CN111175276B - 一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片及其制备方法和工作方式 - Google Patents

一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片及其制备方法和工作方式 Download PDF

Info

Publication number
CN111175276B
CN111175276B CN202010016916.1A CN202010016916A CN111175276B CN 111175276 B CN111175276 B CN 111175276B CN 202010016916 A CN202010016916 A CN 202010016916A CN 111175276 B CN111175276 B CN 111175276B
Authority
CN
China
Prior art keywords
metal
waveguide
raman scattering
enhanced raman
field coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010016916.1A
Other languages
English (en)
Other versions
CN111175276A (zh
Inventor
徐抒平
田雨
徐蔚青
丛丽丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202010016916.1A priority Critical patent/CN111175276B/zh
Publication of CN111175276A publication Critical patent/CN111175276A/zh
Application granted granted Critical
Publication of CN111175276B publication Critical patent/CN111175276B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Plasma & Fusion (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片及其制备方法和工作方式,属于表面增强拉曼散射(SERS)技术领域。该SERS芯片为金属二聚体复合非对称平面介质波导的结构。用阳极氧化铝(AAO)为模板,通过两次方向相反的斜蒸镀,在波导表面获得具有与AAO周期一致的金属二聚体阵列结构。与其他SERS芯片不同,本专利中入射光斜入射至金属二聚体,在共振角下由于金属二聚体可以近场耦合波导模式,进一步增强了SERS信号。通过实验和理论模拟证明了入射光斜入射时,波导模式可以被直接激发,从而得到更强的SERS信号。

Description

一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射 芯片及其制备方法和工作方式
技术领域
本发明属于表面增强拉曼光谱技术领域,具体涉及一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片及其制备方法和工作方式。
背景技术
表面增强拉曼散射(Surface-enhanced Raman Scattering,SERS)光谱是一种能够在分子尺度上获得物质丰富结构信息的分析方法,作为一种快速、简单、免标记、无损伤的测试手段,它适合于研究分子在吸附界面的表面状态、分子的界面取向及构型构象等,在生物、医药、环境检测、爆炸物检测等领域得到了广泛的应用。
SERS得益于金属薄膜和金属纳米粒子上自由电子的集体振荡所产生的高强度局域电磁场,即表面等离子体共振(Surface Plasmon Resonance,SPR)效应。目前,对SERS芯片的研究主要集中在提高电磁场增强方面。例如,申请公布号CN109748238A的发明专利介绍了基于可调紫外全息光刻技术构建大面积、均匀的纳米二聚体阵列的方法;以及授权公告号CN105911044B的发明专利介绍了具有纳米间隙的表面增强拉曼光谱基底。但是,这些研究都是采用入射光直接激发金属微纳结构的SPR,增强入射场同样可以提高电磁场强度。平面介质波导是一种基于干涉相长,能产生增强消逝场的光学结构。申请公布号108693160A的发明专利介绍了一种基于光栅耦合长程等离子波导的SERS芯片,有效增强了SERS强度。授权公告号为CN104007098B的发明专利介绍了一种共振镜增强拉曼光谱检测装置,入射光由棱镜耦合进波导层,并利用波导表面产生的增强消逝场来增强金属纳米粒子的SPR,在金属纳米粒子一侧收集到增强的SERS光谱。这种能产生增强消逝场的波导通常需要一个光栅或棱镜帮助入射光耦合进波导结构。
与其他SERS芯片不同,本发明利用金属二聚体近场耦合波导模式的原理,不需要棱镜或光栅结构耦合,入射光以43°倾斜照射在构建于波导表面的金属二聚体阵列上,并在与芯片法线呈60°方向收集到增强的SERS谱。本发明的SERS芯片不仅利用波导来增强纳米粒子的SPR,还满足了简化波导增强SPR结构的检测需求。
发明内容
本发明旨在提供一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片及其制备方法和独特的工作方式,实现超灵敏检测。本发明的技术方案如下:
该SERS芯片的具体结构是金属二聚体复合非对称平面介质波导。平面介质波导由多层膜构成,包括在BK-7玻璃片上依次沉积银膜和二氧化硅波导层。将阳极氧化铝(AAO)模板转移至波导表面,再经过方向相反的两次倾斜蒸镀,得到金属二聚阵列。其工作方式为:以倾斜的入射光直接照射金属二聚体,收集与芯片法线呈60°方向的SERS光谱。实验和理论模拟(在实施例部分进行详细说明)都证明,斜入射的激光通过金属二聚体的SPR有效激发出波导共振模式,这使得金属二聚体的SPR进一步放大,最终增强效果优于二聚体阵列无波导时的SPR,因而其具有更强的SERS增强效应,提高了检测的灵敏度。
为了实现以上目的,本发明所采用的具体步骤如下:
a)将BK-7玻璃片(折射率为1.516)进行表面清洁。依次用去离子水、乙醇、丙酮、乙醇、去离子水超声清洗各10分钟。烘干或用氮气吹干。随后蒸镀35nm厚的银膜。
b)由等离子体电感耦合化学气相沉积在银膜上生长600nm的二氧化硅(折射率为1.480),得到非对称平面介质波导片。
c)将步骤(b)所得的波导片用氧等离子体处理,获得亲水表面。
d)将两侧通孔的AAO模板转移至波导片表面。得到附有AAO的波导片。
e)以10°的倾斜角在步骤(d)所得的附有AAO的波导片上蒸镀30nm厚的金属膜。再将倾斜角调整为方向相反的-10°后,蒸镀39nm的金属膜。
f)用胶带将AAO模板和多余的银粘下来,得到金属二聚体近场耦合波导模式的SERS芯片。
g)该金属二聚体近场耦合波导模式的SERS芯片的工作方式为:在步骤(f)所得的SERS芯片表面滴上待测样品溶液,待溶液完全干燥后以倾斜的入射光照射金属二聚体,金属二聚体将入射光近场耦合进波导层中,在波导层中干涉的光会在波导表面产生增强的消逝场,进一步增强金属二聚体的SPR,收集与芯片法线呈60°方向的SERS谱。
本发明芯片的优点在于:
1.具有超高的检测灵敏度。一方面,金属二聚体中两个单体之间8nm的间隙可以提供高强度的局域场。另一方面,波导能提供增强的消逝场,进一步增强二聚体的SPR。SERS信号与无波导时相比有约一个数量级的增强。
2.入射光可以通过金属二聚体的近场耦合激发波导模式,无需采用传统的棱镜耦合方式,简化了该类型SERS检测结构。
3.在保持二聚体间隙的前提下,用消逝场增强了间隙里的局域电磁场,有利于通过SERS光谱检测大尺寸生物分子。
附图说明
图1:基于金属二聚体近场耦合波导模式的SERS芯片示意图;
各部分名称为:BK-7玻璃基底1、35nm银膜2、600nm二氧化硅层3、银二聚体阵列4;
图2:实施例1制备的金属二聚体阵列的扫描电子显微镜照片;
图3:实施例2中反射谱和SERS谱的检测方式示意图;
各部分名称为:BK-7玻璃基底1、35nm银膜2、600nm二氧化硅层3、银二聚体阵列4;入射激光5;1/4波片6;半波片7;反射探头8;拉曼探头9;
图4:实施例2中SERS芯片和对照组芯片的反射谱;
图5:实施例2中SERS芯片和对照组芯片以对巯基苯甲酸为探针分子的SERS谱图。激发光波长为532nm(450μW),积分时间10秒,积分两次;
图6:实施例3中采用时域有限差分法(FDTD)对SERS芯片的反射谱和共振角下的电磁场增强进行模拟。模拟过程所用模型参数与实施例1中的结构参数一致;
图7:实施例4中SERS芯片以不同浓度对巯基苯甲酸为探针分子的SERS谱图。将5.0μL浓度为1.0×10-13M,1.0×10-11M,1.0×10-9M,1.0×10-7M,1.0×10-5M对巯基苯甲酸的乙醇溶液分别滴在芯片二聚体阵列表面,待样品完全干燥后以实施例2中的方法检测其SERS信号。激发光波长为532nm(450μW),积分时间10秒,积分两次;
具体实施方式
实施例1:
一种基于金属二聚体近场耦合波导模式的SERS芯片制备方法,方法步骤如下,
a)将BK-7玻璃片(尺寸为1.0×1.3×0.1cm2,折射率为1.516)进行表面清洁。依次用去离子水、乙醇、丙酮、乙醇、去离子水超声清洗各10分钟。烘干或用氮气吹干。随后将玻璃片放在热蒸镀腔体内,蒸镀35nm厚的银膜。再由等离子体电感耦合化学气相沉积法在银膜上生长600nm厚的二氧化硅层(折射率为1.480),膜厚由台阶仪表征,得到非对称平面介质波导片。
b)将步骤(a)所得的波导片用氧等离子体处理2分钟,获得具有羟基的亲水表面。
c)将周期,孔径和厚度分别为125,95,430nm的AAO模板与波导片贴紧,浸泡在丙酮溶液中,去除支撑AAO模板的聚合物层。每次浸泡15分钟后取出,待丙酮完全挥发后再次浸泡在丙酮中,浸泡四次即可完全去除聚合物层,将AAO模板转移至波导片表面。得到附有AAO的波导片。
d)以10°的倾斜角在步骤(c)所得的附有AAO的波导片上蒸镀30nm厚的金属膜。再将倾斜角调整为方向相反的-10°后,蒸镀39nm的金属膜。
e)用胶带将AAO模板和多余的银粘下来,得到金属二聚体近场耦合波导模式的SERS芯片,示意图如图1所示,l1、l2、g分别为金属二聚体中的长轴直径、短轴直径、两个单体的间隙。
采用扫描电子显微镜(SEM,JEOL JSM-6700F)对实施例1中得到的金属二聚体阵列形貌进行观察。如图2a所示,可以观察到一个大范围有序的纳米二聚体阵列,各结构单元间以六方密堆积形式周期排列,且二聚体阵列的范围与AAO模板一致(为厘米尺寸)。在图2b中,可以看到每个纳米二聚体由两个长轴直径l1和短轴直径l2分别为74和46nm的半椭球体组成。在我们的实验条件下,每个纳米二聚体单元的平均间隙g约为8nm。
实施例2:
对实施例1中获得的SERS芯片分别进行反射谱和SERS谱测试。
选用对巯基苯甲酸(分子式为C7H6O2S)为探针分子。将5.0μL 1.0×10-3M对巯基苯甲酸的乙醇溶液滴在芯片二聚体阵列表面,待样品完全干燥后测试,检测方式如图3所示。入射光是功率为450μW,波长为532nm的激光。入射光经过一个1/4波片和一个半波片后,偏振方向垂直于入射面(入射光和芯片纵向法线构成的平面)。入射角度θ1可以从0°转动到80°,在相应的反射角θ1处收集反射谱,在与芯片法线呈60°方向收集SERS谱。选择硅基底上无波导参与的二聚体阵列作为对照组,以上述同样的方法分别进行反射谱和SERS谱测试。获取的两个芯片的反射谱如图4所示。其中,两个芯片都存在一个共振峰,导致反射谱强度减弱。由于基底的材料不同,硅芯片的共振峰位于60°,波导芯片的共振峰位于43°。获取的两个芯片的SERS谱如图5所示,积分时间为10秒,积分两次。其中,波导芯片获得的SERS信号(曲线2)强度明显高于硅芯片获得的SERS信号(曲线1)强度,增强了约一个数量级。
实施例3:
根据实施例1中获得的SERS芯片结构参数,采用时域有限差分法(FDTD)对SERS芯片的电磁场增强进行模拟。
根据图2所示的二聚体结构,在FDTD中建立的模型参数为:周期间距125nm并以六方密堆积排列,每个周期单元由两个长轴直径和短轴直径分别为74和46nm的半椭球体组成,每个纳米二聚体单元的平均间隙距离约为8nm。波导由35nm的银膜和600nm的二氧化硅层构成。532nm波长的入射光以25°至60°的角度扫描入射角,收集到相应角度下的反射光强度,并模拟了共振角下的电磁场分布(见图6)。其中,图6(a)为模拟的SERS芯片反射谱,与实验得到的反射谱都存在一个宽的共振峰。图6(b)为共振角38°下的电磁场分布,标尺表示电磁场的增强程度。可以看出在二氧化硅波导层中,存在着增强的电磁场,证明波导模式被激发了。
实施例4:
对实施例1中获得的SERS芯片进行应用,利用二聚体阵列的近场耦合波导模式增强二聚体的局域场,实现超灵敏检测。选用对巯基苯甲酸为探针分子,将5.0μL浓度为1.0×10-13M,1.0×10-11M,1.0×10-9M,1.0×10-7M,1.0×10-5M对巯基苯甲酸的乙醇溶液分别滴在芯片二聚体阵列表面,待样品完全干燥后以实施例2中的方法测试SERS光谱。激发光波长为532nm(450μW),积分时间10秒,积分两次,得到不同浓度对巯基苯甲酸的SERS谱图(见图7)。该SERS芯片最低检测浓度可达到1.0×10-13M。证明该芯片具有超高的灵敏度,能够被广泛用于微量物质的检测。

Claims (5)

1.一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片的制备方法,其步骤如下:
a)在干净且干燥的折射率为1.516的BK-7玻璃片上,生长35nm厚的银膜,再生长一层600nm厚折射率为1.480的二氧化硅,得到平面介质波导片;
b)所得的波导片的二氧化硅层表面用氧等离子体处理,获得亲水表面;
c)将两侧通孔的阳极氧化铝(AAO)模板转移至波导片二氧化硅层表面,得到附有AAO的波导片;
d)固定蒸发源与附有AAO的波导片的法线之间夹角为10°,蒸镀30nm厚的具有表面增强活性的金属膜;再将夹角调整为方向相反的-10°后,蒸镀39nm厚的具有表面增强活性的金属膜;
e)用胶带将AAO模板和多余的金属粘下来,得到基于金属二聚体近场耦合波导模式的SERS芯片。
2.如权利要求1所述的一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片的制备方法,其特征在于:金属二聚体阵列位于波导片的二氧化硅层表面。
3.一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片,其特征在于:是由权利要求1~2任一项所述方法制备得到。
4.如权利要求3所述的一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片,其特征在于:该表面增强拉曼散射芯片的工作原理是通过金属二聚体的近场耦合激发波导模式。
5.如权利要求3所述的一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片,其特征在于:该表面增强拉曼散射芯片的工作方式是以43°倾斜的入射光照射在构建于波导表面的金属二聚体阵列上,表面增强拉曼散射光谱是由与芯片法线呈60°方向收集。
CN202010016916.1A 2020-01-08 2020-01-08 一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片及其制备方法和工作方式 Expired - Fee Related CN111175276B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010016916.1A CN111175276B (zh) 2020-01-08 2020-01-08 一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片及其制备方法和工作方式

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010016916.1A CN111175276B (zh) 2020-01-08 2020-01-08 一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片及其制备方法和工作方式

Publications (2)

Publication Number Publication Date
CN111175276A CN111175276A (zh) 2020-05-19
CN111175276B true CN111175276B (zh) 2021-07-27

Family

ID=70654548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010016916.1A Expired - Fee Related CN111175276B (zh) 2020-01-08 2020-01-08 一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片及其制备方法和工作方式

Country Status (1)

Country Link
CN (1) CN111175276B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279175A (zh) * 2011-06-28 2011-12-14 吉林大学 一种利用表面等离子体定向发射增强拉曼光谱的装置
CN103822911A (zh) * 2013-12-11 2014-05-28 华东交通大学 基于光波导振荡场传感器的拉曼光谱增强装置
JP2017044624A (ja) * 2015-08-28 2017-03-02 パナソニックIpマネジメント株式会社 表面増強ラマン分光法による分子の濃度計測方法及び装置
CN108802005A (zh) * 2018-06-05 2018-11-13 河海大学常州校区 基于粒子-波导耦合结构的拉曼散射增强基底及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150247803A1 (en) * 2014-02-28 2015-09-03 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Tunable Resonances from Conductively Coupled Plasmonic Nanorods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279175A (zh) * 2011-06-28 2011-12-14 吉林大学 一种利用表面等离子体定向发射增强拉曼光谱的装置
CN103822911A (zh) * 2013-12-11 2014-05-28 华东交通大学 基于光波导振荡场传感器的拉曼光谱增强装置
JP2017044624A (ja) * 2015-08-28 2017-03-02 パナソニックIpマネジメント株式会社 表面増強ラマン分光法による分子の濃度計測方法及び装置
CN108802005A (zh) * 2018-06-05 2018-11-13 河海大学常州校区 基于粒子-波导耦合结构的拉曼散射增强基底及制备方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Boosting the Photoluminescence of Monolayer MoS2 on High-Density Nanodimer Arrays with Sub-10 nm Gap;Qi Hao et al.;《Advanced Optical Materials》;20180118;第6卷(第2期);第1700984页 *
Controlled Patterning of Plasmonic Dimers by Using an Ultrathin Nanoporous Alumina Membrane as a Shadow Mask;Qi Hao et al.;《ACS Applied Materials & Interfaces》;20170926;第9卷;第36200页"EXPERIMENTAL SECTION"部分,第36201页图1-2 *
Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications;Matthew Rycenga et al.;《Chemical Reviews》;20110311;第111卷;第第3672页表1,3690-3691,3697-3698页 *
Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates;Chad E. Talley et al.;《Nano Letters》;20050628;第5卷(第8期);第1569-1574页 *
Waveguide-coupled localized surface plasmon resonance for surfaceenhanced Raman scattering: Antenna array as emitters;Yu Tian et al.;《Sensors and Actuators B: Chemical》;20181007;第280卷;第145页第2部分,第147-149页 *
Waveguide-Enhanced Surface Plasmons for Ultrasensitive SERS Detection;Yuejiao Gu et al.;《The Journal of Physical Chemistry Letters》;20130826;第4卷;第3153-3157页 *
角度分辨的表面增强拉曼光谱研究周期结构基底;李海波 等;《光谱学与光谱分析》;20101130;第30卷(第11期);第281-282页 *
金属局域表面等离激元共振和表面等离激元波导:原理和应用;王荣明 等;《金属功能材料》;20161031;第23卷(第5期);第1-6页 *

Also Published As

Publication number Publication date
CN111175276A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
Wang et al. Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection
TWI490474B (zh) 表面增強拉曼光譜(sers)感測基板及其製造方法
Kawata et al. Tip enhancement
Hicks et al. Plasmonic properties of anchored nanoparticles fabricated by reactive ion etching and nanosphere lithography
CN103443601A (zh) 表面增强拉曼散射的装置和方法
Jung et al. Fabrication of nanoscale plasmonic structures and their applications to photonic devices and biosensors
CN103630493A (zh) 拉曼光谱测量系统
Zhang et al. Plasmonic chiral metamaterials with sub-10 nm nanogaps
Lertvachirapaiboon et al. Transmission surface plasmon resonance signal enhancement via growth of gold nanoparticles on a gold grating surface
Liu et al. Real-time Raman detection by the cavity mode enhanced Raman scattering
Humbert et al. Optical spectroscopy of functionalized gold nanoparticles assemblies as a function of the surface coverage
CN103439308A (zh) 一种表面增强拉曼基底及其制备方法
JP2007078451A (ja) 金属薄膜つきプリズム及びそれを用いた分光分析装置
Gómez et al. Surface enhanced Raman scattering (SERS) in the visible range on scalable aluminum-coated platforms
Addison et al. Tuning gold nanoparticle self-assembly for optimum coherent anti-Stokes Raman scattering and second harmonic generation response
Tian et al. Waveguide-coupled localized surface plasmon resonance for surface-enhanced Raman scattering: Antenna array as emitters
Li et al. Antenna enhanced infrared photoinduced force imaging in aqueous environment with super-resolution and hypersensitivity
Wu et al. Nanogratings fabricated by wet etching assisted femtosecond laser modification of silicon for surface plasmon resonance sensing
Luo et al. SARS-CoV-2 proteins monitored by long-range surface plasmon field-enhanced Raman scattering with hybrid bowtie nanoaperture arrays and nanocavities
Li et al. Highly sensitive and reproducible SERS substrates with binary colloidal crystals (bCCs) based on MIM structures
US8649000B1 (en) Whispering gallery optical resonator spectroscopic probe and method
CN102680453A (zh) 一种涂覆增益介质的拉曼光谱高电磁增强基底及制备
CN108611604B (zh) 一种基于高介电材料的经济型高精密表面增强拉曼活性基底的制造方法
CN111175276B (zh) 一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片及其制备方法和工作方式
CN111289494A (zh) 一种同时具有高增强和高重复性的表面增强拉曼散射基底及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210727

Termination date: 20220108

CF01 Termination of patent right due to non-payment of annual fee