CN111167500A - 一种Ag/g-C3N4复合薄膜及其制备方法和应用 - Google Patents

一种Ag/g-C3N4复合薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN111167500A
CN111167500A CN202010077977.9A CN202010077977A CN111167500A CN 111167500 A CN111167500 A CN 111167500A CN 202010077977 A CN202010077977 A CN 202010077977A CN 111167500 A CN111167500 A CN 111167500A
Authority
CN
China
Prior art keywords
film
composite film
roasting
muffle furnace
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010077977.9A
Other languages
English (en)
Inventor
李晓雪
孔令茹
马凤才
孙萌涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN202010077977.9A priority Critical patent/CN111167500A/zh
Publication of CN111167500A publication Critical patent/CN111167500A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/39Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a secondary hydroxyl group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明属于光催化材料技术领域,具体涉及一种Ag/g‑C3N4复合薄膜的新的制备方法及其在光催化降解气态有机污染物中的应用。将三聚氰胺在管式炉中进行焙烧,研磨之后,在马弗炉进行二次焙烧,得到淡黄色的粉末;将适量g‑C3N4粉末放入丙酮溶液中,进行超声分散处理,加入固体单质碘,继续超声分散,在导电玻璃上镀膜;将薄膜置于马弗炉中焙烧,冷却至室温,在硝酸银溶液中进行沉积,得到目标产物。本发明,在使比表面积增大的同时,实现金属粒子的掺杂,增强Ag的表面等离子体共振效应,从而达到提高光催化活性的目的。本发明的制备方法简单,条件温和,所获得的“三明治”结构的薄膜在可见光下可以降解异丙醇。

Description

一种Ag/g-C3N4复合薄膜及其制备方法和应用
技术领域
本发明属于光催化材料技术领域,具体的涉及一种Ag/g-C3N4复合薄膜及其制备方法和应用。
背景技术
光催化技术是一种对环境来说很友好的技术,它可以利用太阳光来光催化降解有机污染物,在水的裂解实验中也有着很好的应用前景,是目前的实验研究中一种比较热门的技术。而g-C3N4(石墨相氮化碳)是一种N型二维非金属半导体结构,作为一种比较有前景的光催化材料,它不仅局限于紫外光,在可见光下就可以发生光催化反应,而且它的含量丰富,无毒无污染,无二次伤害。但是其自身的比表面积小,光生载流子易复合,导致了它的光催化活性小。
表面等离激元驱动化学反应比传统的化学反应在热效应的基础上有更多的优势。但是等离激元热电子的短暂的生命周期大约是一百飞秒,限制了等离激元的全面发展。解决等离子体或者激子驱动催化反应的这些问题,一个比较好的方法是把这些材料混合到一起。等离子体和激子耦合相互作用极大地促进了等离子体激子共同驱动的催化反应,提高光催化活性。
因此如何将两种材料混合,提高电子和空穴的分离效率,提高它的光催化活性,成为人们研究的一个重点的问题。
发明内容
为了解决以上问题,本发明提供一种新的方法用一种简单的方法设计Ag/g-C3N4复合光催化剂。合成的样品不仅具有银的表面等离子体共振效应,而且光催化活性强。
本发明采用的技术方案为:一种Ag/g-C3N4复合薄膜,制备方法包括如下步骤:
1)将三聚氰胺在管式炉中进行焙烧,研磨之后,在马弗炉进行二次焙烧,得到淡黄色的粉末g-C3N4
2)将适量g-C3N4粉末放入丙酮溶液中,进行超声分散处理,加入固体单质碘,继续超声分散,在导电玻璃上镀膜;
3)将薄膜置于马弗炉中焙烧,冷却至室温,在硝酸银溶液中进行沉积,得到目标产物。
优选地,上述的一种Ag/g-C3N4复合薄膜,步骤1)中,一次焙烧的条件为N2保护,550℃,反应时间为4h。
优选地,上述的一种Ag/g-C3N4复合薄膜,步骤1)中,二次焙烧的条件为500℃,反应时间为2h。
优选地,上述的一种Ag/g-C3N4复合薄膜,步骤2)中,所述的镀膜方法为电沉积法。
优选地,上述的一种Ag/g-C3N4复合薄膜,步骤2)中,按质量比,g-C3N4:固体单质碘=0.6-1:1,电沉积的条件为25V-5min。
优选地,上述的一种Ag/g-C3N4复合薄膜,步骤3)中,所述的沉积方法为光沉积。
优选地,上述的一种Ag/g-C3N4复合薄膜,步骤3)中,在马弗炉中焙烧的条件为450℃,90min,光沉积的条件为300W的氙灯,照射10min。
上述的一种Ag/g-C3N4复合薄膜在光催化降解小分子有机物中的应用。
优选地,上述的应用,所述的小分子有机物是异丙醇。
优选地,上述的应用,方法如下:将Ag/g-C3N4复合薄膜放在含有小分子有机物的密闭空间中,在可见光照射下降解2-3h。
本发明具有以下有益效果:
1.本发明,电沉积和光沉积共同作用,操作简单,可有效加速电子移动。
2.本发明,得到的复合薄膜,粉末分布均匀,具有金属的表面等离子体共振效应。
3.本发明,通过采用电沉积的方法在导电玻璃上镀膜,最后将Ag纳米颗粒沉积在薄膜上,得到具有特殊形貌的光催化剂。使得合成的样品具有“三明治”状的特殊结构,不仅具有金属的表面等离子体共振效应,而且金属的加入有利于光生电子和空穴的分离,延长热电子的生命周期,因此可以增强光催化活性。
4.本发明,避免使用危险的化学药品,同时得到高活性的光催化剂。得到的银的沉积量为 0.01g Ag/g-C3N4复合薄膜,具有较大的光电流为5.5微安,这种结构的薄膜加快了电子的移动,使得在可见光下降解异丙醇至丙酮的速率达到32.349ppm/min,为纯的g-C3N4
薄膜的3倍多。
5.本发明,为了提高光催化活性,降低g-C3N4薄膜的载流子复合率,增强表面等离子体共振效应,选择在导电玻璃上沉积贵金属纳米颗粒来加速电子的快速移动,从而使电子空穴更容易分离。通过沉积Ag纳米粒子,在g-C3N4薄膜龟裂处形成较大的银纳米颗粒,当光照射在金属表面时,光子就会和金属表面的自由电子相结合,产生一种集体的相干震荡,从而形成一种量子化的电荷密度波,增强局域表面等离激元共振效应,加快光生电子和空穴的分离,从而提高光催化活性。同时通过二次焙烧,可以使g-C3N4具有孔结构,提供更多的表面活性位,从而提高催化效率。
附图说明
图1为整个镀膜过程的示意图。
图2在薄膜龟裂处Ag颗粒生长机制图。
图3为光催化过程的机理图。
图4为实施例1中步骤3得到的Ag/g-C3N4复合薄膜的PL全谱。
图5为实施例1中步骤3得到的Ag/g-C3N4复合薄膜的光电流图谱
图6为纯g-C3N4薄膜、0.006g Ag/g-C3N4复合薄膜、0.01g Ag/g-C3N4复合薄膜的光催化剂在可见光照射下降解异丙醇的活性对比示意图。
具体实施方式
纯g-C3N4薄膜的制备:
将2.52g三聚氰胺在管式炉中进行焙烧,条件为550℃,4h。将成品在马弗炉中进行二次焙烧,焙烧条件为500℃,2h,研磨后,得到g-C3N4粉末。
将0.06g g-C3N4粉末溶于20ml的丙酮溶液中,超声处理1小时,加入10mg的单质碘,继续超声1小时,25V条件下电沉积5min,即得纯g-C3N4薄膜。
将制备得到的纯片g-C3N4薄膜进行PL测试,结果如图4所示,由图可见,纯g-C3N4薄膜显示很高的荧光强度峰。
将制备得到的纯片g-C3N4薄膜进行光电流测试,结果如图5所示,由图可见,纯g-C3N4薄膜的光电流强度很低。
实施例1一种Ag/g-C3N4复合薄膜(0.006gAg)
(一)制备方法如下:
1)将2.52g三聚氰胺在管式炉中进行焙烧,条件为550℃,4h。将成品在马弗炉中进行二次焙烧,焙烧条件为500℃,2h,研磨后,得到g-C3N4粉末。
2)将0.006g g-C3N4粉末溶于20ml的丙酮溶液中,超声处理1小时,加入10mg的碘单质,
继续超声1小时,25V条件下电沉积5min镀在导电玻璃上,得到g-C3N4薄膜。
3)将得到的g-C3N4薄膜进一步在马弗炉中焙烧,条件为450℃,90min、冷却至室温。
4)将上述煅烧之后的薄膜置于含有0.006g Ag的硝酸银溶液中,在300W的氙灯光照下,照射时间为10min,得到0.006g Ag/g-C3N4复合薄膜,镀膜过程如图1所示。
(二)检测结果
将步骤3)制备的0.006g Ag/g-C3N4复合薄膜进行PL测试,测试结果如图4所示,由图可见,沉积Ag纳米颗粒的样品,荧光强度明显下降,说明光生电子和空穴很难复合。
将步骤3)制备的0.006g Ag/g-C3N4复合薄膜在电化学工作站中进行光电流测试,结果如图5所示,图中显示光电流的大小为4.5微安,由此可以看出沉积Ag之后的样品光电流强度明显高于纯样,说明抑制了光生载流子的复合,提高电子与空穴的分离,所以光电流有所增强。
(三)应用
将本实施例制备的0.006g Ag/g-C3N4复合薄膜进行光催化降解异丙醇实验。
测试过程为:以300W氙灯为光源,分别将上述制备的0.006g Ag/g-C3N4复合薄膜、制备的纯g-C3N4薄膜放入内含一个大气压空气的300ml反应器中,最后向反应器中注入5ul异丙醇液体,静置3小时使系统吸附-脱附平衡,然后在可见光照射120min下降解异丙醇。
当光照在金属表面上,光子与金属表面的自由电子相结合,形成一种集体相干振荡,对局域有极大的增强效应,从而加快电子的移动,使电子和空穴更容易分离,最终可以使更多的空穴与异丙醇发生反应,生成丙酮,最终生成无毒无害的产品。
结果如图6所示,图6中长方形的长度表示在可见光照射下丙酮产生的速率,由图可知, 0.006g Ag/g-C3N4复合薄膜的丙酮的产生速率为15.568ppm/min,而制备的纯g-C3N4薄膜只有 11.245ppm/min。
实施例2一种Ag/g-C3N4复合薄膜(0.01gAg)
(一)制备方法如下:
1)将2.52g三聚氰胺在管式炉中进行焙烧,条件为550℃,4h。将成品在马弗炉中进行二次焙烧条件为500℃,2h,研磨后,得到g-C3N4粉末。
2)将0.01g g-C3N4粉末溶于20ml的丙酮溶液中,超声处理1小时,加入10mg的碘单质,继续超声1小时,25V条件下电沉积5min镀在导电玻璃上,得到g-C3N4薄膜。
3)将得到的g-C3N4薄膜进一步在马弗炉中焙烧,条件为450℃,90min,冷却至室温。
4)将上述煅烧之后的薄膜置于含有0.01gAg的硝酸银溶液中,在300W的氙灯光照下,照射时间为10min,得到0.01g Ag/g-C3N4复合薄膜,镀膜过程如图1所示。
(二)检测结果
图2为在薄膜龟裂处Ag颗粒生长机制图,由图可见,当半导体光催化材料受到光照时会吸收光能,一旦能量超过其带隙能量时材料将受到激发,从而产生电子和空穴,由于导电玻璃的存在加快电子的移动,使得更多的电子向薄膜龟裂的地方移动,于是在薄膜龟裂的地方,银离子就会更容易被还原成单质银,沉积在材料的表面。
图3为光催化过程的机理图,由图可见,当光照在金属表面上,光子与金属表面的自由电子相结合,形成一种集体相干振荡,对局域有极大的增强效应,从而加快电子的移动,使电子和空穴更容易分离,最终可以使更多的空穴与异丙醇发生反应,生成丙酮,最终生成无毒无害的产品。
将步骤3)制备的0.01g Ag/g-C3N4复合薄膜进行PL测试,测试结果如图4所示,由图可见,沉积Ag纳米颗粒的样品,荧光强度明显下降,说明光生电子和空穴很难复合。
将步骤3)制备的0.01g Ag/g-C3N4复合薄膜在电化学工作站中进行光电流测试,结果如图5所示,图中显示光电流的大小为5.5微安,由此可以看出沉积Ag之后的样品光电流强度明显高于纯样,说明抑制了光生载流子的复合,提高电子与空穴的分离,所以光电流有所增强。
(三)应用
将本实施例制备的0.01g Ag/g-C3N4复合薄膜进行光催化降解异丙醇实验。
测试过程为:以300W氙灯为光源,分别将上述制备的0.01g Ag/g-C3N4复合薄膜、制备的纯g-C3N4薄膜放入内含一个大气压空气的300ml反应器中,最后向反应器中注入5ul异丙醇液体,静置3小时使系统吸附-脱附平衡,然后在可见光照射120min降解异丙醇。
结果如图6所示,图6中长方形的长度表示在可见光照射下丙酮产生的速率,由图可知,0.01g Ag/g-C3N4复合薄膜的丙酮的产生速率为32.349ppm/min,而制备的纯g-C3N4薄膜只有11.245ppm/min。

Claims (10)

1.一种Ag/g-C3N4复合薄膜,其特征在于,制备方法包括如下步骤:
1)将三聚氰胺在管式炉中进行焙烧,研磨之后,在马弗炉进行二次焙烧,得到淡黄色的粉末g-C3N4
2)将适量g-C3N4粉末放入丙酮溶液中,进行超声分散处理,加入固体单质碘,继续超声分散,在导电玻璃上镀膜;
3)将薄膜置于马弗炉中焙烧,冷却至室温,在硝酸银溶液中进行沉积,得到目标产物。
2.根据权利要求1所述的一种Ag/g-C3N4复合薄膜,其特征在于,步骤1)中,一次焙烧的条件为N2保护,550℃,反应时间为4h。
3.根据权利要求1所述的一种Ag/g-C3N4复合薄膜,其特征在于,步骤1)中,二次焙烧的条件为Air,500℃,反应时间为2h。
4.根据权利要求1所述的一种Ag/g-C3N4复合薄膜,其特征在于,步骤2)中,所述的镀膜方法为电沉积。
5.根据权利要求1所述的一种Ag/g-C3N4复合薄膜,其特征在于,步骤2)中,按质量比,g-C3N4:固体单质碘=0.6-1:1,电沉积的条件为25V-5min。
6.根据权利要求1所述的一种Ag/g-C3N4复合薄膜,其特征在于,步骤3)中,所述的沉积方法为光沉积。
7.根据权利要求2所述的一种Ag/g-C3N4复合薄膜,其特征在于,步骤3)中,在马弗炉中焙烧的条件为450℃,90min,光沉积的条件为300W的氙灯,照射10min。
8.权利要求1所述的一种Ag/g-C3N4复合薄膜在光催化降解小分子有机物中的应用。
9.根据权利要求8所述的应用,其特征在于,所述的小分子有机物是异丙醇。
10.根据权利要求8所述的应用,其特征在于,方法如下:将Ag/g-C3N4复合薄膜放在含有小分子有机物的密闭空间中,在可见光照射下降解2-3h。
CN202010077977.9A 2020-02-02 2020-02-02 一种Ag/g-C3N4复合薄膜及其制备方法和应用 Pending CN111167500A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010077977.9A CN111167500A (zh) 2020-02-02 2020-02-02 一种Ag/g-C3N4复合薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010077977.9A CN111167500A (zh) 2020-02-02 2020-02-02 一种Ag/g-C3N4复合薄膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111167500A true CN111167500A (zh) 2020-05-19

Family

ID=70646902

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010077977.9A Pending CN111167500A (zh) 2020-02-02 2020-02-02 一种Ag/g-C3N4复合薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111167500A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114367312A (zh) * 2022-01-25 2022-04-19 山东大学 一种Ag+-Ag0掺杂石墨相氮化碳耦合钴肟分子复合光催化剂及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150352539A1 (en) * 2012-12-21 2015-12-10 Riken g-C3N4 FILM PRODUCTION METHOD, AND USE OF SAID FILM
CN105944748A (zh) * 2016-06-14 2016-09-21 辽宁大学 一种大比表面积石墨相氮化碳光催化剂及其制备方法和应用
CN106975507A (zh) * 2017-04-17 2017-07-25 江苏大学 一种Ag/g‑C3N4复合光催化剂及其制备方法
CN108067281A (zh) * 2017-11-24 2018-05-25 辽宁大学 多孔g-C3N4光催化剂及其制备方法和应用
CN109560169A (zh) * 2018-12-11 2019-04-02 辽宁大学 一种高性能光阳极材料TiO2/g-C3N4光电极薄膜的制备方法
CN109626422A (zh) * 2018-12-11 2019-04-16 辽宁大学 一种TiO2/g-C3N4光阳极纳米复合材料的制备方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150352539A1 (en) * 2012-12-21 2015-12-10 Riken g-C3N4 FILM PRODUCTION METHOD, AND USE OF SAID FILM
CN105944748A (zh) * 2016-06-14 2016-09-21 辽宁大学 一种大比表面积石墨相氮化碳光催化剂及其制备方法和应用
CN106975507A (zh) * 2017-04-17 2017-07-25 江苏大学 一种Ag/g‑C3N4复合光催化剂及其制备方法
CN108067281A (zh) * 2017-11-24 2018-05-25 辽宁大学 多孔g-C3N4光催化剂及其制备方法和应用
CN109560169A (zh) * 2018-12-11 2019-04-02 辽宁大学 一种高性能光阳极材料TiO2/g-C3N4光电极薄膜的制备方法
CN109626422A (zh) * 2018-12-11 2019-04-16 辽宁大学 一种TiO2/g-C3N4光阳极纳米复合材料的制备方法及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ZHEN LI ET AL.: "Enhancing photoactivity for hydrogen generation by elctron tunneling via flip-flop hopping over iodinated graphitic carbon nitride", 《APPLIED CATALYSIS B: ENVIROMENTAL》, vol. 204, 11 November 2016 (2016-11-11), pages 33 - 42, XP029880808, DOI: 10.1016/j.apcatb.2016.11.020 *
郑小刚等: "Ag掺杂方式对g-C3N4降解亚甲基蓝光催化行为的影响", 《化工新型材料》 *
郑小刚等: "Ag掺杂方式对g-C3N4降解亚甲基蓝光催化行为的影响", 《化工新型材料》, vol. 45, no. 7, 31 July 2017 (2017-07-31), pages 180 - 183 *
马小帅等: "g-C3N4基光催化剂的制备和应用", 《有色金属科学与工程》, vol. 9, no. 3, 30 June 2018 (2018-06-30), pages 42 - 52 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114367312A (zh) * 2022-01-25 2022-04-19 山东大学 一种Ag+-Ag0掺杂石墨相氮化碳耦合钴肟分子复合光催化剂及其制备方法与应用
CN114367312B (zh) * 2022-01-25 2023-01-10 山东大学 一种Ag+-Ag0掺杂石墨相氮化碳耦合钴肟分子复合光催化剂及其制备方法与应用

Similar Documents

Publication Publication Date Title
He et al. Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nansheets/WO3 nanorods nanocomposites loaded with Ni (OH) x cocatalysts
Yao et al. Scale‐Up of BiVO4 Photoanode for Water Splitting in a Photoelectrochemical Cell: Issues and Challenges
CN112169819A (zh) 一种g-C3N4 (101)-(001)-TiO2复合材料的制备方法和应用
Tang et al. Face-to-face engineering of ultrathin Pd nanosheets on amorphous carbon nitride for efficient photocatalytic hydrogen production
Gong et al. Visible light-driven, selective CO2 reduction in water by In-doped Mo2C based on defect engineering
CN108499585B (zh) 含磷复合物及其制备与应用
CN109569684B (zh) 等离子体改性金属氧化物和g-氮化碳共修饰二氧化钛纳米棒复合光催化剂及其制备和应用
CN108067281B (zh) 多孔g-C3N4光催化剂及其制备方法和应用
Zhang et al. Cu (OH) 2-modified TiO2 nanotube arrays for efficient photocatalytic hydrogen production
Li et al. Carbon vacancies improved photocatalytic hydrogen generation of g-C3N4 photocatalyst via magnesium vapor etching
Li et al. In situ growth of α-Fe 2 O 3@ Co 3 O 4 core–shell wormlike nanoarrays for a highly efficient photoelectrochemical water oxidation reaction
CN107892284A (zh) 一种NiS/C3N4二元复合物及其制备和应用方法
Song et al. Synergy of intermolecular Donor-Acceptor and ultrathin structures in crystalline carbon nitride for efficient photocatalytic hydrogen evolution
CN112791730B (zh) 一种z型纳米钒酸铜基复合光催化剂及其制备方法和应用
Zhong et al. Plasma-induced black bismuth tungstate as a photon harvester for photocatalytic carbon dioxide conversion
Parvizi et al. High-efficient photocatalytic fuel cell integrated with periodate activation for electricity production by degradation of refractory organics
Wu et al. Spatially-separated redox sites enabling selective atmospheric CO2 photoreduction to CH4
Xue et al. Boosting photocatalytic hydrogen evolution of covalent organic frameworks by introducing 2D conductive metal–organic frameworks as noble metal-free co-catalysts
CN111167500A (zh) 一种Ag/g-C3N4复合薄膜及其制备方法和应用
CN114210328A (zh) 一种Rh单原子修饰的PCN光催化剂及其制备方法和应用
CN110523409B (zh) 一种石墨烯掺杂Ag/TiO2光催化涂层及其制备方法
Li et al. Boosting CO production from visible-light CO 2 photoreduction via defects-induced electronic-structure tuning and reaction-energy optimization on ultrathin carbon nitride
CN107497427A (zh) 一种可降解甲醛的银/石墨烯/氧化锌复合材料制备方法
CN115845889A (zh) PbBiO2Cl/Ti3C2复合材料的制备方法及其在光催化降解对氯苯酚中的应用
Cao et al. In situ fabrication of Z-scheme C 3 N 4/Ti 3 C 2/CdS for efficient photocatalytic hydrogen peroxide production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200519