CN111129189B - 一种空间用ito玻璃盖片及制备方法 - Google Patents

一种空间用ito玻璃盖片及制备方法 Download PDF

Info

Publication number
CN111129189B
CN111129189B CN201911266084.2A CN201911266084A CN111129189B CN 111129189 B CN111129189 B CN 111129189B CN 201911266084 A CN201911266084 A CN 201911266084A CN 111129189 B CN111129189 B CN 111129189B
Authority
CN
China
Prior art keywords
cover plate
evaporation
glass cover
placing
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911266084.2A
Other languages
English (en)
Other versions
CN111129189A (zh
Inventor
王鑫
杜永超
欧伟
赵颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Hengdian Space Power Source Co ltd
CETC 18 Research Institute
Original Assignee
Tianjin Hengdian Space Power Source Co ltd
CETC 18 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Hengdian Space Power Source Co ltd, CETC 18 Research Institute filed Critical Tianjin Hengdian Space Power Source Co ltd
Priority to CN201911266084.2A priority Critical patent/CN111129189B/zh
Publication of CN111129189A publication Critical patent/CN111129189A/zh
Application granted granted Critical
Publication of CN111129189B publication Critical patent/CN111129189B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/041Provisions for preventing damage caused by corpuscular radiation, e.g. for space applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及一种空间用ITO玻璃盖片及制备方法,属于空间电源技术领域,所述空间用ITO玻璃盖片包括玻璃盖片,在所述玻璃盖片上表面依次蒸镀氟化镁膜、ITO膜和金属电极,其中电极采用多层金属钛钯银结构;金属电极包括两个电极主焊点、与电极主焊点相连,且相互平行的两条横向汇流带、与横向汇流带垂直的多条纵向支流带;每条纵向支流带的一端与任一条横向汇流带连接,每条纵向支流带的另一端悬空。本发明采用该电极设计后,对ITO膜层导电能力的要求大幅降低,使得ITO膜层的厚度可以降低,盖片的透过率提高,太阳电池的转换效率更高。增加了盖片上电荷的导出通道,提高了玻璃盖片应用于空间复杂环境中的可靠性。

Description

一种空间用ITO玻璃盖片及制备方法
技术领域
本发明属于空间电源技术领域,尤其是涉及一种空间用ITO玻璃盖片及制备方法。
背景技术
当地球同步轨道上的卫星遇上太阳风暴会遭受带电粒子的轰击。卫星表面有多重绝缘材料遭受了带电粒子的轰击后,当表面电荷不均匀产生的电位高过击穿电压时,将发生静电放电。太阳电池阵是卫星表面面积最大、绝缘材料最多的组件,发生静电放电的可能性最大。对于太阳观测卫星和测地卫星,设计上要求太阳电池阵上任意一点到卫星的结构地间的电势小于某值,因此需要在卫星太阳电池阵表面镀涂导电涂层,防止静电放电。因此需要在上玻璃盖片表面镀涂一层ITO透明导电薄膜以解决上述问题。
目前,国际上已经将ITO玻璃盖片成功应用于多种卫星太阳电池阵上,我国的张衡一号电磁监测卫星上也已应用此产品。由于ITO材料在可见光波段对太阳光有吸收,将其覆盖在太阳电池表面时会降低盖片透过率,进而影响电池组件的光电转化效率,因此在玻璃盖片表面先沉积一层氟化镁膜增透再蒸镀ITO膜。即便如此ITO玻璃盖片的透过率依然明显低于氟化镁膜玻璃盖片,如图1所示。对于ITO玻璃盖片,ITO膜的厚度越厚,其电阻越低,但是盖片透过率越低,电池光电转换效率越低;反之,ITO膜的厚度越薄,其电阻越高,但是盖片透过率更高,电池光电转换效率越高。因此设计上ITO膜层的厚度选取在满足电阻要求的前提下的最低值。即便如此,采用ITO玻璃盖片后,电池性能的衰减仍然会对太阳电池阵整体输出功率造成衰减。
发明内容
本发明要解决的问题是提供一种空间用ITO玻璃盖片及制备方法,用于提高ITO玻璃盖片的透过率和可靠性,使其在空间应用中能够保证太阳电池的高效率和可靠性。
本发明的第一发明目的是提供一种空间用ITO玻璃盖片,包括玻璃盖片,在所述玻璃盖片上表面依次蒸镀氟化镁膜、ITO膜和金属电极,所述金属电极包括两个电极主焊点、与所述电极主焊点电连接,且相互平行的两条横向汇流带、与所述横向汇流带垂直的多条纵向支流带;每条纵向支流带的一端与任一条横向汇流带连接,每条纵向支流带的另一端悬空。
本发明的第二发明目的是提供一种制备空间用ITO玻璃盖片的方法,包括如下步骤:
S1、清洗玻璃盖片;S2、蒸镀膜层;S3、电极蒸镀;S4、退火处理;
所述S3具体为:
将蒸镀有氟化镁和ITO膜层的玻璃盖片和掩模板置于工装中放入真空镀膜机内,所述掩模板上的镂空部分为蒸镀电极的位置;抽真空,真空度达到5×10-4Pa时开始依次蒸镀金属钛-钯-银,钛蒸镀速率设定为5nm/s,蒸镀厚度为300nm;钯蒸镀速率设定为2nm/s,蒸镀厚度设定为100nm;银蒸镀速率为10nm/s,蒸镀厚度为5000nm;蒸镀完成后冷却至室温取出。
进一步,所述S1具体为:将玻璃盖片置于承载器中,在浓硫酸中浸泡15min~25min;浸泡后将承载器取出置于去离子水中进行冲洗,边冲洗边进行抖动,反复冲洗15~20次;将承载器置于氢氟酸溶液中浸泡1~3min,所述氢氟酸溶液中氢氟酸和水的体积比为1:50;浸泡后将承载器取出置于去离子水中进行冲洗,边冲洗边进行抖动,反复冲洗20次;将冲洗后的玻璃盖片置于无水乙醇中进行脱水;将承载器置于甩干机中甩干。
进一步,所述S2具体为:将清洗后的玻璃盖片置于蒸镀夹具上,放入真空镀膜机中,抽真空后进行烘烤,烘烤温度设定为250℃,烘烤18分钟~22分钟;烘烤完成后进行氟化镁膜层蒸镀,蒸镀速率为3nm/s,蒸镀厚度设为60nm,蒸镀完成后坩埚冷却15min;继续进行ITO膜层的蒸镀,将氧化铟和氧化锡以95:5的比例充分混合均匀作为ITO膜料,蒸发速率为0.5nm/s,蒸镀厚度8nm,充氧的含量为30sccm;蒸镀完成后冷却至室温,取出玻璃盖片。
进一步,所述S4具体为:将蒸镀好的ITO玻璃盖片放在加热炉的托盘中,抽真空;当镀膜机真空度达到1×10-3Pa后,将加热炉的温度设定为中250℃,退火处理1h,随炉冷却。
本发明具有的优点和积极效果是:
1、本发明采用上述非封闭结构的电极后,对ITO膜层导电能力的要求大幅降低,使得ITO膜层的厚度可以降低,盖片的透过率提高,太阳电池的转换效率更高。
2、增加了盖片上电荷的导出通道,提高了玻璃盖片应用于空间复杂环境中的可靠性。
3、由于本发明采用了上述非封闭结构的电极图形设计,因此采用掩模版可以不增加任何工艺流程,直接制备出金属电极图形,使得电极具备精细结构。
附图说明
图1为ITO玻璃盖片和氟化镁玻璃盖片透过率模拟曲线
图2为现有ITO玻璃盖片示意图
图3为本发明ITO玻璃盖片示意图
图4为空间用太阳电池栅线示意图
图5为本发明ITO玻璃盖片与现有ITO玻璃盖片透过率模拟曲线。
具体实施方式
下面结合附图和具体实施例对本发明作进一步的说明。
请参阅图2至图5;
本发明提供一种空间用ITO玻璃盖片,包括氟化镁膜、ITO薄膜及金属电极。本发明所采用的盖片图形如图3所示,在玻璃盖片1上依次蒸镀氟化镁膜2、ITO膜3和梳状金属电极4,其中电极采用多层金属钛钯银结构。金属电极的图形设计如图3所示,通过两侧的梳状栅线设计可以增加盖片上电荷导出的通路,使得电荷流经ITO膜到电极的平均路径大幅缩短。该金属电极在盖片上连接成网状并且通过主焊点进行盖片间的互联,最终与卫星的“结构地”相连。这样就可以将设计上需要等电位的个体由整片盖片分解为盖片上的局部区域,对ITO膜层导电能力的要求大幅降低,使得ITO膜层的厚度可以降低。使得ITO膜层对可见光的吸收减少,太阳电池组件的光电转换效率提高。
上述结构的空间用ITO玻璃盖片制造工艺为:
包括:盖片清洗、膜层蒸镀、电极蒸镀和退火处理等几个部分。
1、盖片清洗
1)浓硫酸中浸泡;2)冲洗;3)氢氟酸溶液中浸泡;4)冲洗;5)脱水;6)甩干。
将玻璃盖片置于承载器中,在浓硫酸中浸泡20min;浸泡后将承载器取出置于去离子水中进行冲洗,边冲洗边进行抖动,反复冲洗20次;将承载器置于1:50(氢氟酸:水)的氢氟酸溶液中浸泡2min;浸泡后将承载器取出置于去离子水中进行冲洗,边冲洗边进行抖动,反复冲洗20次;将冲洗后的玻璃盖片置于无水乙醇中进行脱水;将承载器置于甩干机中甩干。
2、膜层蒸镀
1)放入;2)烘烤;3)氟化镁膜层蒸镀;4)ITO膜层的蒸镀;5)取出。
将清洗后的玻璃盖片置于蒸镀夹具上,放入真空镀膜机中,抽真空;真空度达到机器设定值后进行烘烤,烘烤温度设定为250℃,烘烤20分钟;烘烤完成后进行氟化镁膜层蒸镀,蒸镀速率为3nm/s,蒸镀厚度设为60nm,蒸镀完成后坩埚冷却15min;继续进行ITO膜层的蒸镀,将氧化铟和氧化锡以95:5的比例充分混合均匀作为ITO膜料,蒸发速率为0.5nm/s,蒸镀厚度设为8nm,充氧的含量为30sccm;蒸镀完成后冷却至室温,取出玻璃盖片。
3、电极蒸镀
1)放入;2)依次蒸镀金属钛-钯-银;3)取出。
将蒸镀有氟化镁和ITO膜层的玻璃盖片和掩模板置于工装中(其中掩模板上镂空部分为需要蒸镀电极部分相同)放入真空镀膜机内,抽真空,真空度达到5×10-4Pa时开始依次蒸镀金属钛-钯-银,钛蒸镀速率设定为5nm/s,蒸镀厚度设定为300nm;钯蒸镀速率设定为2nm/s,蒸镀厚度设定为100nm;银蒸镀速率设定为10nm/s,蒸镀厚度设定为5000nm;蒸镀完成后冷却至室温取出。
4、退火处理
1)放入;2)退火处理;3)取出。
将蒸镀好的ITO玻璃盖片放在加热炉的托盘中,抽真空;当镀膜机真空度达到1×10-3Pa后,将加热炉的温度设定为中250℃,退火处理1h,随炉冷却。
通过以上方法可以制备出本发明设计的ITO玻璃盖片产品,该产品具有更佳的透过率,在原有产品的基础上提高电池的组件的光电转换效率,同时使ITO玻璃盖片可靠性得以提高。
上述技术方案:电极蒸镀采用掩模板在玻璃盖片上蒸镀上与空间用太阳电池的栅线电极部分重合的盖片电极。这一设计能够在不增加工艺步骤的前提下,尽量减少对电池有效区域的遮挡,提高电池效率。
请参阅图5,其中,点虚线为采用本发明技术方案后的测试曲线,实线为传统技术的测试曲线,从图示中显而易见:本发明中的ITO厚度小于传统技术中的ITO厚度,因此光谱透过率却比传统技术大;
图5中的ITO厚度并非本技术方案的唯一厚度,并不限定本专利的保护范围,此处优选实施例仅为定性的说明问题,本领域技术人员在实际设计过程中,可以结合其他参数或者需求,对ITO厚度进行适应性调整。
以上对本发明的一个实施例进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之内。

Claims (1)

1.一种空间用ITO玻璃盖片的制备 方法,所述空间用ITO玻璃盖片包括玻璃盖片,在所述玻璃盖片上表面依次蒸镀氟化镁膜、ITO膜和金属电极,其中电极采用多层金属钛钯银结构;其特征在于,所述金属电极包括:
两个电极主焊点;
与所述电极主焊点电连接,且相互平行的两条横向汇流带;
与所述横向汇流带垂直的多条纵向支流带;每条纵向支流带的一端与任一条横向汇流带连接,每条纵向支流带的另一端悬空;
所述玻璃盖片为矩形结构,两个电极主焊点位于矩形ITO膜上表面两个角上;
所述方法包括如下步骤:
S1、清洗玻璃盖片;具体为:将玻璃盖片置于承载器中,在浓硫酸中浸泡15min~25min;浸泡后将承载器取出置于去离子水中进行冲洗,边冲洗边进行抖动,反复冲洗15~20次;将承载器置于氢氟酸溶液中浸泡1~3min,所述氢氟酸溶液中氢氟酸和水的体积比为1:50;浸泡后将承载器取出置于去离子水中进行冲洗,边冲洗边进行抖动,反复冲洗20次;将冲洗后的玻璃盖片置于无水乙醇中进行脱水;将承载器置于甩干机中甩干;
S2、蒸镀膜层;具体为:将清洗后的玻璃盖片置于蒸镀夹具上,放入真空镀膜机中,抽真空后进行烘烤,烘烤温度设定为250℃,烘烤18分钟~22分钟;烘烤完成后进行氟化镁膜层蒸镀,蒸镀速率为3nm/s,蒸镀厚度设为60nm,蒸镀完成后坩埚冷却15min;继续进行ITO膜层的蒸镀,将氧化铟和氧化锡以95:5的比例充分混合均匀作为ITO膜料,蒸发速率为0.5nm/s,蒸镀厚度8nm,充氧的含量为30sccm;蒸镀完成后冷却至室温,取出玻璃盖片;
S3、电极蒸镀;具体为:将蒸镀有氟化镁和ITO膜层的玻璃盖片和掩模板置于工装中放入真空镀膜机内,所述掩模板上的镂空部分为蒸镀电极的位置;抽真空,真空度达到5×10- 4Pa时开始依次蒸镀金属钛-钯-银,钛蒸镀速率设定为5nm/s,蒸镀厚度为300nm;钯蒸镀速率设定为2nm/s,蒸镀厚度设定为100nm;银蒸镀速率为10nm/s,蒸镀厚度为5000nm;蒸镀完成后冷却至室温取出;
S4、退火处理;具体为:将蒸镀好的ITO玻璃盖片放在加热炉的托盘中,抽真空;当镀膜机真空度达到1×10-3Pa后,将加热炉的温度设定为中250℃,退火处理1h,随炉冷却。
CN201911266084.2A 2019-12-11 2019-12-11 一种空间用ito玻璃盖片及制备方法 Active CN111129189B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911266084.2A CN111129189B (zh) 2019-12-11 2019-12-11 一种空间用ito玻璃盖片及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911266084.2A CN111129189B (zh) 2019-12-11 2019-12-11 一种空间用ito玻璃盖片及制备方法

Publications (2)

Publication Number Publication Date
CN111129189A CN111129189A (zh) 2020-05-08
CN111129189B true CN111129189B (zh) 2022-04-12

Family

ID=70498449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911266084.2A Active CN111129189B (zh) 2019-12-11 2019-12-11 一种空间用ito玻璃盖片及制备方法

Country Status (1)

Country Link
CN (1) CN111129189B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129177B (zh) * 2019-12-24 2022-03-04 中国电子科技集团公司第十八研究所 一种与空间电池匹配的ito玻璃盖片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116883A (ja) * 1984-11-13 1986-06-04 Toa Nenryo Kogyo Kk 金属配線付き透明電極
CN1643621A (zh) * 2002-03-26 2005-07-20 株式会社藤仓 导电性玻璃和使用其的光电变换元件
EP1560272A1 (en) * 2004-01-29 2005-08-03 Sanyo Electric Co., Ltd. Solar cell module
CN104176944A (zh) * 2014-09-05 2014-12-03 北京航空航天大学 一种玻璃基底上ots自组装薄膜的改性方法
CN104347755A (zh) * 2013-08-05 2015-02-11 天津恒电空间电源有限公司 太阳电池阵用玻璃盖片的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010077622A1 (en) * 2008-12-08 2010-07-08 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Electrical devices including dendritic metal electrodes
US9105379B2 (en) * 2011-01-21 2015-08-11 Uchicago Argonne, Llc Tunable resistance coatings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116883A (ja) * 1984-11-13 1986-06-04 Toa Nenryo Kogyo Kk 金属配線付き透明電極
CN1643621A (zh) * 2002-03-26 2005-07-20 株式会社藤仓 导电性玻璃和使用其的光电变换元件
EP1560272A1 (en) * 2004-01-29 2005-08-03 Sanyo Electric Co., Ltd. Solar cell module
CN104347755A (zh) * 2013-08-05 2015-02-11 天津恒电空间电源有限公司 太阳电池阵用玻璃盖片的制备方法
CN104176944A (zh) * 2014-09-05 2014-12-03 北京航空航天大学 一种玻璃基底上ots自组装薄膜的改性方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
空间太阳电池阵用ITO玻璃盖片工艺探索;黄稼等;《电源技术研究与设计》;20180630;第42卷(第6期);第846-848页 *

Also Published As

Publication number Publication date
CN111129189A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
US20190148579A1 (en) Heterojunction solar cell and preparation method thereof
US4162505A (en) Inverted amorphous silicon solar cell utilizing cermet layers
CN102157624B (zh) 一种硅太阳能电池及其制备方法
CN101447518A (zh) 一种背点接触异质结太阳能电池及其制造方法
EP3486953A1 (en) Heterojunction solar cell and preparation method thereof
CN106816493A (zh) 一种异质结太阳能电池边缘绝缘方法
CN104167492A (zh) 一种钙钛矿电池、及其制备方法
CN111129189B (zh) 一种空间用ito玻璃盖片及制备方法
JP4493514B2 (ja) 光起電力モジュールおよびその製造方法
JPH0147907B2 (zh)
CN102969390B (zh) 一种太阳能晶硅电池的开窗工艺
WO2024060621A1 (zh) 电池的制备方法、电池和电子产品
JP2006269607A (ja) 光起電力素子の製造方法
US20110265847A1 (en) Thin-film solar cell module and manufacturing method thereof
US20120122270A1 (en) Etching method for use with thin-film photovoltaic panel
TWI650872B (zh) 太陽能電池及其製造方法、太陽能電池模組及太陽能電池發電系統
CN115425148A (zh) 一种钙钛矿太阳能电池及制备方法
CN116033764A (zh) 一种太阳电池
JP2009117337A (ja) 電極基板、光電変換素子および色素増感太陽電池
US20220173264A1 (en) Method for producing back contact solar cell
CN111129177B (zh) 一种与空间电池匹配的ito玻璃盖片及其制备方法
Krawczak et al. Electrical properties of aluminum contacts deposited by DC sputtering method for photovoltaic applications
JPH0818084A (ja) 太陽電池の製造方法及び製造装置
JP2017017219A (ja) 太陽電池
JPS5943101B2 (ja) 非晶質半導体太陽電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant