CN111146960A - 检测电路以及应用其的开关变换器 - Google Patents

检测电路以及应用其的开关变换器 Download PDF

Info

Publication number
CN111146960A
CN111146960A CN202010059936.7A CN202010059936A CN111146960A CN 111146960 A CN111146960 A CN 111146960A CN 202010059936 A CN202010059936 A CN 202010059936A CN 111146960 A CN111146960 A CN 111146960A
Authority
CN
China
Prior art keywords
circuit
voltage
switching converter
output
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010059936.7A
Other languages
English (en)
Other versions
CN111146960B (zh
Inventor
王龙奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Silergy Semiconductor Technology Ltd
Original Assignee
Hangzhou Silergy Semiconductor Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Silergy Semiconductor Technology Ltd filed Critical Hangzhou Silergy Semiconductor Technology Ltd
Priority to CN202010059936.7A priority Critical patent/CN111146960B/zh
Publication of CN111146960A publication Critical patent/CN111146960A/zh
Priority to US17/146,621 priority patent/US11606037B2/en
Application granted granted Critical
Publication of CN111146960B publication Critical patent/CN111146960B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16576Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing DC or AC voltage with one threshold
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/175Indicating the instants of passage of current or voltage through a given value, e.g. passage through zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/125Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers
    • H02H7/1252Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers responsive to overvoltage in input or output, e.g. by load dump
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请公开了一种检测电路以及应用其的开关变换器。本发明实施例的技术方案通过将检测电路耦接至开关变换器输出电容,以在开关周期的第一时间段内检测所述开关变换器的输出电压,并在所述开关周期的第二时间段内根据检测到的所述输出电压产生输出电压检测信号,同时实现对电感电流过零点的检测,可以省去辅助绕组,从而有效地简化了电路设计,提高了系统效率。

Description

检测电路以及应用其的开关变换器
技术领域
本发明涉及电力电子技术,具体涉及开关变换器以及其检测电路。
背景技术
开关变换器是能够将输入电压通过不同形式的架构转换为另一固定的输出信号或可调的输出信号的功率转换电路,因此被广泛应用于移动设备等电子产品。在实际应用中,开关变换器通常需要检测开关变换器的输出电压,以实现恒压控制或过压保护等。例如,开关变换器通过采样输出电压产生输出电压反馈值,并根据输出电压反馈值和基准电压控制开关变换器的功率开关的开关状态,以控制输出电压维持在期望值。现有技术中,开关变换器通过辅助绕组耦合开关变换器的磁性元件,并通过检测辅助绕组的端电压检测开关变换器的输出电压。但是,在这种检测方法中,辅助绕组的引入会增加控制方式的复杂性,同时会增加电路的面积和成本。
发明内容
有鉴于此,本发明实施例提供了一种开关变换器及其检测电路,以有效地检测开关变换器的输出电压,并根据输出电压的采样值实现恒压控制和过压保护等。
根据本发明实施例的第一方面,提供一种开关变换器的检测电路,所述检测电路耦接至所述开关变换器的输出电容,被配置为在一个开关周期的第一时间段内提供一个与所述输出电容并联耦接的检测支路,以检测所述开关变换器的输出电压;以及,在所述开关周期的第二时间段内根据检测到的所述输出电压产生输出电压检测信号。
优选地,在所述第二时间段内,所述检测支路的一端耦接至参考电压,以在所述检测支路的另一端产生所述输出电压检测信号。
优选地,在所述第二时间段内所述检测支路的一端耦接至所述开关变换器的参考地。
优选地,在所述第一时间段内,所述输出电容给所述开关变换器的磁性元件提供第一电流路径,所述检测支路给所述磁性元件提供第二电流路径,其中所述第一电流路径和第二电流路径的端电压相等。
优选地,所述检测支路包括储能电容,用以在所述检测支路导通时获取所述输出电容的端电压,其中所述输出电容并联耦接在所述开关变换器的输出端。
优选地,所述检测电路包括:
储能电容,其第一端连接至所述开关变换器的磁性元件的第一端和功率开关的公共连接点;以及
单向导通元件,其第一端连接至所述储能电容的第二端,第二端连接至所述磁性元件的第二端。
优选地,在所述第一时间段内,所述单向导通元件导通,所述储能电容获取所述输出电容的端电压;在所述第二时间段内,所述单向导通元件关断,所述储能电容的第一端耦接至所述开关变换器的参考地,以在所述储能电容的第二端输出所述输出电压检测信号。
优选地,所述检测电路还包括采样电路,用于在所述第二时间段内检测所述储能电容的第一端或者第二端电压的首次下降沿以检测流过所述磁性元件的电流的过零点。
优选地,所述磁性元件包括原边绕组和至少一个副边绕组,所述检测电路并联耦接至所述原边绕组的两端。
根据本发明的第二方面,提供一种开关变换器,包括:
如第一方面所述的检测电路,还包括:
功率级电路,用于将输入电压转换为输出电压;
分压电路,其输入端与所述检测电路连接,接收所述检测电路产生的输出电压检测信号;以及
集成芯片;
其中,所述集成芯片的输入引脚连接至所述分压电路的输出端,用以接收输出电压检测信号的采样值,以根据所述输出电压检测信号的采样值产生相应的控制信号来控制所述功率级电路的状态。
所述集成芯片包括驱动电路,用以根据输出电压检测信号的采样值产生PWM控制信号来控制所述功率级电路的功率开关的占空比。
所述集成芯片还包括保护电路,用以根据输出电压检测信号的采样值实现过压或者过流保护。
本发明实施例的技术方案将检测电路耦接至在开关变换器输出电容,在开关周期的第一时间段提供一个与所述输出电容并联耦接的检测支路内以检测所述开关变换器的输出电压,并在所述开关周期的第二时间段内根据检测到的所述输出电压产生输出电压检测信号,同时实现对电感电流过零点的检测,可以省去辅助绕组,从而有效地简化了电路设计,提高了系统效率。
附图说明
通过以下参照附图对本发明实施例的描述,本发明的上述以及其它目的、特征和优点将更为清楚,在附图中:
图1是本发明第一实施例的开关变换器的电路图;
图2是本发明第一实施例的开关变换器的工作波形图;
图3是本发明第二实施例的开关变换器的电路图;
图4是本发明第三实施例的开关变换器的电路图;
图5是本发明第四实施例的开关变换器结构示意图。
具体实施方式
以下基于实施例对本发明进行描述,但是本发明并不仅仅限于这些实施例。在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。为了避免混淆本发明的实质,公知的方法、过程、流程、元件和电路并没有详细叙述。
此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。
同时,应当理解,在以下的描述中,“电路”是指由至少一个元件或子电路通过电气连接或电磁连接构成的导电回路。当称元件或电路“连接到”另一元件或称元件/电路“连接在”两个节点之间时,它可以是直接耦接或连接到另一元件或者可以存在中间元件,元件之间的连接可以是物理上的、逻辑上的、或者其结合。相反,当称元件“直接耦接到”或“直接连接到”另一元件时,意味着两者不存在中间元件。
除非上下文明确要求,否则整个说明书和权利要求书中的“包括”、“包含”等类似词语应当解释为包含的含义而不是排他或穷举的含义;也就是说,是“包括但不限于”的含义。
在本发明的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
图1是本发明第一实施例的开关变换器的电路图。如图1所示,本发明实施例的开关变换器包括整流电路10,输入电容C1以及功率级电路。整流电路10接收输入电压VAC并整流后产生直流输入电压,输入电容C1并联在整流电路10的输出端,以对所述直流输入电压进行滤波。所述功率级电路为BUCK拓扑,具体包括二极管D1,其阴极接收所述直流输入电压;功率开关Q1,其第一功率端与所述二极管D1的阳极连接,第二功率开关通过采样电阻Rs耦接至参考地;电感L,其第一端连接至二极管D1和功率开关Q1的公共端;输出电容C2,串联连接在二极管D1的阴极和电感L的第二端,在其两端提供输出电压Vout以提供给负载R。在不同的控制方式中,开关变换器的控制电路通过检测流经采样电阻Rs的电流以产生电流采样信号,并根据所述电流采样信号和输出电压Vout的采样值共同控制功率开关Q1的开关状态,以调节输出电压Vout满足期望输出。应理解,尽管图中示出是二极管D1,二极管D1可以是任何类型的场效应管,例如金属氧化物半导体场效应管(MOSFET),在不背离本发明所教导的范围内,还可以是本领域技术人员范围内的其他类型的场效应管和、或其他类型的晶体管。功率开关Q1也不限于MOSFET,类似地也可以是如上所述的其他类型的晶体管。
在本实施例中,检测电路11的输入端A连接至电感L的第一端,第一输出端B1连接至电感L的的第二端和输出电容C2。在一个开关周期的第一时间段内,检测电路11提供一个与输出电容C2并联耦接的检测支路,以检测开关变换器的输出电压Vout,在开关周期的第二时间段内,所述检测支路断开,不形成放电回路,并根据检测到的所述输出电压在第二输出端B2产生输出电压检测信号,其中所述第一时间段和第二时间段互不重叠,并且所述第一时间段和第二时间段的长度不超过所述开关变换器的开关周期的长度。
具体地,在所述第一时间段内,输出电容C2给电感L提供第一电流路径,所述检测支路给电感L提供第二电流路径,由于第一电流路径和第二电流路径并联,因此第一电路路径和第二电流路径的端电压相等,从而可以检测开关变换器的输出电压。
在一种实现方式中,在所述第二时间段内,检测支路的输入端A耦接至至参考电压,以在检测支路的第二输出端B2产生所述输出电压检测信号,其中所述参考电压可以任意设置,仅用于固定所述检测支路的输入端A的电压,以在第二输出端B2获取所述检测支路的端电压。在本实施例中,为了便于电路设计,在所述第二时间段内检测支路的输入端A连接至开关变换器的参考地。
在另一实施例中,在第一时间段内,功率开关Q1关断,由于电感L释放能量出现反电动势,二极管D1导通,输出电容C2给流经电感L的电感电流提供第一电流路径,以向输出电容C2和负载提供能量,检测电路11包括储能电容C3,以给所述电感电流提供第二电流路径,并获取输出电容C2上的电压,也即输出电压Vout。在所述第二时间段内,功率开关Q1导通,直流输入电压通过电感L给负载R供电,同时电感L存储能量。检测电路11的输入端A通过采样电阻Rs耦接至参考地,由于功率开关和采样电阻上压降很小,基本可以忽略,检测电路11的第二输出端B2处的电压等于输出电容C2上的电压,也即等于输出电压Vout。
在本实施例中,采用分压电路采样第二输出端B2处的电压以获取输出电压检测信号的采样值,以实现恒压控制和过压保护等。例如分压电路包括串联在第二输出端B2和参考地之间的电阻R1和R2,应理解,其他能够实现上述功能的分压电路均适用于本实施例。
在本实施例中,检测电路11包括储能电容C3和单向导通元件,以形成检测支路检测开关变换器的输出电压,其中单向导通元件为二极管D2。储能电容C3的第一端连接至电感L的第一端和功率开关Q1的公共连接点,第二端连接至二极管D2的阳极,二极管D2的阴极连接至电感L的第二端和输出电容C2。在第一时间段内,功率开关Q1关断,由于电感L释放能量出现反电动势,二极管D1和D2导通,电感电流通过第一电流路径l1对输出电容C2充电,通过第二电流路径l2对储能电容C3进行充电,以通过储能电容C3获取输出电容C2的端电压,即获取开关变换器的输出电压Vout。由于二极管D1和D2的导通压降较小,并且二者可以相互抵消,因此输出电容C2和储能电容C3的两端电压基本相等,也即储能电容C3的两端电压等于输出电压Vout。
在下一个开关周期中,功率开关再次导通,电感L存储能量,二极管D2反偏截止,检测电路11断开与电感L的连接,并且不再给电感电流提供电流路径。储能电容C3的第一端通过功率开关和采样电阻连接至参考地,由于功率开关和采样电阻上压降很小,基本可以忽略,因此,通过直接检测储能电容C3的另一端的电压值就可以获取输出电压的检测信号。开关变换器能够根据输出电压的检测信号实现恒压控制,过压保护等。应理解,本实施例中单向导通元件为二极管,并通过二极管D2给电感电流提供电流路径,其他能够实现上述功能的电路结构均可应用在本实施例中。在本实施例中,储能电容本身的能量不进行消耗,因此不会降低系统效率。
在本实施例中,检测电路11还包括采样电路,用于检测流过磁性元件的电流的过零点。由于储能电容C3上的电压与电感L两端的电压相同,当电感L中的能量释放完毕,此时流过其的电感电流过零,使得其电压会发生下降趋势,因此采样电路可以通过检测储能电容C3的任一端的电压的首次下降沿以检测电感电流的过零点,开关变换器根据电感电流的过零点可以实现对功率开关的控制。在本实施例中,所述采样电路包括电阻分压网络和比较电路,电阻分压网络用于在所述功率开关Q1关断期间检测所述储能电容C3任一端的电压,并通过比较电路将检测到的电压与电压时阈值进行比较以产生表征电感电流过零时的电流检测信号,当检测到的电压首次下降到所述电压阈值时,比较电路产生有效的电流检测信号。在该周期剩下的时间内不再作比较。在本实施例中,当开关变换器采用同步整流控制时,开关变换器根据所述电流检测信号控制同步整流管的导通时间,以调节输出电压Vout,从而提高开关变换器的转换效率。
与现有技术相比,本发明实施例的技术方案通过在第一时间段内在开关变换器的输出电容的两端并联检测支路以检测开关变换器的输出电压,并在第二是时间段内根据检测到的输出电压产生输出电压检测信号,同时实现了对电感电流过零点的检测,可以省去辅助绕组等器件,从而有效地简化了电路设计,提高了系统效率。
图2是本发明第一实施例的开关变换器的工作波形图。如图2所示,图中分别示出了图1中检测电路的输入端A和第二输出端B2处的电压VA和VB2,也即储能电容C3两端的电压,电压VA和VB2具有相同的变化趋势。在t1时刻,功率开关Q1关断后,由于电感L释放能量出现反电动势,二极管D1和D2导通,电感电流分别通过输出电容C2和储能电容C3进行续流,储能电容C3获取输出电容C2上的电压,储能电容C3的两端电压VA和VB2保持恒定并维持一段时间。在t2时刻,流过电感L的电感电流过零,因此电压VA和VB2不再保持恒定,开始呈现出下降的趋势。在t3时刻,功率开关Q1导通,储能电容C3的第一端通过功率开关和采样电阻耦接至参考地,第二输出端上的电压VB2大小与输出电压Vout的大小相等,极性与输出电压Vout的极性相反,从而在第二输出端B2可以得到输出电压的检测信号,以实现恒压控制或过压保护等。从图2中可以看出,在t2时刻储能电容C3的两端电压VA和VB2首次出现下降沿趋势,因此通过检测储能电容C3的端电压可以得到电感电流的过零点。
图3是本发明第二实施例的开关变换器的电路图。如图3所示,本发明实施例的开关变换器包括整流电路10,输入电容C1以及功率级电路。与图1中实施例的不同之处在于,本实施例中的功率级电路为BUCK-BOOST拓扑,磁性元件L,功率开关Q1和二极管D1构成新的连接方式。但是检测电路的工作原理和结构与实施例一相同,在此不再赘述。
图4是本发明第三实施例的开关变换器的电路图。如图4所示,本发明实施例的开关变换器包括整流电路10,输入电容C1以及功率级电路。与上述实施例的不同之处在于,本实施例中的功率级电路为FLYBACK拓扑。磁性元件为变压器,包括相互耦合的原边绕组L1和副边绕组L2。原边绕组L1的第一端接收直流输入电压,其第二端连接至功率开关Q1。副边绕组L2的第一端连接至二极管D1的阳极,其第二端连接至输出电容C2的第一端,输出电容C2的第二端连接至二极管D1的阴极。原边绕组L1的第二端与副边绕组L2的第一端形成同名端。检测电路11并联耦接至连接在原边绕组L1的两端,并通过变压器与输出电容C2耦接,以检测开关变换器的输出电容。
在一个开关周期的第一时间段内,检测电路11提供与输出电容并联的检测支路以检测开关变换器的输出电压,并在第二时间段内根据检测到的输出电压产生输出电压检测信号。具体地,在第一时间段内,功率开关Q1关断,输出电容C2给副边绕组L2提供第一电流路径l1,检测电路11给原边绕组L1提供第二电流路径l2,储能电容C3在二极管D2导通时检测原边绕组L1两端的电压,由于原边绕组L1和副边绕组L2相互耦合组成互感绕组,因此储能电容C3可以检测副边绕组L2的两端电压,也即输出电容C2两端的电压,因此储能电容C3可以通过检测原边绕组L1的两端电压以检测开关变换器的输出电压。在第二时间段内,功率开关Q1导通,储能电容C3的第一端通过功率开关Q1和采样电阻Rs耦接至参考地,由于功率开关和采样电阻上压降很小,基本可以忽略,检测电路11的第二输出端B2处的电压等于输出电容C2上的电压,也即等于输出电压Vout。
图5是本发明第四实施例的开关变换器的电路结构图。如图5所示,开关变换器包括功率级电路51,检测电路52,分压电路53和集成电路54。该开关变换器的功率级电路51根据功率开关,整流管,电感,电容等的不同连接方式可以为不同类型的开关变换器的拓扑结构,如降压型、升压-降压型、正激式和反激式等拓扑结构。在不同的实现方式中,功率级电路51中的功率开关或整流管等也可以集成在集成电路54中。在本实施例中,开关变换器还包括上述实施例中的检测电路,用于检测开关变换器的输出电压Vout。在该实施例中,分压电路53与检测电路52相连接,接收检测电路52产生的输出电压检测信号;集成芯片54的输入引脚pin连接至分压电路53的输出端,用于接收输出电压检测信号的采样值,从而根据输出电压检测信号的采样值产生相应的控制信号来控制功率级电路51的状态。集成芯片54包括驱动电路541和保护电路542。驱动电路541根据输出电压检测信号的采样值产生驱动信号DRV,用于控制功率开关的开关动作,以调节功率开关的占空比,使得输出电压Vout维持在期望值,以实现恒压控制。例如,驱动电路541根据输出电压检测信号的采样值和表征期望输出电压的基准电压的误差结果产生驱动信号DRV,并根据驱动信号DRV控制功率开关的开关状态,实现对功率开关管的占空比的控制,从而使得功率级电路的输出电压维持该期望输出电压。
保护电路542根据输出电压检测信号的采样值产生输出信号out以控制所述功率级电路51,实现过压或过流保护。例如,保护电路542根据输出电压检测信号的采样值和保护阈值的比较结果判断是否输出电压发生过压;当输出电压检测信号的采样值大于该保护阈值时,表示输出电压发生过压,此时输出信号out通过对功率级电路51中的功率开关管的开关状态控制,来切断直流输入电压对功率级电路51的输出端的能量传递,从而完成过压保护。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域技术人员而言,本发明可以有各种改动和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

1.一种用于开关变换器的检测电路,其特征在于,
所述检测电路耦接至所述开关变换器的输出电容,被配置为在一个开关周期的第一时间段内提供一个与所述输出电容并联耦接的检测支路,以检测所述开关变换器的输出电压;以及,在所述开关周期的第二时间段内根据检测到的所述输出电压产生输出电压检测信号。
2.根据权利要求1所述的检测电路,其特征在于,在所述第二时间段内,所述检测支路的一端耦接至参考电压,以在所述检测支路的另一端产生所述输出电压检测信号。
3.根据权利要求2所述的检测电路,其特征在于,在所述第二时间段内所述检测支路的一端耦接至所述开关变换器的参考地。
4.根据权利要求1所述的检测电路,其特征在于,在所述第一时间段内,所述输出电容给所述开关变换器的磁性元件提供第一电流路径,所述检测支路给所述磁性元件提供第二电流路径,其中所述第一电流路径和第二电流路径的端电压相等。
5.根据权利要求4所述的检测电路,其特征在于,所述检测支路包括储能电容,用以在所述检测支路导通时获取所述输出电容的端电压,其中所述输出电容并联耦接在所述开关变换器的输出端。
6.根据权利要求1所述的检测电路,其特征在于,所述检测电路包括:
储能电容,其第一端连接至所述开关变换器的磁性元件的第一端和功率开关的公共连接点;以及
单向导通元件,其第一端连接至所述储能电容的第二端,第二端连接至所述磁性元件的第二端。
7.根据权利要求6所述的检测电路,其特征在于,在所述第一时间段内,所述单向导通元件导通,所述储能电容获取所述输出电容的端电压;在所述第二时间段内,所述单向导通元件关断,所述储能电容的第一端耦接至所述开关变换器的参考地,以在所述储能电容的第二端输出所述输出电压检测信号。
8.根据权利要求6所述的检测电路,其特征在于,所述检测电路还包括采样电路,用于在所述第一时间段内检测所述储能电容的第一端或者第二端电压的首次下降沿以检测流过所述磁性元件的电流的过零点。
9.根据权利要求4所述的检测电路,其特征在于,所述磁性元件包括原边绕组和至少一个副边绕组,所述检测电路并联耦接至所述原边绕组的两端。
10.一种开关变换器,其特征在于,包括权利要求1-9所述的任一检测电路,还包括:
功率级电路,用于将输入电压转换为输出电压;
分压电路,其输入端与所述检测电路连接,接收所述检测电路产生的输出电压检测信号;以及
集成芯片;
其中,所述集成芯片的输入引脚连接至所述分压电路的输出端,用以接收输出电压检测信号的采样值,以根据所述输出电压检测信号的采样值产生相应的控制信号来控制所述功率级电路的状态。
11.根据权利要求10所述的开关变换器,其特征在于,所述集成芯片包括驱动电路,用以根据输出电压检测信号的采样值产生PWM控制信号来控制所述功率级电路的功率开关的占空比。
12.根据权利要求10所述的开关变换器,其特征在于,所述集成芯片还包括保护电路,用以根据输出电压检测信号的采样值实现过压或者过流保护。
CN202010059936.7A 2020-01-19 2020-01-19 检测电路以及应用其的开关变换器 Active CN111146960B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010059936.7A CN111146960B (zh) 2020-01-19 2020-01-19 检测电路以及应用其的开关变换器
US17/146,621 US11606037B2 (en) 2020-01-19 2021-01-12 Detection circuit and switching converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010059936.7A CN111146960B (zh) 2020-01-19 2020-01-19 检测电路以及应用其的开关变换器

Publications (2)

Publication Number Publication Date
CN111146960A true CN111146960A (zh) 2020-05-12
CN111146960B CN111146960B (zh) 2021-06-08

Family

ID=70526047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010059936.7A Active CN111146960B (zh) 2020-01-19 2020-01-19 检测电路以及应用其的开关变换器

Country Status (2)

Country Link
US (1) US11606037B2 (zh)
CN (1) CN111146960B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113391113A (zh) * 2021-06-18 2021-09-14 矽力杰半导体技术(杭州)有限公司 电压检测电路、开关变换器及集成电路
CN114062771A (zh) * 2022-01-14 2022-02-18 天宜微电子(北京)有限公司 过流检测电路、过流检测方法及直流变换系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116131219B (zh) * 2023-02-16 2023-06-30 恩赛半导体(成都)有限公司 一种过压保护电路和电子装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1271991A (zh) * 1999-04-27 2000-11-01 精工电子有限公司 输出电压检测电路
US20070236155A1 (en) * 2006-04-11 2007-10-11 Beyond Innovation Technology Co., Ltd. Power converter for led module and related devices thereof
CN102223076A (zh) * 2011-06-25 2011-10-19 深圳航天科技创新研究院 一种应用于Buck类DC/DC开关电源中的磁隔离反馈电路
CN104297553A (zh) * 2014-10-28 2015-01-21 矽力杰半导体技术(杭州)有限公司 输出电压检测电路、控制电路和开关型变换器
CN109039092A (zh) * 2018-09-20 2018-12-18 广州金升阳科技有限公司 一种电压检测电路及应用该电路的双向变换器
CN109672322A (zh) * 2018-12-10 2019-04-23 矽力杰半导体技术(杭州)有限公司 开关变换器的检测电路和控制电路

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075716A (en) 1999-04-06 2000-06-13 Lucent Technologies Inc. Two-stage, three phase boost converter with reduced total harmonic distortion
US6385057B1 (en) 2001-01-31 2002-05-07 Bartronics, Inc. Power conversion system and method of power conversion
US7358710B2 (en) * 2006-04-18 2008-04-15 Dell Products L.P. Temperature-compensated inductor DCR dynamic current sensing
US7834643B2 (en) 2008-03-28 2010-11-16 Baker Hughes Incorporated Systems and methods for reducing distortion in a power source using an active harmonics filter
US8471488B1 (en) 2011-02-28 2013-06-25 Cooper Technologies Company Reducing total harmonic distortion in a power factor corrected flyback switch mode power supply
CN102437727B (zh) 2011-12-26 2013-10-23 矽力杰半导体技术(杭州)有限公司 一种升压型pfc控制器
US9179514B2 (en) 2012-07-11 2015-11-03 Roal Electronics S.P.A. Control circuit for reducing of total harmonic distortion (THD) in the power supply to an electric load
US9124169B2 (en) 2013-03-14 2015-09-01 Unico, Inc. Autotransformer system reducing total harmonic distortion
CN103475199B (zh) 2013-09-13 2015-11-25 矽力杰半导体技术(杭州)有限公司 用于反激式开关电源的谐波控制方法及控制电路
US9444323B2 (en) 2014-01-22 2016-09-13 Solidstate Controls, Llc Power conversion system having a harmonic distortion limiter
JP6554325B2 (ja) * 2014-08-01 2019-07-31 ローム株式会社 絶縁同期整流型dc/dcコンバータおよびそのフィードバック回路、その同期整流コントローラ、それを用いた電源装置、電源アダプタおよび電子機器
CN108093534B (zh) 2018-02-11 2024-02-02 上海晶丰明源半导体股份有限公司 控制方法、控制器及led驱动装置
US10924020B1 (en) * 2019-07-31 2021-02-16 Raytheon Company Prestart control circuit for a switching power converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1271991A (zh) * 1999-04-27 2000-11-01 精工电子有限公司 输出电压检测电路
US20070236155A1 (en) * 2006-04-11 2007-10-11 Beyond Innovation Technology Co., Ltd. Power converter for led module and related devices thereof
CN102223076A (zh) * 2011-06-25 2011-10-19 深圳航天科技创新研究院 一种应用于Buck类DC/DC开关电源中的磁隔离反馈电路
CN104297553A (zh) * 2014-10-28 2015-01-21 矽力杰半导体技术(杭州)有限公司 输出电压检测电路、控制电路和开关型变换器
CN109039092A (zh) * 2018-09-20 2018-12-18 广州金升阳科技有限公司 一种电压检测电路及应用该电路的双向变换器
CN109672322A (zh) * 2018-12-10 2019-04-23 矽力杰半导体技术(杭州)有限公司 开关变换器的检测电路和控制电路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113391113A (zh) * 2021-06-18 2021-09-14 矽力杰半导体技术(杭州)有限公司 电压检测电路、开关变换器及集成电路
CN113391113B (zh) * 2021-06-18 2022-11-18 矽力杰半导体技术(杭州)有限公司 电压检测电路、开关变换器及集成电路
CN114062771A (zh) * 2022-01-14 2022-02-18 天宜微电子(北京)有限公司 过流检测电路、过流检测方法及直流变换系统
CN114062771B (zh) * 2022-01-14 2022-04-12 天宜微电子(北京)有限公司 过流检测电路、过流检测方法及直流变换系统

Also Published As

Publication number Publication date
US11606037B2 (en) 2023-03-14
US20210226544A1 (en) 2021-07-22
CN111146960B (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
US9997988B2 (en) Zero-crossing detection circuit
US7023186B2 (en) Two stage boost converter topology
CN111146960B (zh) 检测电路以及应用其的开关变换器
KR101493117B1 (ko) 이중-극성 다중-출력 dc/dc 변환기 및 전압 조정기
TWI801442B (zh) 合併式分壓器正向轉換器
US20210091653A1 (en) Power converter and related system
US10038383B2 (en) Low forward voltage rectifier using capacitive current splitting
US9362831B2 (en) Fly-forward converter with energy recovery snubber
JP6134479B2 (ja) アクティブ降圧型パワーファクター修正装置
JP3655247B2 (ja) 同期整流回路及び電源装置
KR101140336B1 (ko) 절연형 벅 부스트 dc?dc 컨버터
CN114094854B (zh) 一种电源变换系统及其控制芯片和供电控制电路
EP2221951B1 (en) Boost converter for voltage boosting
US7548442B2 (en) Power converter with coupled inductor
CA2431689A1 (en) Zero-current switched resonant converter
CN106961761B (zh) 直流供电装置和使用该直流供电装置的照明系统
CN109256966B (zh) 交流-直流功率变换器
KR101979622B1 (ko) 동적으로 전류를 센싱하는 컨버터
KR101656021B1 (ko) 직렬공진형 컨버터
JP2009171829A (ja) 絶縁型スイッチング電源装置
CN217282692U (zh) 一种buck-boost双向dcdc变换器及其ocp电路
CN213783142U (zh) 电力转换电路、dc-dc转换器和ac-dc转换器
CN117200586B (zh) 一种辅助电源、电源系统和电源装备
CN116722720B (zh) 一种辅助电路、电源系统和电子装置
US11552573B1 (en) Cycle-by-cycle reverse current limiting in ACF converters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant