CN111170646A - 一种基于量子裁剪效应的太阳能聚光板 - Google Patents

一种基于量子裁剪效应的太阳能聚光板 Download PDF

Info

Publication number
CN111170646A
CN111170646A CN201811331488.0A CN201811331488A CN111170646A CN 111170646 A CN111170646 A CN 111170646A CN 201811331488 A CN201811331488 A CN 201811331488A CN 111170646 A CN111170646 A CN 111170646A
Authority
CN
China
Prior art keywords
quantum
quantum dots
solar
cutting effect
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811331488.0A
Other languages
English (en)
Other versions
CN111170646B (zh
Inventor
吴凯丰
罗消
丁韬
刘雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201811331488.0A priority Critical patent/CN111170646B/zh
Publication of CN111170646A publication Critical patent/CN111170646A/zh
Application granted granted Critical
Publication of CN111170646B publication Critical patent/CN111170646B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • C03C17/009Mixtures of organic and inorganic materials, e.g. ormosils and ormocers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7704Halogenides
    • C09K11/7705Halogenides with alkali or alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/114Deposition methods from solutions or suspensions by brushing, pouring or doctorblading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Photovoltaic Devices (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种基于量子裁剪效应的太阳能聚光板。该太阳能聚光板主要由具有量子裁剪效应的量子点作为光吸收和发射材料,聚合物作为光波导介质。利用量子点较大的消光系数高效吸光,并通过其量子裁剪效应实现较大的光谱斯托克斯位移有效减小自吸收损失,同时实现倍增的荧光量子效率,最终通过聚合物光波导到侧面的太阳能电池实现光电转换。所述的量子点具有高效的量子裁剪效应。作为优选方案,聚合物选用聚甲基丙烯酸甲酯(PMMA),量子点选用稀土金属镱(Yb)掺杂的氯化铯铅钙钛矿量子点(Yb‑CsPbCl3),最终获得高达118%的内部量子效率。

Description

一种基于量子裁剪效应的太阳能聚光板
技术领域
本发明涉及一种基于量子裁剪效应的太阳能聚光板。
背景技术
太阳能聚光板(LSCs)是一种吸收太阳光并利用全反射效应波导荧光到板的边缘,进而耦合到光伏电池,从而产生电力的荧光器件。相比传统太阳能模块,LSCs具有更低的光伏成本,以及实现(半)透明智能窗户的潜力。其中,板边缘发射的光子与吸收的太阳光子之比定义了LSC的内部量子效率(ηint);板边缘发射的光子与入射的太阳光子之比定义了LSC的外部量子效率(ηext);其中,ηext=ηint×ηabs,ηabs代表LSC对太阳光子的吸收效率。传统的聚光板荧光材料(如有机染料,胶体量子点)通常随波导路径的增加具有明显的荧光光子自吸收损失,从而降低了LSC的内部量子效率。最近报道的锰离子(Mn2+)掺杂的量子点和一些基于磷光发射机制的有机染料可以有效地减小自吸收损失,但这类材料通常具有较小的发光效率ηPL(小于80%)。因此,传统的LSC的内部量子效率通常小于60%(该数值等于荧光材料的发光效率乘以波导的全反射效率(75%))。
量子裁剪效应是低维半导体材料中的一种光学现象,基于该效应的材料可吸收一个高能光子,并发生两个低能光子。因此,基于该效应的LSC可突破上述器件内部量子效率极限。并且,量子裁剪发射的两个光子能量是远小于荧光材料的带边能隙,从而可以高效地减小LSC的自吸收损失。理想情况下,基于量子裁剪效应的LSC可实现与器件尺寸无关的内部量子效率,高达150%。
我们合成了稀土金属镱掺杂的氯化铯铅(Yb-CsPbCl3)量子点,测试发现其具有164%的荧光量子效率。基于该材料的量子裁剪效应设计制备了LSC。该器件可实现118%的内部量子效率。假定该LSC对太阳光子的吸收效率为3%,那么该器件可实现3.7%的外部量子效率。该发明为今后发展基于量子点的高性能LSC提供了基础,为最终实现商业化奠定了前提。
发明内容
本发明的目的在于,提供一种基于量子裁剪效应的高效太阳能聚光板,以解决太阳能聚光板效率偏低的技术问题。
所述的太阳能聚光板由具有量子裁剪效应的量子点和聚合物混合而成的波导层组成。
所述的量子点组成为镧系元素掺杂(掺杂量在1-20%,元素摩尔比)的全无机三卤素钙钛矿量子点,具有ABX3结构,其中A=Cs;B=Pb或Sn;X=Cl,Br或I中的一种或两种以上。
所述的聚合物为聚乙烯吡咯烷酮(PVP)、聚乙烯醇(PVA)或聚甲基丙烯酸甲酯(PMMA)。
所述的高效太阳能聚光板采用本领域公知的方法制备得到。优选的量子点为镱掺杂(掺杂量为5%)的CsPbCl3量子点;优选的聚合物为PMMA;优选的制备方法为刮刀流延法,该方案制备简单,并在今后有望实现加工成本低廉的太阳能聚光板制备。
为了验证上述太阳能聚光板是否真正实现了高效的光学效率,本发明采用的验证技术方案为:
利用稳态吸收和荧光光谱,确定镱掺杂的CsPbCl3量子点的基本光吸收、发射特性和荧光量子效率。
基于上述光谱数据和积分球系统,建立模型,测量并计算基于该发明制备的LSC的光学效率。
本发明太阳能聚光板主要由具有量子裁剪效应的量子点作为光吸收和发射材料,聚合物作为光波导介质。利用量子点较大的消光系数高效吸光,并通过其量子裁剪效应实现较大的光谱斯托克斯位移有效减小自吸收损失,同时实现倍增的荧光量子效率,最终通过聚合物光波导到侧面的太阳能电池实现光电转换。所述的量子点具有高效的量子裁剪效应。作为优选方案,聚合物选用聚甲基丙烯酸甲酯(PMMA),量子点选用稀土金属镱(Yb)掺杂的氯化铯铅钙钛矿量子点(Yb-CsPbCl3),最终获得高达118%的内部量子效率。
附图说明
图1,量子裁剪太阳能聚光板示意图。
图2,(a)CsPbCl3和Yb-CsPbCl3量子点的紫外-可见吸收光谱和荧光光谱;(b)基于Yb-CsPbCl3量子点的太阳能聚光板(QD-LSC)的总发射、边发射和面发射荧光光谱。
图3,(a)不同尺寸的太阳能聚光板的内部量子效率;(b)不同尺寸的太阳能聚光板的外部量子效率。
具体实施方式
本发明通过实施例和附图做进一步的说明。
实施例
本实施例所述一种基于量子裁剪效应的高效太阳能聚光板,其制备方法包括以下步骤:
0.1μmol Yb-CsPbCl3(镱元素摩尔掺杂量为5%)量子点(粒径尺寸为8-15纳米)的氯仿溶液(7.5mL)与0.83g的聚甲基丙烯酸甲酯(350000的平均分子量)混合搅拌10小时,将混合物低速(2000转/分钟)离心取上清液,利用刮刀流延法将其均匀涂布在玻璃基底上,静置直至溶剂完全挥发,形成太阳能聚光板,如图1所示。
我们制备获得的太阳能聚光板是否能实现高效的光学效率,需利用光学检测手段与理论计算结合予以验证,验证检测主要从以下三个方面进行:
(1)CsPbCl3和Yb-CsPbCl3量子点的吸收、荧光光谱。
利用稳态吸收和荧光光谱检测手段,对CsPbCl3和Yb-CsPbCl3量子点的吸收和荧光特性进行测试(样品浓度均为0.01mmol/L,氯仿溶液),其中,紫外-可见稳态吸收光谱采用安捷伦carry 5000仪器获得;荧光光谱的激发波长为365nm,采用海洋光学Maya 2000Pro光纤光谱仪获得,如图2a所示。CsPbCl3和Yb-CsPbCl3量子点具有相似的吸收光谱和完全不同的荧光光谱;CsPbCl3量子点通过带边能级在405nm处发光,而Yb-CsPbCl3量子点通过量子裁剪效应在1000nm处发光。说明合成的Yb-CsPbCl3量子点具有量子裁剪效应。
(2)基于Yb-CsPbCl3量子点的LSC的荧光光谱。
利用积分球与光纤光谱仪搭建LSC荧光光谱测试系统,采用365nm光激发LSC样品,测试LSC的总发光强度;将LSC的四周用黑色胶带覆盖,测得LSC的面发射荧光强度;利用总发光光谱减去面发射光谱获得LSC边发射荧光光谱。如图2b所示,通过光谱积分计算可知该LSC的边发射荧光效率为72%,该数值十分接近LSC的全反射理论极限75%,说明该LSC几乎可以完全抑制荧光材料的自吸收损失。
(3)计算并对比基于Yb-CsPbCl3量子点的聚光板的光学效率。
首先通过配置一定浓度(13μmol/L)的Yb-CsPbCl3量子点计算其对太阳光的吸收效率ηabs=3%(测定方法参见Nature Photonics,2018,12,105.);基于图2的吸收和荧光光谱可以计算出太阳能聚光板的内部量子效率(ηint,测定方法参见Nature Photonics,2018,12,105.)和外部量子效率(ηext,测定方法参见Nature Photonics,2018,12,105.)随器件尺寸的变化关系。如图3a所示,计算结果说明,该太阳能聚光板(QD-LSC)即使在较大尺寸(L=100×100平方厘米)下,仍可保持极高的内部量子效率(ηint>60%),且远高于文献报道的锰离子掺杂的量子点聚光板(Mn-QD-LSC,Nature Photonics,2018,12,105.);同时,我们基于Yb-CsPbCl3量子点制备了5×5平方厘米的LSC,测出其ηint值与计算值吻合(见图3a数据点)。如图3b所示,计算结果表明该QD-LSC在较大尺寸下也可实现较高的外部量子效率,优于近期报道的基于铜铟硒量子点的太阳能聚光板(CISe-LSC,Nature Photonics,2018,12,105.)。上述结果充分说明了基于量子裁剪效应的Yb-CsPbCl3量子点可以有效地减小所制备聚光板的自吸收损失,同时获得倍增的荧光效率,最终实现较高的器件光学效率。
本发明太阳能聚光板主要由具有量子裁剪效应的量子点作为光吸收和发射材料,聚合物作为光波导介质。利用量子点较大的消光系数高效吸光,并通过其量子裁剪效应实现较大的光谱斯托克斯位移有效减小自吸收损失,同时实现倍增的荧光量子效率,最终通过聚合物光波导到侧面的太阳能电池实现光电转换。所述的量子点具有高效的量子裁剪效应。作为优选方案,聚合物选用聚甲基丙烯酸甲酯(PMMA),量子点选用稀土金属镱(Yb)掺杂的氯化铯铅钙钛矿量子点(Yb-CsPbCl3),最终获得高达118%的内部量子效率。
综上所述,我们发明的这种基于量子裁剪效应的高效太阳能聚光板,可以有效地减小荧光材料在波导过程中的自吸收损失,同时获得倍增的荧光效率,最终实现较高的器件光学效率。该发明对今后基于量子点的高性能太阳能聚光板研发具有极大的指导价值和意义。

Claims (4)

1.一种基于量子裁剪效应的太阳能聚光板,包括波导层,其特征在于:该太阳能聚光板波导层包括或由具有量子裁剪效应的量子点和聚合物混合而成,其中,量子点作为光吸收和发射体,由粒径尺寸为1-20纳米的半导体颗粒组成,于波导层中的摩尔比例控制在0.1-10%(优选为0.5-2%,更优选为1%);聚合物为光波导介质,具有10000-1000000的平均分子量(优选为200000-500000,更优选为300000-400000),于波导层中的摩尔比例控制在90-99.9%(优选为98-99.5%,更优选为99%)。
2.根据权利要求1所述的太阳能聚光板,其特征在于:所述的半导体颗粒组成为镧系元素掺杂(掺杂量在1-20%,元素摩尔比;镧系元素为镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥中的一种或两种以上)的全无机三卤素钙钛矿量子点,具有ABX3结构,其中A=Cs;B=Pb或Sn中的一种或两种;X=Cl,Br或I中的一种或两种以上;优选方案为镱掺杂(掺杂量为5%,元素摩尔比)的CsPbCl3量子点。
3.根据权利要求1所述的太阳能聚光板,其特征在于:所述的聚合物为聚乙烯吡咯烷酮(PVP)、聚乙烯醇(PVA)或聚甲基丙烯酸甲酯(PMMA)中的一种或二种以上;优选方案为PMMA。
4.根据权利要求1所述的太阳能聚光板,其特征在于:利用量子点吸光,并通过其量子裁剪效应实现光谱斯托克斯位移,同时实现倍增的荧光量子效率,最终通过聚合物光波导到太阳能聚光板四周边缘的侧面的太阳能电池实现光电转换。
CN201811331488.0A 2018-11-09 2018-11-09 一种基于量子裁剪效应的太阳能聚光板 Active CN111170646B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811331488.0A CN111170646B (zh) 2018-11-09 2018-11-09 一种基于量子裁剪效应的太阳能聚光板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811331488.0A CN111170646B (zh) 2018-11-09 2018-11-09 一种基于量子裁剪效应的太阳能聚光板

Publications (2)

Publication Number Publication Date
CN111170646A true CN111170646A (zh) 2020-05-19
CN111170646B CN111170646B (zh) 2022-05-06

Family

ID=70617377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811331488.0A Active CN111170646B (zh) 2018-11-09 2018-11-09 一种基于量子裁剪效应的太阳能聚光板

Country Status (1)

Country Link
CN (1) CN111170646B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110087378A (ko) * 2010-01-26 2011-08-03 인하대학교 산학협력단 불규칙적인 또는 규칙적인 배열의 금속 나노 입자 층을 이용한 실리콘 박막 태양 전지 및 그 제조 방법
CN102299195A (zh) * 2011-07-05 2011-12-28 湖南天利恩泽太阳能科技有限公司 量子裁剪光伏组件
CN102751366A (zh) * 2012-07-11 2012-10-24 大连海事大学 太阳能荧光聚集器及其制备方法
CN103421489A (zh) * 2013-08-13 2013-12-04 吉林大学 一种超高量子产率的荧光材料及其应用
CN107887466A (zh) * 2017-12-01 2018-04-06 吉林大学 一种稀土掺杂无机钙钛矿量子点复合硅太阳能电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110087378A (ko) * 2010-01-26 2011-08-03 인하대학교 산학협력단 불규칙적인 또는 규칙적인 배열의 금속 나노 입자 층을 이용한 실리콘 박막 태양 전지 및 그 제조 방법
CN102299195A (zh) * 2011-07-05 2011-12-28 湖南天利恩泽太阳能科技有限公司 量子裁剪光伏组件
CN102751366A (zh) * 2012-07-11 2012-10-24 大连海事大学 太阳能荧光聚集器及其制备方法
CN103421489A (zh) * 2013-08-13 2013-12-04 吉林大学 一种超高量子产率的荧光材料及其应用
CN107887466A (zh) * 2017-12-01 2018-04-06 吉林大学 一种稀土掺杂无机钙钛矿量子点复合硅太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN111170646B (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
Zhao et al. Efficient and stable tandem luminescent solar concentrators based on carbon dots and perovskite quantum dots
Correia et al. Luminescent solar concentrators: challenges for lanthanide-based organic–inorganic hybrid materials
Bünzli et al. Lanthanides in solar energy conversion
van Sark et al. Upconversion in solar cells
Chen et al. Efficiency improvement of Si solar cells using metal-enhanced nanophosphor fluorescence
Tong et al. Fabrication of highly emissive and highly stable perovskite nanocrystal-polymer slabs for luminescent solar concentrators
Karunakaran et al. Efficiency improvement of Si solar cells by down-shifting Ce3+-doped and down-conversion Ce3+-Yb3+ co-doped YAG phosphors
WO2007133344A2 (en) Wavelength-converting phosphors for enhancing the efficiency of a photovoltaic device
EP3120392A1 (en) Transparent energy-harvesting devices
TWI390748B (zh) Light energy of the battery efficiency film
KR20110048054A (ko) 발광성 희토류-금속 나노클러스터 및 안테나 리간드가 함유된 유기-무기 착체, 특성 물품, 및 발광성 조성물의 제조방법
WO2010085561A2 (en) Materials for solar concentrators and devices, methods and systems using them
Castelletto et al. Luminescence solar concentrators: a technology update
KR20200049796A (ko) 페롭스키트 구조체를 사용하는 발광성 태양광 집광기
Li et al. Luminescent solar concentrators performing under different light conditions
CN110246922B (zh) 一种基于光谱上转换技术的量子点荧光太阳集光器、平板型聚光光伏器及其制备方法
JP2021527339A (ja) 太陽放射変換デバイスの為の無機発光物質
Liu et al. Luminescent solar concentrators fabricated by dispersing rare earth particles in PMMA waveguide
Mirershadi et al. Effects of halogen replacement on the efficiency of luminescent solar concentrator based on methylammonium lead halide perovskite
Liu et al. Red-emissive carbon quantum dots enable high efficiency luminescent solar concentrators
Gu et al. Optical characterization and photo-electrical measurement of luminescent solar concentrators based on perovskite quantum dots integrated into the thiol-ene polymer
CN103474127B (zh) 一种具有上转换特性的晶硅电池背面铝浆
Li et al. Low-loss, high-transparency luminescent solar concentrators with a bioinspired self-cleaning surface
WO2018148837A1 (en) Luminescent solar concentrator using a metal-free emitter
El-Bashir et al. Thin-film LSCs based on PMMA nanohybrid coatings: device optimization and outdoor performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant