CN111099898A - 一种铝基碳化硅高密度封装半导体复合材料 - Google Patents

一种铝基碳化硅高密度封装半导体复合材料 Download PDF

Info

Publication number
CN111099898A
CN111099898A CN202010005579.6A CN202010005579A CN111099898A CN 111099898 A CN111099898 A CN 111099898A CN 202010005579 A CN202010005579 A CN 202010005579A CN 111099898 A CN111099898 A CN 111099898A
Authority
CN
China
Prior art keywords
sic
aluminum
silicon carbide
powder
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010005579.6A
Other languages
English (en)
Inventor
田鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Shenxin New Material Technology Co Ltd
Original Assignee
Changzhou Shenxin New Material Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Shenxin New Material Technology Co Ltd filed Critical Changzhou Shenxin New Material Technology Co Ltd
Priority to CN202010005579.6A priority Critical patent/CN111099898A/zh
Publication of CN111099898A publication Critical patent/CN111099898A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/408Noble metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

一种铝基碳化硅高密度封装半导体复合材料,包含如下步骤:制备SiC复合浆料,首先使用SiC微粉配制得到固含量为30‑70%的SiC浆料,然后按照SiC∶Au∶Ag:Pd为(50‑60)∶(0.3‑0.6)∶1:(0.02‑0.05)的质量比加入金粉和银粉和钯粉,混合均匀,得到SiC复合浆料;流延成型,对得到的SiC复合浆料除泡混合均匀后,进行流延得到SiC复合流延膜;流延膜素烧,对得到的流延膜进行素烧,得到SiC复合素坯;真空烧结,将SiC符合素坯在真空状态下烧结,得到铝基碳化硅。本发明的有益效果:通过采用凝胶流延法制备铝基氮化铝,工艺简单,得到的产品成分分布均匀,气孔率低,半导体性能优越,且通过引入金、银和钯粉,充分改善烧结性能,进一步降低烧结温度,节能环保。

Description

一种铝基碳化硅高密度封装半导体复合材料
技术领域
本发明涉及一种半导体复合材料,具体涉及一种铝基碳化硅高密度封装半导体复合材料。
背景技术
半导体材料是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。
半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。
现有的铝基碳化硅高密度封装半导体复合材料性能并不优越,成品半导体成分不够均匀,气孔率相对较大,且存在烧结温度需求高,制备过程耗能的缺点。
发明内容
本发明的目的在于提供一种铝基碳化硅高密度封装半导体复合材料,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种铝基碳化硅高密度封装半导体复合材料,包含如下步骤:
步骤①、制备SiC复合浆料,首先使用SiC微粉配制得到固含量为30-70%的SiC浆料,然后按照SiC∶Au∶Ag:Pd为(50-60)∶(0.3-0.6)∶1:(0.02-0.05)的质量比加入金粉和银粉和钯粉,混合均匀,得到SiC复合浆料;
步骤②、流延成型,对步骤①中得到的SiC复合浆料除泡混合均匀后,进行流延得到SiC复合流延膜;
步骤③、流延膜素烧,对步骤②得到的流延膜进行素烧,得到SiC复合素坯;
步骤④、真空烧结,将SiC符合素坯在真空状态下烧结,得到铝基碳化硅。
作为本发明进一步的技术方案是:在步骤①中所述SiC浆料是由30-70wt%的SiC微粉、3-5wt%的塑化剂、2-3wt%的分散剂和余量的水混合均匀球磨8-15h得到的。
作为本发明再进一步的技术方案是:在步骤①中,所述SiC微粉的平均粒径不大于8微米。
作为本发明再进一步的技术方案是:所述金粉和银粉的平均粒径不大于8微米,所述钯粉的平均粒径不大于5微米。
作为本发明再进一步的技术方案是:所述塑化剂为聚乙二醇、聚乙烯醇和甘油中的任意一种或者几种的混合物。
作为本发明再进一步的技术方案是:所述分散剂为柠檬酸铵、聚乙二醇和聚甲基丙烯酸胺中的任意一种。
作为本发明再进一步的技术方案是:步骤③中,素烧温度为250-350℃,在步骤④中,真空烧结温度为800-900℃。
作为本发明再进一步的技术方案是:在步骤④中,对SiC复合素坯烧结后对其进行不小于2h的保温,之后得到成品。
本发明的有益效果是:通过采用凝胶流延法制备铝基氮化铝,工艺简单,得到的产品成分分布均匀,气孔率低,半导体性能优越,且通过引入金、银和钯粉,充分改善烧结性能,进一步降低烧结温度,节能环保,值得推广。
具体实施方式
下面,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
一种铝基碳化硅高密度封装半导体复合材料,包含如下步骤:
步骤①、制备SiC复合浆料,首先使用SiC微粉配制得到固含量为30%的SiC浆料,然后按照SiC∶Au∶Ag:Pd为50∶0.3∶1:0.02的质量比加入金粉和银粉和钯粉,混合均匀,得到SiC复合浆料;
步骤②、流延成型,对步骤①中得到的SiC复合浆料除泡混合均匀后,进行流延得到SiC复合流延膜;
步骤③、流延膜素烧,对步骤②得到的流延膜进行素烧,得到SiC复合素坯;
步骤④、真空烧结,将SiC符合素坯在真空状态下烧结,得到铝基碳化硅。
在步骤①中所述SiC浆料是由30wt%的SiC微粉、3wt%的塑化剂、2wt%的分散剂和余量的水混合均匀球磨8h得到的。
在步骤①中,所述SiC微粉的平均粒径不大于8微米。
所述金粉和银粉的平均粒径不大于8微米,所述钯粉的平均粒径不大于5微米。
所述塑化剂为聚乙二醇、聚乙烯醇和甘油中的任意一种或者几种的混合物。
所述分散剂为柠檬酸铵、聚乙二醇和聚甲基丙烯酸胺中的任意一种。
步骤③中,素烧温度为250℃,在步骤④中,真空烧结温度为800℃。
在步骤④中,对SiC复合素坯烧结后对其进行不小于2h的保温,之后得到成品。
实施例2:
一种铝基碳化硅高密度封装半导体复合材料,包含如下步骤:
步骤①、制备SiC复合浆料,首先使用SiC微粉配制得到固含量为70%的SiC浆料,然后按照SiC∶Au∶Ag:Pd为60∶0.6∶1:0.05的质量比加入金粉和银粉和钯粉,混合均匀,得到SiC复合浆料;
步骤②、流延成型,对步骤①中得到的SiC复合浆料除泡混合均匀后,进行流延得到SiC复合流延膜;
步骤③、流延膜素烧,对步骤②得到的流延膜进行素烧,得到SiC复合素坯;
步骤④、真空烧结,将SiC符合素坯在真空状态下烧结,得到铝基碳化硅。
在步骤①中所述SiC浆料是由70wt%的SiC微粉、5wt%的塑化剂、3wt%的分散剂和余量的水混合均匀球磨15h得到的。
在步骤①中,所述SiC微粉的平均粒径不大于8微米。
所述金粉和银粉的平均粒径不大于8微米,所述钯粉的平均粒径不大于5微米。
所述塑化剂为聚乙二醇、聚乙烯醇和甘油中的任意一种或者几种的混合物。
所述分散剂为柠檬酸铵、聚乙二醇和聚甲基丙烯酸胺中的任意一种。
步骤③中,素烧温度为350℃,在步骤④中,真空烧结温度为900℃。
在步骤④中,对SiC复合素坯烧结后对其进行不小于2h的保温,之后得到成品。
实施例3:
一种铝基碳化硅高密度封装半导体复合材料,包含如下步骤:
步骤①、制备SiC复合浆料,首先使用SiC微粉配制得到固含量为50%的SiC浆料,然后按照SiC∶Au∶Ag:Pd为55∶0.45∶1:0.35的质量比加入金粉和银粉和钯粉,混合均匀,得到SiC复合浆料;
步骤②、流延成型,对步骤①中得到的SiC复合浆料除泡混合均匀后,进行流延得到SiC复合流延膜;
步骤③、流延膜素烧,对步骤②得到的流延膜进行素烧,得到SiC复合素坯;
步骤④、真空烧结,将SiC符合素坯在真空状态下烧结,得到铝基碳化硅。
在步骤①中所述SiC浆料是由50wt%的SiC微粉、4wt%的塑化剂、2.5wt%的分散剂和余量的水混合均匀球磨11.5h得到的。
在步骤①中,所述SiC微粉的平均粒径不大于8微米。
所述金粉和银粉的平均粒径不大于8微米,所述钯粉的平均粒径不大于5微米。
所述塑化剂为聚乙二醇、聚乙烯醇和甘油中的任意一种或者几种的混合物。
所述分散剂为柠檬酸铵、聚乙二醇和聚甲基丙烯酸胺中的任意一种。
步骤③中,素烧温度为300℃,在步骤④中,真空烧结温度为850℃。
在步骤④中,对SiC复合素坯烧结后对其进行不小于2h的保温,之后得到成品。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (8)

1.一种铝基碳化硅高密度封装半导体复合材料,其特征在于,包含如下步骤:
步骤①、制备SiC复合浆料,首先使用SiC微粉配制得到固含量为30-70%的SiC浆料,然后按照SiC∶Au∶Ag:Pd为(50-60)∶(0.3-0.6)∶1:(0.02-0.05)的质量比加入金粉和银粉和钯粉,混合均匀,得到SiC复合浆料;
步骤②、流延成型,对步骤①中得到的SiC复合浆料除泡混合均匀后,进行流延得到SiC复合流延膜;
步骤③、流延膜素烧,对步骤②得到的流延膜进行素烧,得到SiC复合素坯;
步骤④、真空烧结,将SiC符合素坯在真空状态下烧结,得到铝基碳化硅。
2.根据权利要求1所述的一种铝基碳化硅高密度封装半导体复合材料,其特征在于,在步骤①中所述SiC浆料是由30-70wt%的SiC微粉、3-5wt%的塑化剂、2-3wt%的分散剂和余量的水混合均匀球磨8-15h得到的。
3.根据权利要求1所述的一种铝基碳化硅高密度封装半导体复合材料,其特征在于,在步骤①中,所述SiC微粉的平均粒径不大于8微米。
4.根据权利要求1所述的一种铝基碳化硅高密度封装半导体复合材料,其特征在于,所述金粉和银粉的平均粒径不大于8微米,所述钯粉的平均粒径不大于5微米。
5.根据权利要求2所述的一种铝基碳化硅高密度封装半导体复合材料,其特征在于,所述塑化剂为聚乙二醇、聚乙烯醇和甘油中的任意一种或者几种的混合物。
6.根据权利要求2所述的一种铝基碳化硅高密度封装半导体复合材料,其特征在于,所述分散剂为柠檬酸铵、聚乙二醇和聚甲基丙烯酸胺中的任意一种。
7.根据权利要求1-6任一所述的一种铝基碳化硅高密度封装半导体复合材料,其特征在于,步骤③中,素烧温度为250-350℃,在步骤④中,真空烧结温度为800-900℃。
8.根据权利要求7所述的一种铝基碳化硅高密度封装半导体复合材料,其特征在于,在步骤④中,对SiC复合素坯烧结后对其进行不小于2h的保温,之后得到成品。
CN202010005579.6A 2020-01-03 2020-01-03 一种铝基碳化硅高密度封装半导体复合材料 Pending CN111099898A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010005579.6A CN111099898A (zh) 2020-01-03 2020-01-03 一种铝基碳化硅高密度封装半导体复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010005579.6A CN111099898A (zh) 2020-01-03 2020-01-03 一种铝基碳化硅高密度封装半导体复合材料

Publications (1)

Publication Number Publication Date
CN111099898A true CN111099898A (zh) 2020-05-05

Family

ID=70427001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010005579.6A Pending CN111099898A (zh) 2020-01-03 2020-01-03 一种铝基碳化硅高密度封装半导体复合材料

Country Status (1)

Country Link
CN (1) CN111099898A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115141951A (zh) * 2022-08-08 2022-10-04 河南瀚银光电科技股份有限公司 一种制备高性能铝基碳化硅的方法
CN116789454A (zh) * 2023-07-04 2023-09-22 北京亦盛精密半导体有限公司 一种碳化硅陶瓷及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102093056A (zh) * 2010-12-08 2011-06-15 湖南浩威特科技发展有限公司 网络互穿结构铝碳化硅复合材料及其构件的制备方法
CN105400977A (zh) * 2015-11-12 2016-03-16 李大海 铝基碳化硅的制备方法
CN105648364A (zh) * 2016-03-01 2016-06-08 苏州莱特复合材料有限公司 用于船艇的铝基复合材料及其制备方法
CN106554212A (zh) * 2015-09-30 2017-04-05 比亚迪股份有限公司 多孔碳化硅预制体和Al-SiC复合材料及它们的制备方法
CN109844177A (zh) * 2016-08-16 2019-06-04 塞拉姆涂料股份有限公司 陶瓷材料的热喷涂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102093056A (zh) * 2010-12-08 2011-06-15 湖南浩威特科技发展有限公司 网络互穿结构铝碳化硅复合材料及其构件的制备方法
CN106554212A (zh) * 2015-09-30 2017-04-05 比亚迪股份有限公司 多孔碳化硅预制体和Al-SiC复合材料及它们的制备方法
CN105400977A (zh) * 2015-11-12 2016-03-16 李大海 铝基碳化硅的制备方法
CN105648364A (zh) * 2016-03-01 2016-06-08 苏州莱特复合材料有限公司 用于船艇的铝基复合材料及其制备方法
CN109844177A (zh) * 2016-08-16 2019-06-04 塞拉姆涂料股份有限公司 陶瓷材料的热喷涂

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115141951A (zh) * 2022-08-08 2022-10-04 河南瀚银光电科技股份有限公司 一种制备高性能铝基碳化硅的方法
CN116789454A (zh) * 2023-07-04 2023-09-22 北京亦盛精密半导体有限公司 一种碳化硅陶瓷及其制备方法
CN116789454B (zh) * 2023-07-04 2024-01-02 北京亦盛精密半导体有限公司 一种碳化硅陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN109935563B (zh) 一种多尺寸混合纳米颗粒膏体及其制备方法
CN102290117B (zh) 一种低温烧结纳米银浆及其制备方法
CN102169739B (zh) 太阳电池用纳米铝浆及其制备方法
CN102254587B (zh) 一种硅太阳能电池铝背场用浆料及其制备方法
CN101271928A (zh) 高粘度太阳能电池正面银浆及其制备方法
CN111099898A (zh) 一种铝基碳化硅高密度封装半导体复合材料
CN112159111B (zh) Perc太阳能电池铝浆用的无铅无铋玻璃粉及制备方法
CN114334216B (zh) 一种厚膜导体浆料
CN102831949A (zh) 高效无铅太阳能电池背银浆料及其制备方法
CN112225186A (zh) 一种球形氮化硼的制备方法
WO2023109597A1 (zh) 纳米铜焊膏及其在芯片封装互连结构中的应用
CN108735343A (zh) 一种用于低温共烧陶瓷基板的导电银浆及其制备方法
CN104681123A (zh) 太阳能电池背银浆料及其制备方法、太阳能电池及其制备方法
CN102831959B (zh) 无铅环保太阳能光伏电池用银浆及其制备方法
CN111975011B (zh) 一种芯片无压烧结互连用纳米铜浆及其制备方法与应用
CN103065702B (zh) 一种晶体硅太阳能电池铝浆及其制备方法
CN111540500A (zh) 一种太阳能电池正极导电银浆及其制备方法
CN112435773B (zh) 一种异质结太阳能电池用低温导电纳米浆料及其制备方法
CN111403079B (zh) Perc晶体硅太阳能电池背面电极用导电浆料及制备方法
CN116189960B (zh) 一种可低温烧结银铜复合导电浆料及其制备方法和应用
CN112642316A (zh) 一种提高光伏板电子浆料分散性的方法
CN102831954B (zh) 晶体硅太阳能电池背场银浆及其制备方法
CN105037991A (zh) 一种铋酸钡纳米棒电子封装材料
CN111009334B (zh) 一种太阳能电池用导电银浆及其制备方法
TWI760269B (zh) 散熱片之製法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200505