CN111162118A - 场效应晶体管及其制备方法 - Google Patents

场效应晶体管及其制备方法 Download PDF

Info

Publication number
CN111162118A
CN111162118A CN202010008253.9A CN202010008253A CN111162118A CN 111162118 A CN111162118 A CN 111162118A CN 202010008253 A CN202010008253 A CN 202010008253A CN 111162118 A CN111162118 A CN 111162118A
Authority
CN
China
Prior art keywords
metal oxide
zro
film
ito
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010008253.9A
Other languages
English (en)
Inventor
王超
付博
方华斌
李向光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weifang Goertek Microelectronics Co Ltd
Original Assignee
Goertek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goertek Inc filed Critical Goertek Inc
Priority to CN202010008253.9A priority Critical patent/CN111162118A/zh
Publication of CN111162118A publication Critical patent/CN111162118A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种场效应晶体管及其制备方法,包括衬底、栅极、和介电层、有源层、漏极和源极;所述栅极镀在所述衬底表面,所述介电层涂在所述栅极上表面,所述有源层形成于所述介电层表面,所述源极和所述漏极分别位于所述有源层的两侧;所述衬底的材质是玻璃,所述有源层的材质是金属氧化物纳米纤维。所述场效应晶体管通过使用玻璃材质的衬底提高了场效应晶体管的透明度,并通过金属氧化物纳米纤维的有源层缩小了场效应晶体管的尺寸。

Description

场效应晶体管及其制备方法
技术领域
本发明涉及半导体技术领域,尤其涉及一种场效应晶体管及其制备方法。
背景技术
场效应晶体管是集成电路的重要组成部分,当前集成电路操作集成度高、尺寸小的方向发展,也对场效应晶体管的尺寸提出了新的要求和挑战。并且应用于液晶显示器中的场效应晶体管需要具有良好的透光率。但是传统的非晶硅场效应晶体管尺寸大、不具备透明性透光率不高。
发明内容
本发明提供一种场效应晶体管及其制备方法,旨在提高场效应晶体管的透明度,并缩小场效应晶体管的尺寸。
为实现上述目的,本发明提供一种场效应晶体管,包括衬底、栅极、和介电层、有源层、漏极和源极;
所述栅极镀在所述衬底表面,所述介电层涂在所述栅极上表面,所述有源层形成于所述介电层表面,所述源极和所述漏极分别位于所述有源层的两侧;
所述衬底的材质是玻璃,所述有源层的材质是金属氧化物纳米纤维。
优选地,所述金属氧化物纳米纤维包括氧化铟纳米纤维或氧化锡纳米纤维。
优选地,所述栅极的材质是氧化铟锡ITO,所述介电层的材质是氧化锆ZrO2、所述漏极和所述源极的材质是ITO。
优选地,所述衬底的厚度为0.1-1mm;所述栅极的厚度为150-250nm;所述有源层的厚度为50-120nm;所述介电层的厚度为50-100nm;所述漏极的厚度为150-250nm;所述源极的厚度为150-250nm。
此外,为实现上述目的,本发明实施例还提供一种场效应晶体管的制备方法,包括:
在玻璃衬底表面镀上ITO,形成ITO导电薄膜,将ITO导电薄膜作为栅极;
在所述ITO导电薄膜表面涂上ZrO2,形成ZrO2薄膜,将所述ZrO2薄膜作为介电层;
将包括所述ITO导电薄膜和所述ZrO2薄膜的玻璃衬底放在静电纺丝装置的接收端,接收通过静电纺丝技术生成的金属氧化物复合纳米纤维;
对所述金属氧化物复合纳米纤维进行照射和退火处理后获得金属氧化物纳米纤维,将所述金属氧化物纳米纤维作为有源层;
利用磁控溅射法发在所述有源层上制备ITO膜,并将制备的ITO膜作为源极和漏极,获得场效应晶体管。
优选地,所述在所述ITO导电薄膜表面涂上ZrO2,形成ZrO2薄膜的步骤之前还包括:
将硝酸锆粉末加入到去离子水中,搅拌若干个小时后制得ZrO2前驱体溶液,其中所述硝酸锆的浓度为0.08-0.2mol/L。
优选地,在所述ITO导电薄膜表面涂上ZrO2,形成ZrO2薄膜的步骤包括:
利用匀胶机将所述ZrO2前驱体溶液旋涂在镀有ITO的玻璃衬底表面;
将涂有ZrO2前驱体溶液的玻璃衬底放置在烤胶台,150℃,烘烤5-30min;
烘烤后在300℃下退火,形成所述ZrO2薄膜。
优选地,所述将包括所述ITO导电薄膜和所述ZrO2薄膜的玻璃衬底放在静电纺丝装置的接收端,接收通过静电纺丝技术生成的金属氧化物复合纳米纤维的步骤包括:
将静电纺丝前驱体溶液装在平头针头中,并将表面有所述ITO导电薄膜和所述ZrO2薄膜的玻璃衬底放置在静电纺丝装置的接收端,所述平头针头到静电纺丝装置的接收端的距离为10-20cm;
在预设条件下通过所述静电纺丝装置,推出所述静电纺丝前驱体溶液,在所述接收端获得金属氧化物复合纳米纤维。
优选地,所述对所述金属氧化物复合纳米纤维进行照射和退火处理后获得金属氧化物纳米纤维步骤包括:
对所述金属氧化物复合纳米纤维进行高压汞灯照射处理,其中,汞灯波长范围为100-400nm,照射功率为1000W,照射时长为30-60min;
对高压汞灯照射后的所述金属氧化物复合纳米纤维进行退火处理获得金属氧化物纳米纤维,其中,退火温度为280℃,退火时长为3-8h。
优选地,所述利用磁控溅射发在所述有源层上制备ITO的步骤包括:
将靶材放入真空室,向所述真空室通入氩气;
通过过磁控溅射将从靶材中溅射出的原子沉积到金属氧化物纳米纤维上,形成所述ITO膜。
相比现有技术,本发明提供公开了一种场效应晶体管及其制备方法,包括衬底、栅极、和介电层、有源层、漏极和源极;所述栅极镀在所述衬底表面,所述介电层涂在所述栅极上表面,所述有源层形成于所述介电层表面,所述源极和所述漏极分别位于所述有源层的两侧;所述衬底的材质是玻璃,所述有源层的材质是金属氧化物纳米纤维。所述场效应晶体管通过使用玻璃材质的衬底提高了场效应晶体管的透明度,并通过金属氧化物纳米纤维的有源层缩小了场效应晶体管的尺寸。
附图说明
图1是本发明场效应晶体管的结构示意图;
图2是本发明场效应晶体管的输出特性曲线;
图3是本发明场效应晶体管的转移特性曲线;
图4是本发明场效应晶体管的制备方法的流程示意图。
附图标号及名称
标号 名称 标号 名称
1 衬底 4 有源层
2 栅极 5 漏极
3 介电层 6 源极
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供一种场效应晶体管(Field Effect Transistor,FET),场效应管是通过控制输入回路的电场效应来控制输出回路电流的一种半导体器件。场效应晶体管包括结型场效应管和金属-氧化物半导体场效应管。场效应晶体管由多数载流子参与导电,也称为单极型晶体管。属于电压控制型半导体器件。具有输入电阻高(107~1015Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
具体地,参照图1,图1是本发明场效应晶体管的结构示意图。所述场效应晶体管,包括衬底1、栅极2、介电层3、有源层4、漏极5和源极6。
其中,所述栅极2镀在所述衬底1表面,所述介电层3涂在所述栅极2上表面,所述有源层4形成于所述介电层3表面,所述漏极5和所述源极6分别位于所述有源层4的两侧;所述衬底1、所述栅极2、所述介电层3以及所述有源层4依次排列。
所述衬底1的材质是玻璃,所述有源层4的材质是金属氧化物纳米纤维。利用玻璃作为所述衬底可以增强所述场效应晶体管的透明度,进而增加了透光率,有利于所述将所述场效应晶体管应用于液晶显示器中。金属氧化物纳米纤维具有良好的机械柔性和独特的传输性能,使得所述场效应晶体管在弯曲时具有良好的稳定性,不易发生龟裂。并且与传统金属氧化物纳米膜相比,所述金属氧化物纳米纤维具有大的比表面积,有利于所述场效应晶体管的尺寸。
具体地,所述金属氧化物纳米纤维包括氧化铟(In2O3)纳米纤维或氧化锡(SnO2)纳米纤维。氧化铟是一种n型透明半导体功能材料,具有较宽的禁带宽度、较小的电阻率和较高的催化活性,在光电领域、气体传感器、催化剂方面得到了广泛应用。而氧化铟颗粒尺寸达纳米级别时除具有以上功能外,还具备了纳米材料的表面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应等。氧化锡是一种优秀的透明导电材料,它是第一个投入商用的透明导电材料,具有良好的导电性和稳定性。
所述栅极2的材质是氧化铟锡ITO,所述介电层3的材质是氧化锆ZrO2、所述漏极5和所述源极6的材质是ITO。ITO是一种铟(III族)氧化物(In2O3)和锡(IV族)氧化物(SnO2)的混合物,通常质量比为90%In2O3,10%SnO2。它在薄膜状时,透明,略显茶色。在块状态时,它呈黄偏灰色。ITO主要的特性是其电学传导和光学透明的组合。二氧化锆(化学式:ZrO2)是锆的主要氧化物,通常状况下为白色无臭无味晶体,难溶于水、盐酸和稀硫酸。化学性质不活泼,且具有高熔点、高电阻率、高折射率和低热膨胀系数的性质。
对于所述场效应晶体管,所述衬底的厚度为0.1-1mm;所述栅极的厚度为150-250nm;所述有源层的厚度为50-120nm;所述介电层的厚度为50-100nm;所述漏极的厚度为150-250nm;所述源极的厚度为150-250nm。
本实施例还对所述场效应的输出特性和转移特性进行了表征。具体地,参照图2,图2是本发明场效应晶体管的输出特性曲线;在图2中,以漏源电压为横坐标,以漏源电流为纵坐标,栅源电压为0-2V。从图2可知,所述场效应晶体管是典型的n型器件,有清楚的截止区和饱和区,没有电流拥挤现象,这表明所述金属氧化物纳米纤维与电极之间形成了良好的欧姆接触。
进一步地,参照图3,图3是本发明场效应晶体管的转移特性曲线。在图3中,以栅源电压为横坐标,以漏源电流为纵坐标,漏源电压为2V。从图3可知,所述场效应晶体管具有大的载流子迁移率(5.3cm2/Vs),大的开关比(~107),正的且较小的阈值电压(~0.6V),陡峭的亚阈值摆幅(190mV/decade),由此,所述场效应晶体管具有优异的电学性能。
进一步地,所述场效应晶体管的操作电压低,只需要2V的直流电压,有利于应用在低功耗、便携式的设备上。所述场效应晶体管具有高的透明度和良好的电学性能,可适应新型有源矩阵有机发光二极管(Active-matrix organic light-emitting diode,AMOLED)的发展趋势。并且所述场效应晶体管以金属氧化物纳米纤维作为有源层,具有比表面积小,传输性能优异的特点,为纳米尺寸期间的发展延续摩尔定律打下了基础。
本实施例通过上述技术方案,提供了一种场效应晶体管,包括衬底、栅极、和介电层、有源层、漏极和源极;所述栅极镀在所述衬底表面,所述介电层涂在所述栅极上表面,所述有源层形成于所述介电层表面,所述源极和所述漏极分别位于所述有源层的两侧;所述衬底的材质是玻璃,所述有源层的材质是金属氧化物纳米纤维。所述场效应晶体管通过使用玻璃材质的衬底提高了场效应晶体管的透明度,并通过金属氧化物纳米纤维的有源层缩小了场效应晶体管的尺寸。
如图4所示,本发明第二实施例提出一种场效应晶体管的制备方法,所述方法包括:
步骤S101,在玻璃衬底表面镀上ITO,形成ITO导电薄膜,将ITO导电薄膜作为栅极;
在钠钙基或硅硼基基片玻璃衬底的基础上,利用磁控溅射的方法镀上一层ITO,形成ITO导电薄膜,将ITO导电薄膜作为栅极。一般地,在镀ITO膜之前,还需要对所述玻璃衬底进行抛光处理,以得到更均匀的显示控制。
步骤S102,在所述ITO导电薄膜表面涂上ZrO2,形成ZrO2薄膜,将所述ZrO2薄膜作为介电层;
具体地,所述在所述ITO导电薄膜表面涂上ZrO2,形成ZrO2薄膜的步骤之前还包括:
将硝酸锆粉末加入到去离子水中,搅拌若干个小时后制得ZrO2前驱体溶液,其中所述硝酸锆的浓度为0.08-0.2mol/L。
获得所述ZrO2前驱体溶液后,利用匀胶机将所述ZrO2前驱体溶液旋涂在镀有ITO的玻璃衬底表面;将涂有ZrO2前驱体溶液的玻璃衬底放置在烤胶台,150℃,烘烤5-30min;烘烤后在300℃下退火,形成所述ZrO2薄膜。并将所述ZrO2薄膜作为所述场效应晶体管的介电层。
步骤S103,将包括所述ITO导电薄膜和所述ZrO2薄膜的玻璃衬底放在静电纺丝装置的接收端,接收通过静电纺丝技术生成的金属氧化物复合纳米纤维;
静电纺丝就是高分子流体静电雾化的特殊形式,此时雾化分裂出的物质不是微小液滴,而是聚合物微小射流,可以运行相当长的距离,最终固化成纤维。静电纺丝是一种特殊的纤维制造工艺,聚合物溶液或熔体在强电场中进行喷射纺丝。在电场作用下,针头处的液滴会由球形变为圆锥形(即“泰勒锥”),并从圆锥尖端延展得到纤维细丝。这种方式可以生产出纳米级直径的聚合物细丝。
将静电纺丝前驱体溶液装在平头针头中,并将表面有所述ITO导电薄膜和所述ZrO2薄膜的玻璃衬底放置在静电纺丝装置的接收端,所述平头针头到静电纺丝装置的接收端的距离为10-20cm;
本实施例中,需要预先获得静电纺丝前驱体溶液:将金属氧化物、聚乙烯醇加入到去离子水中,获得所述静电纺丝前驱体溶液,其中所述金属氧化物包括氧化铟或氧化锡,所述金属氧化物的浓度为0.1-0.3mol,所述聚乙烯醇与去离子水的比例为1:8-1:11。
在预设条件下通过所述静电纺丝装置,推出所述静电纺丝前驱体溶液,在所述接收端获得金属氧化物复合纳米纤维。所述预设条件直流电压为13-30KV,反应环境为温度10-30℃,较佳湿度为20%-55%。
步骤S104,对所述金属氧化物复合纳米纤维进行照射和退火处理后获得金属氧化物纳米纤维,将所述金属氧化物纳米纤维作为有源层;
对所述金属氧化物复合纳米纤维进行高压汞灯照射处理,其中,汞灯波长范围为100-400nm,照射功率为1000W,照射时长为30-60min;利用高压汞灯发出的UV光对所述金属氧化物复合纳米纤维进行处理,增加所述金属氧化物复合纳米纤维与衬底的粘附性,同时初步分解所述金属氧化物复合纳米纤维中的有机物。
对高压汞灯照射后的所述金属氧化物复合纳米纤维进行退火处理获得金属氧化物纳米纤维,其中,退火温度为280℃,退火时长为3-8h。
步骤S105,利用磁控溅射法在所述有源层上制备ITO膜,并将制备的ITO膜作为源极和漏极,获得场效应晶体管。
磁控溅射是物理气相沉积(Physical Vapor Deposition,PVD)的一种。一般的溅射法可被用于制备金属、半导体、绝缘体等多材料,且具有设备简单、易于控制、镀膜面积大和附着力强等优点。上世纪70年代发展起来的磁控溅射法更是实现了高速、低温、低损伤。因为是在低气压下进行高速溅射,必须有效地提高气体的离化率。磁控溅射通过在靶阴极表面引入磁场,利用磁场对带电粒子的约束来提高等离子体密度以增加溅射率。
具体地,将靶材放入真空室,向所述真空室通入氩气;通过过磁控溅射将从靶材中溅射出的原子沉积到金属氧化物纳米纤维上,形成所述ITO膜。
所述场效应晶体管的制备方法中,无论是用静电纺丝技术制备金属氧化物纳米纤维还是用溶胶凝胶制备氧化锆绝缘层,以及通过磁控溅射制备ITO膜的工艺都非常的简单,设备都是小型设备,成本低,为实际应用和大规模生产提供了基础。
本实施例通过上述方案,在玻璃衬底表面镀上ITO,形成ITO导电薄膜,将ITO导电薄膜作为栅极;在所述ITO导电薄膜表面涂上ZrO2,形成ZrO2薄膜,将所述ZrO2薄膜作为介电层;将包括所述ITO导电薄膜和所述ZrO2薄膜的玻璃衬底放在静电纺丝装置的接收端,接收通过静电纺丝技术生成的金属氧化物复合纳米纤维;对所述金属氧化物复合纳米纤维进行照射和退火处理后获得金属氧化物纳米纤维,将所述金属氧化物纳米纤维作为有源层;利用磁控溅射发在所述有源层上制备ITO膜,并将制备的ITO膜作为源极和漏极,获得场效应晶体管。所述场效应晶体管通过使用玻璃材质的衬底提高了场效应晶体管的透明度,并通过金属氧化物纳米纤维的有源层缩小了场效应晶体管的尺寸。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种场效应晶体管,其特征在于,包括衬底、栅极、和介电层、有源层、漏极和源极;
所述栅极镀在所述衬底表面,所述介电层涂在所述栅极上表面,所述有源层形成于所述介电层表面,所述源极和所述漏极分别位于所述有源层的两侧;
所述衬底的材质是玻璃,所述有源层的材质是金属氧化物纳米纤维。
2.根据权利要求1所述的场效应晶体管,其特征在于,所述金属氧化物纳米纤维包括氧化铟纳米纤维或氧化锡纳米纤维。
3.根据权利要求1所述的场效应晶体管,其特征在于,所述栅极的材质是氧化铟锡ITO,所述介电层的材质是氧化锆ZrO2、所述漏极和所述源极的材质是ITO。
4.根据权利要求1所述的场效应晶体管,其特征在于,所述衬底的厚度为0.1-1mm;所述栅极的厚度为150-250nm;所述有源层的厚度为50-120nm;所述介电层的厚度为50-100nm;所述漏极的厚度为150-250nm;所述源极的厚度为150-250nm。
5.一种场效应晶体管的制备方法,其特征在于,包括:
在玻璃衬底表面镀上ITO,形成ITO导电薄膜,将ITO导电薄膜作为栅极;
在所述ITO导电薄膜表面涂上ZrO2,形成ZrO2薄膜,将所述ZrO2薄膜作为介电层;
将包括所述ITO导电薄膜和所述ZrO2薄膜的玻璃衬底放在静电纺丝装置的接收端,接收通过静电纺丝技术生成的金属氧化物复合纳米纤维;
对所述金属氧化物复合纳米纤维进行照射和退火处理后获得金属氧化物纳米纤维,将所述金属氧化物纳米纤维作为有源层;
利用磁控溅射法在所述有源层上制备ITO膜,并将制备的ITO膜作为源极和漏极,获得场效应晶体管。
6.根据权利要求5所述的方法,其特征在于,在所述ITO导电薄膜表面涂上ZrO2,形成ZrO2薄膜的步骤之前还包括:
将硝酸锆粉末加入到去离子水中,搅拌若干个小时后制得ZrO2前驱体溶液,其中所述硝酸锆的浓度为0.08-0.2mol/L。
7.根据权利要求5或6所述的方法,其特征在于,在所述ITO导电薄膜表面涂上ZrO2,形成ZrO2薄膜的步骤包括:
利用匀胶机将所述ZrO2前驱体溶液旋涂在镀有ITO的玻璃衬底表面;
将涂有ZrO2前驱体溶液的玻璃衬底放置在烤胶台,150℃,烘烤5-30min;
烘烤后在300℃下退火,形成所述ZrO2薄膜。
8.根据权利要求5所述的方法,其特征在于,所述将包括所述ITO导电薄膜和所述ZrO2薄膜的玻璃衬底放在静电纺丝装置的接收端,接收通过静电纺丝技术生成的金属氧化物复合纳米纤维的步骤包括:
将静电纺丝前驱体溶液装在平头针头中,并将表面有所述ITO导电薄膜和所述ZrO2薄膜的玻璃衬底放置在静电纺丝装置的接收端,所述平头针头到静电纺丝装置的接收端的距离为10-20cm;
在预设条件下通过所述静电纺丝装置,推出所述静电纺丝前驱体溶液,在所述接收端获得金属氧化物复合纳米纤维。
9.根据权利要求6所述的方法,其特征在于,所述对所述金属氧化物复合纳米纤维进行照射和退火处理后获得金属氧化物纳米纤维步骤包括:
对所述金属氧化物复合纳米纤维进行高压汞灯照射处理,其中,汞灯波长范围为100-400nm,照射功率为1000W,照射时长为30-60min;
对高压汞灯照射后的所述金属氧化物复合纳米纤维进行退火处理获得金属氧化物纳米纤维,其中,退火温度为280℃,退火时长为3-8h。
10.根据权利要求6所述的方法,其特征在于,所述利用磁控溅射发在所述有源层上制备ITO的步骤包括:
将靶材放入真空室,向所述真空室通入氩气;
通过过磁控溅射将从靶材中溅射出的原子沉积到金属氧化物纳米纤维上,形成所述ITO膜。
CN202010008253.9A 2020-01-02 2020-01-02 场效应晶体管及其制备方法 Pending CN111162118A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010008253.9A CN111162118A (zh) 2020-01-02 2020-01-02 场效应晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010008253.9A CN111162118A (zh) 2020-01-02 2020-01-02 场效应晶体管及其制备方法

Publications (1)

Publication Number Publication Date
CN111162118A true CN111162118A (zh) 2020-05-15

Family

ID=70561419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010008253.9A Pending CN111162118A (zh) 2020-01-02 2020-01-02 场效应晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN111162118A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112881477A (zh) * 2021-01-19 2021-06-01 潍坊歌尔微电子有限公司 基于场效应晶体管的气体传感器及其制备方法
CN114023807A (zh) * 2021-10-27 2022-02-08 青岛大学 一种直径调控制备高性能金属纳米纤维场效应晶体管的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428247A (zh) * 2016-01-18 2016-03-23 青岛大学 一种基于水性超薄ZrO2高k介电层的薄膜晶体管制备方法
CN105514172A (zh) * 2015-12-18 2016-04-20 河南大学 一种低电压透明氧化物薄膜晶体管及其制备方法
CN107331622A (zh) * 2017-07-04 2017-11-07 华南理工大学 一种采用溶液加工的高介电氧化物绝缘层薄膜晶体管的制备方法
CN109103112A (zh) * 2018-08-14 2018-12-28 青岛大学 一种低温环保纳米纤维场效应晶体管的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514172A (zh) * 2015-12-18 2016-04-20 河南大学 一种低电压透明氧化物薄膜晶体管及其制备方法
CN105428247A (zh) * 2016-01-18 2016-03-23 青岛大学 一种基于水性超薄ZrO2高k介电层的薄膜晶体管制备方法
CN107331622A (zh) * 2017-07-04 2017-11-07 华南理工大学 一种采用溶液加工的高介电氧化物绝缘层薄膜晶体管的制备方法
CN109103112A (zh) * 2018-08-14 2018-12-28 青岛大学 一种低温环保纳米纤维场效应晶体管的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112881477A (zh) * 2021-01-19 2021-06-01 潍坊歌尔微电子有限公司 基于场效应晶体管的气体传感器及其制备方法
CN114023807A (zh) * 2021-10-27 2022-02-08 青岛大学 一种直径调控制备高性能金属纳米纤维场效应晶体管的方法
CN114023807B (zh) * 2021-10-27 2023-05-26 青岛大学 一种直径调控制备高性能金属纳米纤维场效应晶体管的方法

Similar Documents

Publication Publication Date Title
CN111162118A (zh) 场效应晶体管及其制备方法
CN107195781B (zh) 一种基于pmma掺杂小分子的高迁移率晶体管及其制备方法
CN106601803B (zh) 一种uv光前处理制备氧化铟/氧化铝纳米纤维场效应晶体管的方法
CN110047915B (zh) 一种基于二维半导体材料薄膜晶体管及其制备方法
KR101460489B1 (ko) 산소 플라즈마 처리 공정이 포함된 졸겔(sol-gel)법을 이용한 산화물 반도체층 방법 및 이에 의해 제조된 산화물 반도체층
CN102420288B (zh) 一种带介电修饰层的有机场效应晶体管及制备方法
CN110265548A (zh) 一种铟掺杂n型有机薄膜晶体管及其制备方法
CN106206895A (zh) 一种具有双电流扩展层的led及其制作方法
CN106847701B (zh) 一种金属掺杂氧化锌纳米纤维场效应晶体管的制备方法
CN107425130B (zh) 一种无机量子点发光二极管器件的制备方法
CN102709399A (zh) 一种高效纳米天线太阳能电池的制作方法
CN108011041B (zh) 半导体薄膜和薄膜晶体管、其制作方法、相关装置
KR100932903B1 (ko) 나노로드 밀집도가 조절된 전도성 기판 구조체 및 그전도성 기판 구조체 제조 방법
US11659731B2 (en) Integrated light-emitting device and fabricating method thereof
CN110061061A (zh) 一种基于纳米簇绝缘层的高性能薄膜晶体管及制备方法
CN103177969A (zh) 一种金属氧化物薄膜晶体管的制备方法
CN211238263U (zh) 一种柔性纳米纤维氧化锌锡的场效应晶体管
CN101692484A (zh) 一种倒置结构有机发光装置及其制作方法
CN209747523U (zh) 一种基于纳米簇绝缘层的高性能薄膜晶体管
CN111146277A (zh) 场效应晶体管及其制备方法
US20220181475A1 (en) Field effect transistor and method for making the same
CN110518126B (zh) 一种基于银纳米线薄膜的柔性太阳能电池及其制备方法
CN110890280B (zh) 一种利用钯/钯氧化物双层肖特基电极制备氧化物半导体肖特基二极管的方法
KR20130106641A (ko) 금속 산화물 박막 제조 방법
WO2017143626A1 (zh) 氧化物薄膜的制备方法及其薄膜晶体管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
TA01 Transfer of patent application right

Effective date of registration: 20200515

Address after: 261000 building 10, Geer phase II Industrial Park, No. 102, Ronghua Road, Ronghua community, Xincheng street, high tech Zone, Weifang City, Shandong Province

Applicant after: Weifang goer Microelectronics Co.,Ltd.

Address before: 261031 Dongfang Road, Weifang high tech Industrial Development Zone, Shandong, China, No. 268

Applicant before: GOERTEK Inc.

TA01 Transfer of patent application right
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200515

RJ01 Rejection of invention patent application after publication