B (zh) 2016-04-12 2017-03-21 光纤通信系统和方法

Publications (2)

Publication Number Publication Date
CN111193550A true CN111193550A (zh) 2020-05-22
CN111193550B CN111193550B (zh) 2021-11-09

Family

ID=59998448

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201780032594.6A Active CN109247063B (zh) 2016-04-12 2017-03-21 光纤通信系统和方法
CN202010036210.1A Active CN111193550B (zh) 2016-04-12 2017-03-21 光纤通信系统、光处理方法和注入锁定发射机

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201780032594.6A Active CN109247063B (zh) 2016-04-12 2017-03-21 光纤通信系统和方法

Country Status (12)

Country Link
US (9) US9912409B2 (zh)
EP (1) EP3443694A4 (zh)
JP (2) JP6596600B2 (zh)
KR (3) KR102309972B1 (zh)
CN (2) CN109247063B (zh)
AU (4) AU2017279471B2 (zh)
CA (4) CA3094650A1 (zh)
DE (1) DE112017001992T5 (zh)
GB (2) GB2573218B (zh)
MX (2) MX2021008641A (zh)
SG (1) SG11201808988SA (zh)
WO (1) WO2017213729A2 (zh)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3018142C (en) 2016-03-22 2023-02-07 Lyteloop Technologies, Llc Data in motion storage system and method
US10880013B2 (en) 2016-04-12 2020-12-29 Cable Television Laboratories, Inc Network communications systems and methods
US9912409B2 (en) * 2016-04-12 2018-03-06 Cable Television Laboratories, Inc Fiber communication systems and methods
US10601513B2 (en) 2016-04-12 2020-03-24 Cable Television Laboratories, Inc. Network communications systems and methods
US11996893B2 (en) 2016-04-12 2024-05-28 Cable Television Laboratories, Inc. Communication systems and methods
US10630410B2 (en) 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
WO2018140396A1 (en) * 2017-01-30 2018-08-02 Roshmere, Inc. Wavelength-division mutiplexing using shared process information
US10809134B2 (en) 2017-05-24 2020-10-20 Cisco Technology, Inc. Thermal modeling for cables transmitting data and power
US11054457B2 (en) 2017-05-24 2021-07-06 Cisco Technology, Inc. Safety monitoring for cables transmitting data and power
US10541758B2 (en) 2017-09-18 2020-01-21 Cisco Technology, Inc. Power delivery through an optical system
US11431420B2 (en) 2017-09-18 2022-08-30 Cisco Technology, Inc. Power delivery through an optical system
US10917175B2 (en) 2017-11-21 2021-02-09 Cable Television Laboratories, Inc. Systems and methods for full duplex coherent optics
US11082143B2 (en) * 2017-11-21 2021-08-03 Cable Television Laboratories, Inc. Systems and methods for full duplex coherent optics
US10892829B2 (en) * 2017-11-21 2021-01-12 Cable Television Laboratories, Inc Systems and methods for full duplex coherent optics
US10735097B2 (en) * 2017-11-21 2020-08-04 Cable Television Laboratories, Inc Systems and methods for full duplex coherent optics
GB2570519B (en) 2018-01-30 2022-05-11 M Squared Lasers Ltd Injection-locked laser system
US11093012B2 (en) 2018-03-02 2021-08-17 Cisco Technology, Inc. Combined power, data, and cooling delivery in a communications network
US10732688B2 (en) 2018-03-09 2020-08-04 Cisco Technology, Inc. Delivery of AC power with higher power PoE (power over ethernet) systems
US10281513B1 (en) 2018-03-09 2019-05-07 Cisco Technology, Inc. Verification of cable application and reduced load cable removal in power over communications systems
US10631443B2 (en) 2018-03-12 2020-04-21 Cisco Technology, Inc. Splitting of combined delivery power, data, and cooling in a communications network
US10897310B2 (en) * 2018-06-26 2021-01-19 Cable Television Laboratories, Inc. Optical line terminal and method for transmitting digital information
US11233596B2 (en) * 2018-07-12 2022-01-25 Ayar Labs, Inc. Optical multiplexer/demultiplexer module and associated methods
CN113056879B (zh) 2018-08-02 2023-11-24 有线电视实验室公司 用于相干突发接收的系统和方法
SG11202011983WA (en) 2018-08-02 2020-12-30 Lyteloop Technologies Llc Apparatus and method for storing wave signals in a cavity
US10789009B2 (en) 2018-08-10 2020-09-29 Lyteloop Technologies Llc System and method for extending path length of a wave signal using angle multiplexing
CN110868258B (zh) * 2018-08-27 2022-08-16 中兴通讯股份有限公司 一种相干检测的实现装置、系统及方法
JP2022505417A (ja) 2018-11-05 2022-01-14 ライトループ・テクノロジーズ・エルエルシー 共有された共通の構成要素を使用して複数の増幅器、再生器及び送受信器を構築、動作及び制御するためのシステム及び方法
US11061456B2 (en) 2019-01-23 2021-07-13 Cisco Technology, Inc. Transmission of pulse power and data over a wire pair
US10790997B2 (en) 2019-01-23 2020-09-29 Cisco Technology, Inc. Transmission of pulse power and data in a communications network
US10680836B1 (en) 2019-02-25 2020-06-09 Cisco Technology, Inc. Virtualized chassis with power-over-Ethernet for networking applications
US11456883B2 (en) 2019-03-13 2022-09-27 Cisco Technology, Inc. Multiple phase pulse power in a network communications system
US10849250B2 (en) * 2019-03-14 2020-11-24 Cisco Technology, Inc. Integration of power, data, cooling, and management in a network communications system
US11418263B2 (en) * 2019-04-22 2022-08-16 Cable Television Laboratories, Inc. Systems and methods for optical full-field transmission using photonic integration
CN110442052A (zh) * 2019-07-22 2019-11-12 天津凯普林光电科技有限公司 一种控制器连接结构、光纤激光器
US11146351B1 (en) * 2019-08-29 2021-10-12 Cable Television Laboratories, Inc. Photonics assisted millimeter-wave systems and methods
JP7408965B2 (ja) * 2019-09-11 2024-01-09 住友電気工業株式会社 光モジュール
US11063630B2 (en) 2019-11-01 2021-07-13 Cisco Technology, Inc. Initialization and synchronization for pulse power in a network system
CN110891206B (zh) * 2019-11-12 2022-02-08 南京邮电大学 一种基于光学频率梳和偏振复用的WDM-RoF-PON系统
WO2021113793A1 (en) * 2019-12-05 2021-06-10 Ipg Photonics Corporation Bidirectional single-fiber coherent transmission system
US11438183B2 (en) 2020-02-25 2022-09-06 Cisco Technology, Inc. Power adapter for power supply unit
US11705694B1 (en) * 2020-02-26 2023-07-18 Cable Television Laboratories, Inc. Systems and methods for optical injection-locking in an access network
US11637497B2 (en) 2020-02-28 2023-04-25 Cisco Technology, Inc. Multi-phase pulse power short reach distribution
US11320610B2 (en) 2020-04-07 2022-05-03 Cisco Technology, Inc. Integration of power and optics through cold plate for delivery to electronic and photonic integrated circuits
US11307368B2 (en) 2020-04-07 2022-04-19 Cisco Technology, Inc. Integration of power and optics through cold plates for delivery to electronic and photonic integrated circuits
US11700068B2 (en) * 2020-05-18 2023-07-11 Ayar Labs, Inc. Integrated CMOS photonic and electronic WDM communication system using optical frequency comb generators
EP4207635A4 (en) * 2020-09-09 2024-05-22 Nippon Telegraph And Telephone Corporation OPTICAL TRANSMITTER AND METHOD FOR FREQUENCY CONTROL IN OPTICAL TRANSMISSION
CN114430297A (zh) * 2020-10-29 2022-05-03 华为技术有限公司 光传输设备和系统
CN112564808B (zh) * 2020-12-09 2022-01-04 武汉邮电科学研究院有限公司 相干无源光网络中上行突发模式传输系统、设备及方法
US11804905B1 (en) * 2021-03-05 2023-10-31 Cable Television Laboratories, Inc. Optical full-field transmitter
US11909512B1 (en) * 2021-03-09 2024-02-20 Cable Television Laboratories, Inc. Methods of injection locking for multiple optical source generation
TWI762299B (zh) * 2021-05-03 2022-04-21 國立臺灣科技大學 基於軌道角動量之非對稱式雙向無線光通訊系統
GB2607106B (en) 2021-05-28 2024-04-17 Toshiba Kk An emitter, communication system and method
GB2607105B (en) * 2021-05-28 2023-05-31 Toshiba Kk An optical emitter, communication system and method
WO2023043738A1 (en) * 2021-09-14 2023-03-23 University Of Southern California Multiplexed transmission by optical beam transformation
JPWO2023058668A1 (zh) * 2021-10-08 2023-04-13
CN113946059B (zh) * 2021-11-09 2023-06-30 中国科学院光电技术研究所 一种基于相干孔径阵列涡旋光束产生及复用、解复用装置
CN114448519A (zh) * 2021-12-30 2022-05-06 华为技术有限公司 光传输方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060210271A1 (en) * 2005-03-16 2006-09-21 Fujitsu Limited Station-side apparatus in optical communication
US20100158512A1 (en) * 2008-10-20 2010-06-24 Georgia Tech Research Corporation Centrally Managed, Self-Survivable Wavelength Division Multiplexed Passive Optical Network
US20100215368A1 (en) * 2009-02-24 2010-08-26 Nec Laboratories America, Inc. Single wavelength source-free ofdma-pon communication systems and methods
US20120087666A1 (en) * 2010-10-06 2012-04-12 Electronics And Telecommunications Research Institute Bidirectional wavelength division multiplexed-passive optical network
CN103259156A (zh) * 2012-02-20 2013-08-21 中国科学院理化技术研究所 一种产生高平均功率高重复频率脉冲钠信标激光的装置
US20140314368A1 (en) * 2013-04-23 2014-10-23 Zte (Usa) Inc. Directly-modulated multi-polarization optical transmitters
US20150098714A1 (en) * 2013-10-09 2015-04-09 Fujitsu Limited Optical communication receiving device and frequency offset compensation method

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US283632A (en) 1883-08-21 john a
US4635246A (en) * 1983-10-20 1987-01-06 The United States Of America As Represented By The Secretary Of The Navy Frequency multiplex system using injection locking of multiple laser diodes
US5016242A (en) * 1988-11-01 1991-05-14 Gte Laboratories Incorporated Microwave subcarrier generation for fiber optic systems
JPH0621580A (ja) * 1992-07-03 1994-01-28 Fujitsu Ltd 集積化光半導体装置
US5347525A (en) * 1993-02-19 1994-09-13 Sri International Generation of multiple stabilized frequency references using a mode-coupled laser
JPH11145554A (ja) * 1997-11-11 1999-05-28 Oki Electric Ind Co Ltd 半導体パルスレーザ装置
KR100325687B1 (ko) 1999-12-21 2002-02-25 윤덕용 주입된 비간섭성 광에 파장 잠김된 페브리-페롯 레이저다이오드를 이용한 파장분할 다중방식 광통신용 광원
US7110677B2 (en) * 2001-09-26 2006-09-19 Celight, Inc. Method and system for optical time division multiplexed fiber communications with coherent detection
US7085500B2 (en) 2001-04-30 2006-08-01 Lockheed Martin Corp. Programmable optical vector modulator and method for use in coherent optical communications
GB2381121A (en) * 2001-06-07 2003-04-23 Univ London Optical Frequency Synthesizer
US6778318B2 (en) * 2001-06-29 2004-08-17 Hrl Laboratories, Llc Optical-to-wireless WDM converter
US7606274B2 (en) * 2001-09-20 2009-10-20 The Uab Research Foundation Mid-IR instrument for analyzing a gaseous sample and method for using the same
US7085499B2 (en) * 2001-11-15 2006-08-01 Hrl Laboratories, Llc Agile RF-lightwave waveform synthesis and an optical multi-tone amplitude modulator
WO2003043177A2 (en) * 2001-11-15 2003-05-22 Hrl Laboratories, Llc Agile spread waveform generator and photonic oscillator
US7146109B2 (en) 2002-04-26 2006-12-05 Lucent Technologies Inc. Analog modulation of optical signals
US6671298B1 (en) * 2002-05-22 2003-12-30 University Of Central Florida Photonic arbitrary waveform generation and RF and microwave synthesis with a modelocked external cavity semi-conductor laser
GB0308343D0 (en) 2003-04-10 2003-05-14 Univ London Athermalisation of tuneable lasers
US7603037B2 (en) * 2003-06-20 2009-10-13 Hrl Laboratories, Llc Ultra-dense wavelength and subcarrier multiplexed optical and RF/mm-wave transmission system
US7499653B2 (en) * 2003-07-14 2009-03-03 Hrl Laboratories, Llc Multiple wavelength photonic oscillator
US20050100344A1 (en) * 2003-11-06 2005-05-12 Hogan Josh N. System for coherent optical communication
US7539416B2 (en) * 2003-12-09 2009-05-26 Electronics And Telecommunications Research Institute Optical network terminal and wavelength division multiplexing based optical network having the same
GB2415309A (en) * 2004-06-18 2005-12-21 Univ Kent Canterbury Electro-magnetic terahertz transmission/reception system
US7386235B2 (en) * 2004-06-28 2008-06-10 Lucent Technologies Inc. Protocol and line-rate transparent WDM passive optical network
JP2006011935A (ja) * 2004-06-28 2006-01-12 Sony Corp 個人情報管理装置,個人情報ファイル作成方法,および個人情報ファイル検索方法
KR100734829B1 (ko) 2004-12-08 2007-07-03 한국전자통신연구원 광 전송 장치 및 방법
US7630638B2 (en) * 2004-12-29 2009-12-08 Fujitsu Limited Shared multi-lambda source for WDM PON
US20060263096A1 (en) * 2005-05-17 2006-11-23 Mihaela Dinu Multi-channel transmission of quantum information
KR100711201B1 (ko) 2005-08-09 2007-04-24 한국과학기술원 광대역 비간섭성 광원의 위치 조정을 이용한 장거리 전송파장분할 다중방식 수동형 광 가입자망
US7561807B2 (en) * 2006-01-17 2009-07-14 Alcatel-Lucent Usa Inc. Use of beacons in a WDM communication system
KR100819034B1 (ko) 2006-05-11 2008-04-03 한국전자통신연구원 반사형 반도체 광증폭기 기반 수동형 광가입자망
CN100558012C (zh) 2006-08-10 2009-11-04 华为技术有限公司 光源自适应模式对准装置及对准方法
US20080279230A1 (en) * 2007-02-23 2008-11-13 Mario Dagenais Fabry-perot laser system with phase section, and method of use thereof
WO2008116014A2 (en) * 2007-03-19 2008-09-25 The Regents Of The University Of California High-speed optical transmitters using cascaded optically injection-locked lasers
JP2010010986A (ja) * 2008-06-26 2010-01-14 Fujikura Ltd 4光波混合を利用した光伝送システム
US8287902B2 (en) * 2008-07-23 2012-10-16 Rainbow Medical Ltd. Enhanced-diffusion capsule
WO2010012309A1 (en) * 2008-07-31 2010-02-04 Nokia Siemens Networks Oy Method for data processing in an optical network, optical network component and communication system
US8699882B2 (en) 2009-01-08 2014-04-15 Ofidium Pty Ltd Signal method and apparatus
US8265648B2 (en) * 2009-07-01 2012-09-11 Alvarion Ltd. Resource allocation in a radio communication system
WO2011031337A1 (en) 2009-09-09 2011-03-17 University Of Central Florida Research Foundation, Inc. Optical modulator with linear response
US8543001B2 (en) 2009-10-21 2013-09-24 Futurewei Technologies, Inc. Cascaded injection locking of fabry-perot laser for wave division multiplexing passive optical networks
US20110122912A1 (en) * 2009-11-20 2011-05-26 Benjamin Seldon D Optical transmitters for mm-wave rof systems
US8563103B2 (en) * 2010-02-19 2013-10-22 Smarthealth, Inc. Polylactide hydrosol and articles made therefrom
US20110233912A1 (en) * 2010-03-23 2011-09-29 Crystal Profile Industries, Llc Portfolio
EP2372936A1 (en) * 2010-03-29 2011-10-05 Alcatel Lucent Photonic integrated transmitter
KR101103686B1 (ko) * 2010-06-11 2012-01-11 광주과학기술원 파장 분할 다중화 방식의 수동형 광가입자망 시스템, 및 데이터 전송 방법
US20120008766A1 (en) * 2010-07-09 2012-01-12 Research In Motion Limited Securing a component prior to manufacture of a device
CN101917233B (zh) * 2010-08-29 2012-11-07 华中科技大学 一种适用于相干检测的全光相位噪声抑制方法
JP5803164B2 (ja) * 2011-03-10 2015-11-04 富士通株式会社 光送信器
WO2012150197A1 (en) * 2011-04-30 2012-11-08 Rwth Aachen Wdm telecommunications link with coherent detection and optical frequency comb sources
CN103703710B (zh) 2011-07-29 2017-07-04 瑞典爱立信有限公司 光接入网络
GB2494634A (en) 2011-09-12 2013-03-20 Univ Dublin City Wavelength tunable gain-switched optical comb source
ES2636388T3 (es) * 2011-09-15 2017-10-05 Huawei Technologies Co., Ltd. Método de transmisión de señal, método de recepción de señal, dispositivo de red óptica pasiva y sistema
US9608760B2 (en) * 2011-09-21 2017-03-28 Nanyang Technological University Integrated access network
US20140016938A1 (en) * 2012-07-11 2014-01-16 Adtran, Inc. Temperature adjustable channel transmitter system including an injection-locked fabry-perot laser
GB2505902B (en) * 2012-09-13 2015-04-29 Univ Southampton Optical transmitter
US9197356B2 (en) 2012-11-16 2015-11-24 At&T Intellectual Property I, L.P. Distributed spatial mode processing for spatial-mode multiplexed communication systems
US9625351B2 (en) * 2013-03-05 2017-04-18 The Regents Of The University Of California Coherent dual parametric frequency comb for ultrafast chromatic dispersion measurement in an optical transmission link
US9106325B2 (en) * 2013-03-11 2015-08-11 Nicola Alic Method for wideband spectrally equalized frequency comb generation
EP2830239B1 (en) 2013-07-23 2018-09-12 ADVA Optical Networking SE Method, system and transceiver device for bi-directionally transmitting digital optical signals over an optical transmission link
WO2015062544A1 (en) * 2013-11-04 2015-05-07 Zte Corporation Adaptive pre-equalization in optical communications
EP3269055B1 (en) * 2015-04-09 2019-12-25 Huawei Technologies Co. Ltd. Optical transceiving using self-homodyne detection (shd) and remote modulation
US9705599B2 (en) * 2015-07-30 2017-07-11 Google Inc. Systems for improved spectral efficiency in multi-carrier communication systems
US10063320B2 (en) * 2016-01-18 2018-08-28 The Johns Hopkins University Apparatus and method for implementing a photonic radio front end
US10048567B2 (en) * 2016-03-22 2018-08-14 The United States Of America, As Represented By The Secretary Of Commerce Electronic light synthesizer and process for electronically synthesizing light
US10944478B2 (en) 2016-04-12 2021-03-09 Cable Television Laboratories, Inc. Fiber communication systems and methods
US9912409B2 (en) * 2016-04-12 2018-03-06 Cable Television Laboratories, Inc Fiber communication systems and methods
US11115126B2 (en) * 2016-04-12 2021-09-07 Cable Television Laboratories, Inc. Fiber communication systems and methods
US10880013B2 (en) 2016-04-12 2020-12-29 Cable Television Laboratories, Inc Network communications systems and methods
US10623104B2 (en) 2016-04-12 2020-04-14 Cable Television Laboratories, Inc Fiber communication systems and methods
US10601513B2 (en) 2016-04-12 2020-03-24 Cable Television Laboratories, Inc. Network communications systems and methods
US10411810B2 (en) * 2016-07-04 2019-09-10 The Regents Of The University Of California Receiver with mutually coherent optical frequency combs
US10651820B2 (en) * 2016-09-16 2020-05-12 Ecole Polytechnique Federale De Lausanne (Epfl) Signal processing apparatus and method for transmitting and receiving coherent parallel optical signals
WO2018067121A1 (en) * 2016-10-04 2018-04-12 Halliburton Energy Services, Inc. Telemetry system using frequency combs
US10498453B2 (en) * 2017-07-21 2019-12-03 Imra America, Inc. Integrated photonic microwave transceiver system
US10892829B2 (en) * 2017-11-21 2021-01-12 Cable Television Laboratories, Inc Systems and methods for full duplex coherent optics
US10965393B2 (en) * 2018-06-26 2021-03-30 Cable Television Laboratories, Inc. Systems and methods for dual-band modulation and injection-locking for coherent PON
US11418263B2 (en) * 2019-04-22 2022-08-16 Cable Television Laboratories, Inc. Systems and methods for optical full-field transmission using photonic integration
WO2021173464A1 (en) * 2020-02-26 2021-09-02 Imra America, Inc. Integrated photonic microwave sampling system
US11051089B1 (en) * 2020-03-27 2021-06-29 The Boeing Company Microwave photonics enabled beam-forming and channelization
US20210405201A1 (en) * 2020-06-25 2021-12-30 The Regents Of The Univerity Of Colorado, A Body Corporate Three-dimensional imaging method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060210271A1 (en) * 2005-03-16 2006-09-21 Fujitsu Limited Station-side apparatus in optical communication
US20100158512A1 (en) * 2008-10-20 2010-06-24 Georgia Tech Research Corporation Centrally Managed, Self-Survivable Wavelength Division Multiplexed Passive Optical Network
US20100215368A1 (en) * 2009-02-24 2010-08-26 Nec Laboratories America, Inc. Single wavelength source-free ofdma-pon communication systems and methods
US20120087666A1 (en) * 2010-10-06 2012-04-12 Electronics And Telecommunications Research Institute Bidirectional wavelength division multiplexed-passive optical network
CN103259156A (zh) * 2012-02-20 2013-08-21 中国科学院理化技术研究所 一种产生高平均功率高重复频率脉冲钠信标激光的装置
US20140314368A1 (en) * 2013-04-23 2014-10-23 Zte (Usa) Inc. Directly-modulated multi-polarization optical transmitters
US20150098714A1 (en) * 2013-10-09 2015-04-09 Fujitsu Limited Optical communication receiving device and frequency offset compensation method

Also Published As

Publication number Publication date
WO2017213729A3 (en) 2018-03-08
KR20190026046A (ko) 2019-03-12
US20210167859A1 (en) 2021-06-03
KR20210046836A (ko) 2021-04-28
GB201818417D0 (en) 2018-12-26
CA3112746C (en) 2023-07-18
JP2020010345A (ja) 2020-01-16
US20200044743A1 (en) 2020-02-06
US12068785B2 (en) 2024-08-20
AU2022204858B2 (en) 2023-10-26
GB2565012A (en) 2019-01-30
DE112017001992T5 (de) 2018-12-27
EP3443694A4 (en) 2019-12-18
WO2017213729A2 (en) 2017-12-14
GB2573218A (en) 2019-10-30
MX2018012463A (es) 2019-03-07
EP3443694A2 (en) 2019-02-20
AU2022204858A1 (en) 2022-07-28
CA3094650A1 (en) 2017-12-14
CN111193550B (zh) 2021-11-09
US10447404B2 (en) 2019-10-15
CA3222820A1 (en) 2017-12-14
KR101955355B1 (ko) 2019-05-30
US20230246716A1 (en) 2023-08-03
AU2017279471A1 (en) 2018-11-15
US20210336703A1 (en) 2021-10-28
AU2020280996B2 (en) 2022-07-14
KR20180127507A (ko) 2018-11-28
CA3020311C (en) 2024-01-23
MX2021008641A (es) 2023-02-10
CN109247063A (zh) 2019-01-18
JP2019517176A (ja) 2019-06-20
AU2019204760A1 (en) 2019-07-18
AU2017279471B2 (en) 2019-04-18
US20200328817A1 (en) 2020-10-15
CA3112746A1 (en) 2017-12-14
SG11201808988SA (en) 2018-11-29
AU2020280996A1 (en) 2021-01-07
US20230336247A1 (en) 2023-10-19
GB201908992D0 (en) 2019-08-07
US20170294966A1 (en) 2017-10-12
GB2573218B (en) 2020-07-01
US11689290B2 (en) 2023-06-27
CN109247063B (zh) 2020-02-04
CA3020311A1 (en) 2017-12-14
US11309969B2 (en) 2022-04-19
US10917177B2 (en) 2021-02-09
US9912409B2 (en) 2018-03-06
GB2565012B (en) 2019-08-07
JP6596600B2 (ja) 2019-10-23
KR102243937B1 (ko) 2021-04-23
US11632178B2 (en) 2023-04-18
KR102309972B1 (ko) 2021-10-06
US20180131444A1 (en) 2018-05-10
US11025344B2 (en) 2021-06-01
US20220239377A1 (en) 2022-07-28
AU2019204760B2 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
CN109247063B (zh) 光纤通信系统和方法
US11855696B2 (en) Network communications systems and methods

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant