CN111099740B - 一种化能自养微生物培养过程的补料控制方法 - Google Patents

一种化能自养微生物培养过程的补料控制方法 Download PDF

Info

Publication number
CN111099740B
CN111099740B CN201811255620.4A CN201811255620A CN111099740B CN 111099740 B CN111099740 B CN 111099740B CN 201811255620 A CN201811255620 A CN 201811255620A CN 111099740 B CN111099740 B CN 111099740B
Authority
CN
China
Prior art keywords
bacteria
domax
microorganisms
concentration
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811255620.4A
Other languages
English (en)
Other versions
CN111099740A (zh
Inventor
高会杰
孙丹凤
郭志华
陈明翔
王刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Dalian Petrochemical Research Institute Co ltd
China Petroleum and Chemical Corp
Original Assignee
China Petroleum and Chemical Corp
Sinopec Dalian Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Dalian Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN201811255620.4A priority Critical patent/CN111099740B/zh
Publication of CN111099740A publication Critical patent/CN111099740A/zh
Application granted granted Critical
Publication of CN111099740B publication Critical patent/CN111099740B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/345Biological treatment of water, waste water, or sewage characterised by the microorganisms used for biological oxidation or reduction of sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/346Iron bacteria
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

本发明涉及一种化能自养微生物培养过程的补料控制方法,首先在曝气反应器内加入微生物培养基,在不接种情况下调整曝气量,直到DO浓度不再增加,由此确定培养体系DOmax以及相应曝气量;接种微生物后,直到DO趋于最低并稳定1‑2h,控制此时的DO浓度不低于5%DOmax;在微生物培养过程中,当DO上升到30%‑70%DOmax,则启动补料系统,当DO下降10‑50个百分点时停止补料;如此循环,直至培养过程结束。本发明方法获得的微生物活性高,可以实现快速生长繁殖,解决工业应用所需菌源生长缓慢的难题。

Description

一种化能自养微生物培养过程的补料控制方法
技术领域
本发明属于环境微生物领域,具体地说涉及一种化能自养微生物培养过程的补料控制方法,该方法可以实现化能自养微生物的高活性快速生长繁殖。
背景技术
自养微生物包括光能自养和化能自养两类。其中污水处理过程中的好多细菌均属于化能自养微生物,主要从氧化无机物获得能量,并借助于氧化所放出的能量产生ATP同化二氧化碳,制造合成细胞所需要的营养物质。因此这类微生物生长缓慢,世代时间长,增值速度慢,不容易快速培养,在工业上大规模应用存在难度。因此对于自养微生物来说,除了研究营养物质的投加量和投加方式外,在pH、温度和溶解氧(DO)等培养条件方面也开展了大量研究工作。
在化能自养微生物培养过程中,溶解氧不单单在微生物生长繁殖过程中作为电子受体,还是影响氧化产物形式的关键因素,如硝化细菌,在不同的溶解氧浓度条件下,氧化产物可以是NO2-也可以是NO3-;好氧硫杆菌,在不同的溶解氧浓度条件下,氧化产物可以是S也可以是SO4 2-,因此溶解氧在整个微生物生长繁殖过程中非常关键。培养液中溶解氧的实质是氧在培养液中的溶解浓度,其高低是培养体系的供氧能力和生物需氧程度所决定的。
杨延芳等(溶解氧在发酵过程中的作用及自控方法,黑龙江医药,1999,vol.12No4.)提出了一种青霉素发酵过程中的溶解氧控制方法,主要是在罐压,搅拌,空气流速等不可改变的情况下,在高于青霉素发酵所需临界氧浓度限值条件下,通过改变空气流量实现了发酵过程中溶解氧的自动控制。该方法同现有技术一样,都是通过调节供气量大小将反应系统内的溶解氧浓度维持在一定范围内,目的是为微生物生长提供一个相对稳定的供氧环境,并没有考虑微生物的生长状态。
CN106222309A公开了一种微生物发酵生产提高L-丙氨酸产量的补料控制方法,包括微量元素混合液补料以及pH在线监测以及葡萄糖补料。微量元素混合液的补料,避免了微量元素在培养基中消耗,后期得不到必要的补充的问题。通过该发明的补料方法,可以保证发酵液中葡萄糖的相对稳定浓度,以及pH的稳定,使得菌体生长的各阶段都可以保持最佳生产状态,有效提高葡萄糖转化率和L-丙氨酸的产率。该方法是通过在特定时间补加微量元素混合液,并结合糖含量变化情况控制葡萄糖补加量及补加方式,需要监控的指标多,操作复杂。
现有技术都是根据体系的好氧和兼氧情况,将溶解氧控制在一定的范围,为微生物的生长提供所需的溶解氧浓度,所涉及的补料方法主要是根据底物的利用情况进行底物的适量补充,为微生物的生长提供所需的底物浓度,各控制参数之间的适配性不佳,微生物活性有待提升。
发明内容
针对现有技术的不足,本发明提供了一种化能自养微生物培养过程的补料控制方法。本发明是在一定的溶解氧浓度范围内,依靠溶解氧浓度的变化幅度进行自动补料控制。本发明补料方法所获得的微生物活性高,可以实现快速生长繁殖,解决工业应用所需菌源生长缓慢的难题。
本发明提供的化能自养微生物培养过程的补料控制方法,主要是通过以下步骤实现的:
(1)首先在曝气反应器内加入微生物培养基,在不接种微生物的情况下调整曝气量进行曝气,直到DO浓度不再增加,由此确定培养体系DO浓度的上限值DOmax以及相应的曝气量;
(2)接种化能自养微生物后,观察DO浓度变化,直到DO趋于最低并稳定1-2h,这个时期为微生物的最佳活性生长状态期,控制此时的DO浓度不低于5%DOmax;
(3)在微生物培养过程中,当DO开始呈现上升趋势,且上升到30%-70%DOmax,则启动补料系统,当DO下降10-50个百分点时停止补料;如此循环,直至培养过程结束。
本发明中,所述的曝气反应器为可以培养化能自养微生物,且底部设有曝气和搅拌功能的反应器。所述微生物培养基根据具体使用微生物种类确定。所述的DOmax是通过调整曝气量来确定的,其浓度一般为6-9mg/L。
本发明中,所述的化能自养微生物为硝化细菌、硫细菌、铁细菌等这些在好氧条件下自养生长的细菌。其中硝化细菌是指将氨氮氧化成亚硝酸盐和硝酸盐的菌体,主要是氨氧化细菌和亚硝酸盐氧化细菌;硫细菌是将还原性硫化物氧化成单质硫或者硫酸的细菌,可以是硫杆菌、硫微螺菌等;铁细菌是指将亚铁化合物氧化成铁化合物的好氧菌。接种的化能自养微生物为富含功能微生物大于70%的菌液,接种量为培养基体积的0.5%-5%。
本发明中,当DO浓度低于5%DOmax,通过启动搅拌系统并控制搅拌转数来进行调整。
本发明中,所述的补料系统为补料自控系统,当DO上升到30%-70%DOmax时,就启动物料投加泵进行自动补料。
本发明中,所述补料系统补加的基质是指能够为微生物生长提供电子供体的能源物质,具体根据不同微生物所需要的能源来确定。如硝化细菌补加的基质是铵盐、亚硝酸盐,硫细菌补加的基质是硫化物,铁细菌补加的基质是亚铁化合物等。
本发明中,所述微生物的培养条件为:pH值为5-9,温度为20-38℃。
本发明在维持通气量不变的情况下,通过在一定的溶解氧范围内、依靠溶解氧的上升幅度选择适宜的补料时机来启动基质流加泵进行补料,通过基质浓度来选择溶解氧在最适宜微生物生长的范围。该方法可以保证菌体处于最佳生长状态,提高微生物活性的同时,可有效提高化能自养微生物的产量。
具体实施方式
下面通过实施例对本发明方法和效果作进一步详细说明。实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
以下实施例中的实验方法,如无特殊说明,均为本领域常规方法。下述实施例中所用的实验材料,如无特殊说明,均可从生化试剂商店购买得到。
实施例1 硝化细菌培养
在100L的曝气反应器内进行硝化细菌的培养。该反应器同时安装搅拌、pH和补料自控系统。培养过程中温度设定在32℃,pH设置在7.6-7.7。
(1)首先在曝气反应器内加入50L硝化细菌培养基,在不接种微生物的情况下打开曝气系统并调整曝气量进行曝气,直到DO浓度不再增加,由此确定培养所需DO浓度的上限值DOmax为7.3mg/L,并在整个培养过程中维持该通气量不变。其中微生物培养基的组成及含量为:硫酸铵1000mg/L、硫酸亚铁300mg/L、氯化钙10mg/L、七水合硫酸镁140mg/L、磷酸二氢钾140mg/L。
(2)按照培养基体积的1%接种实验室富集培养的硝化细菌(氨氮去除速率10mg/(L·h)),系统内的溶解氧开始下降,最后DO趋于最低并稳定在25%DOmax,硝化细菌进入最佳活性生长状态期。
(3)在硝化细菌培养过程中,当DO上升到60%DOmax时启动补料系统补加基质氨氮;随着基质的补加系统内溶解氧浓度又开始呈现下降趋势,当DO降至35%DOmax则停止补料;如此循环,直至培养体系达反应器总体积的80%时,关掉自动补料系统,待培养液中氨氮浓度耗尽,结束本批次的培养,停止曝气和搅拌,沉降后排出上清液,收获菌体。
所收获的硝化细菌氨氮去除速率由接种时的10mg/(L·h)提高到70mg/(L·h),氨氮去除速率是指单位时间单位体积内能够去除的氨氮量,氨氮去除速率=(进水氨氮浓度-出水氨氮浓度)/培养时间,其中氨氮浓度采用GB7478-87《水质 铵的测定-蒸镏和滴定法》测定。
实施例2硫细菌的培养
在20L的曝气反应器内进行硫细菌的培养。该反应器同时安装搅拌、pH和补料自控系统。培养过程中温度设定在32℃,pH设置在7.2-7.4。
(1)首先在曝气反应器内加入10L微生物培养基,在不接种微生物的情况下打开曝气系统并调整曝气量进行曝气,直到DO浓度不再增加,由此确定培养所需DO浓度的上限值DOmax为7.1mg/L以及相应的曝气量,并在整个培养过程中维持该通气量不变。其中微生物培养基的组成及含量为:硫化钠200mg/L、磷酸二氢钾150mg/L、磷酸氢二钾150mg/L、硫酸镁150mg/L、氯化铵30mg/L、硫酸亚铁0.2mg/L、氯化钙0.2mg/L、氯化锰0.1mg/L、硫酸铜0.02mg/L、硫酸锌0.3mg/L。
(2)按照培养基体积的1%接种实验室富集培养的排硫硫杆菌,系统内的溶解氧开始下降,最后DO趋于最低并稳定在35%DOmax,硫细菌进入最佳活性生长状态期。
(3)在硫细菌培养过程中,当DO上升到65%DOmax时启动补料系统补加基质硫化钠;随着基质的补加系统内溶解氧浓度又开始呈现下降趋势,当DO降至40%DOmax则停止补料;如此循环,直至培养体系达反应器总体积的80%时,关掉自动补料系统,待培养液中硫化物耗尽,结束本批次的培养,停止曝气和搅拌,沉降后排出上清液,收获菌体。
所收获的硫细菌的硫负荷由接种时的2kgS2-/(kgMLSS·d)提高到20kgS2-/(kgMLSS·d),硫负荷是指每天每公斤菌体能够去除的S2-的总量,硫负荷=(进水总量-出水总量)/(污泥总量×d),其中S2-采用GB/T17133-1997《水质-硫化物的测定-直接显色分光光度法》。
比较例1
同实施例1,不同在于:在整个培养过程中控制溶解氧浓度为1-3mg/L,等量的基质采用流加补料的方式。所收获菌体的氨氮去除速率只有40mg/(L·h)。
比较例2
同实施例2,不同在于:在整个培养过程中控制溶解氧浓度为1-3mg/L,等量的基质采用流加补料的方式。所收获菌体的硫负荷为10 kgS2-/(kgMLSS·d)。

Claims (9)

1.一种化能自养微生物培养过程的补料控制方法,其特征在于包括以下步骤:
(1)首先在曝气反应器内加入微生物培养基,在不接种微生物的情况下调整曝气量进行曝气,直到DO浓度不再增加,由此确定培养体系DO浓度的上限值DOmax以及相应的曝气量;
(2)接种化能自养微生物后,观察DO浓度变化,当DO趋于最低并稳定1-2h,控制此时的DO浓度不低于5%DOmax;
(3)在微生物培养过程中,当DO上升到30%-70%DOmax,则启动补料系统,当DO下降10-50个百分点时停止补料;如此循环,直至培养过程结束;
所述补料系统补加的基质是指能够为微生物生长提供电子供体的能源物质,具体根据不同微生物所需要的能源来确定。
2.根据权利要求1所述的方法,其特征在于:所述的曝气反应器为培养化能自养微生物,且底部设有曝气和搅拌功能的反应器;微生物培养基根据具体使用微生物种类确定,所述的DOmax是通过调整曝气量来确定的,其浓度为6-9mg/L。
3.根据权利要求1所述的方法,其特征在于:所述的化能自养微生物为硝化细菌、硫细菌或铁细菌;其中硝化细菌是指将氨氮氧化成亚硝酸盐和硝酸盐的菌体;硫细菌是指将还原性硫化物氧化成单质硫或者硫酸的细菌;铁细菌是指将亚铁化合物氧化成铁化合物的好氧菌。
4.根据权利要求3所述的方法,其特征在于:所述的硝化细菌是氨氧化细菌和亚硝酸盐氧化细菌;硫细菌是硫杆菌或/和硫微螺菌。
5.根据权利要求1所述的方法,其特征在于:接种的化能自养微生物为富含功能微生物大于70%的菌液,接种量为培养基体积的0.5%-5%。
6.根据权利要求1所述的方法,其特征在于:当DO浓度低于5%DOmax,通过启动搅拌系统并控制搅拌转数来进行调整。
7.根据权利要求1所述的方法,其特征在于:所述的补料系统为补料自控系统,当DO上升到30%-70%DOmax时,就进行自动补料。
8.根据权利要求1或7所述的方法,其特征在于:硝化细菌补加的基质是铵盐、亚硝酸盐,硫细菌补加的基质是硫化物,铁细菌补加的基质是亚铁化合物。
9.根据权利要求1所述的方法,其特征在于:化能自养微生物培养条件为:pH值为5-9,温度为20-38℃。
CN201811255620.4A 2018-10-26 2018-10-26 一种化能自养微生物培养过程的补料控制方法 Active CN111099740B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811255620.4A CN111099740B (zh) 2018-10-26 2018-10-26 一种化能自养微生物培养过程的补料控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811255620.4A CN111099740B (zh) 2018-10-26 2018-10-26 一种化能自养微生物培养过程的补料控制方法

Publications (2)

Publication Number Publication Date
CN111099740A CN111099740A (zh) 2020-05-05
CN111099740B true CN111099740B (zh) 2022-06-07

Family

ID=70418697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811255620.4A Active CN111099740B (zh) 2018-10-26 2018-10-26 一种化能自养微生物培养过程的补料控制方法

Country Status (1)

Country Link
CN (1) CN111099740B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1064890A (zh) * 1991-03-12 1992-09-30 味之素株式会社 在微生物通气培养过程中控制碳源浓度的方法和装置
BE1008008A3 (fr) * 1990-11-30 1995-12-12 Ajinomoto Kk Procede et appareil pour regler la concentration en source de carbone dans la culture aerobie d'un micro-organisme.
KR19990069473A (ko) * 1998-02-09 1999-09-06 허영섭 포스포리불로키나제를 융합파트너로 하는 재조합 인간 부갑상선호르몬의 대량생산을 위한 do­stat 유가식 배양방법
KR19990069474A (ko) * 1998-02-09 1999-09-06 허영섭 인간성장호르몬의 대량생산을 위한 do­stat 유가식배양방법
WO1999061633A2 (en) * 1998-05-25 1999-12-02 Qiagen Gmbh Method for the isolation of ccc plasmid dna
CN101351543A (zh) * 2005-11-07 2009-01-21 维文蒂阿生物技术股份有限公司 可控发酵的方法和步骤
CN101608202A (zh) * 2009-07-14 2009-12-23 深圳职业技术学院 一种降血压肽的制备方法
CN102154189A (zh) * 2010-12-31 2011-08-17 山东新时代药业有限公司 一种rhG-CSF重组工程菌的发酵培养方法
CN104561199A (zh) * 2013-10-17 2015-04-29 上海市农业科学院 一种应用重组毕赤酵母稳定地生产猪α干扰素的方法
CN104911120A (zh) * 2015-03-11 2015-09-16 浙江理工大学 一种枯草芽孢杆菌的发酵生产工艺
CN105018361A (zh) * 2015-07-13 2015-11-04 江南大学 一种酿酒酵母高密度发酵培养的方法
CN105378055A (zh) * 2013-07-26 2016-03-02 罗盖特兄弟公司 用于通过顺序、自动提供葡萄糖分批补料发酵所供养的小球藻属物种的方法
CN106566795A (zh) * 2016-09-30 2017-04-19 广州白云山拜迪生物医药有限公司 用于大肠杆菌工程菌高效表达质粒dna的培养基及培养方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271778A (ja) * 1991-02-28 1992-09-28 Green Cross Corp:The 水素細菌の培地および培養方法
US6955892B2 (en) * 2002-11-12 2005-10-18 Akzo Nobel N.V. Feeding processes for fermentation
CN201506794U (zh) * 2009-07-23 2010-06-16 上海海洋大学 一种微生物培养用反馈补料控制装置
CN101921708B (zh) * 2010-08-04 2012-04-25 浙江商达水务有限公司 一种混合脱氮微生物菌群的高密度培养方法
MX2019000176A (es) * 2016-07-08 2019-12-05 N Murthy Sudhir Metodo y aparato para la eliminacion de nutrientes con adicion de carbono.
CN107338258A (zh) * 2017-01-09 2017-11-10 鲁东大学 生产β‑丙氨酸的工程菌构建及其生产β‑丙氨酸的方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1008008A3 (fr) * 1990-11-30 1995-12-12 Ajinomoto Kk Procede et appareil pour regler la concentration en source de carbone dans la culture aerobie d'un micro-organisme.
CN1064890A (zh) * 1991-03-12 1992-09-30 味之素株式会社 在微生物通气培养过程中控制碳源浓度的方法和装置
KR19990069473A (ko) * 1998-02-09 1999-09-06 허영섭 포스포리불로키나제를 융합파트너로 하는 재조합 인간 부갑상선호르몬의 대량생산을 위한 do­stat 유가식 배양방법
KR19990069474A (ko) * 1998-02-09 1999-09-06 허영섭 인간성장호르몬의 대량생산을 위한 do­stat 유가식배양방법
WO1999061633A2 (en) * 1998-05-25 1999-12-02 Qiagen Gmbh Method for the isolation of ccc plasmid dna
CN101351543A (zh) * 2005-11-07 2009-01-21 维文蒂阿生物技术股份有限公司 可控发酵的方法和步骤
CN101608202A (zh) * 2009-07-14 2009-12-23 深圳职业技术学院 一种降血压肽的制备方法
CN102154189A (zh) * 2010-12-31 2011-08-17 山东新时代药业有限公司 一种rhG-CSF重组工程菌的发酵培养方法
CN105378055A (zh) * 2013-07-26 2016-03-02 罗盖特兄弟公司 用于通过顺序、自动提供葡萄糖分批补料发酵所供养的小球藻属物种的方法
CN104561199A (zh) * 2013-10-17 2015-04-29 上海市农业科学院 一种应用重组毕赤酵母稳定地生产猪α干扰素的方法
CN104911120A (zh) * 2015-03-11 2015-09-16 浙江理工大学 一种枯草芽孢杆菌的发酵生产工艺
CN105018361A (zh) * 2015-07-13 2015-11-04 江南大学 一种酿酒酵母高密度发酵培养的方法
CN106566795A (zh) * 2016-09-30 2017-04-19 广州白云山拜迪生物医药有限公司 用于大肠杆菌工程菌高效表达质粒dna的培养基及培养方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Optimum substrate feed rate in fed-batch culture with the DO-stat method;Yano等;《Hakko Kogaku Zasshi 》;19780101;第56卷(第04期);416-420 *
利用溶氧作为控制信号补料分批培养生产PHA的研究;闫静辉等;《河北省科学院学报》;20050930(第03期);55-58 *
微生物高密度培养策略;左肖肖等;《生物加工过程》;20160515;第14卷(第03期);81-86 *
微生物高细胞密度培养技术及其在食品添加剂生产中的应用;韦海阳等;《中国食品添加剂》;20130415(第02期);204-213 *
溶氧反馈-分批补料高密度培养枯草芽孢杆菌谷氨酰胺合成酶工程菌;张锋等;《南京师大学报(自然科学版)》;20100630;第33卷(第02期);96-103 *

Also Published As

Publication number Publication date
CN111099740A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
CN106830302B (zh) 溶解氧自动化控制的mbr全程硝化菌富集装置及其方法
CN102674539A (zh) 一种基于膜生物反应器的硝化污泥高效富集培养系统及方法
CN106754618B (zh) 一种厌氧氨氧化菌群的富集培养方法
CN106434469B (zh) 一种耐低温硝化菌剂及其制备方法和应用
CN102443550A (zh) 一种脱氮细菌的筛选方法
CN110054284B (zh) 城市污水处理的半亚硝化工艺启动与控制方法
CN106754451B (zh) 一种富集培养耐盐亚硝酸菌群的方法
CN112746032B (zh) 一种硫细菌的富集培养方法
CN111099740B (zh) 一种化能自养微生物培养过程的补料控制方法
CN110776101A (zh) 利用部分亚硝化-厌氧氨氧化工艺处理城市污水的装置及所用方法
CN114735811B (zh) 一种高积累率短程硝化活性污泥的培养方法
CN114684923B (zh) 含氨废水亚硝化过程快速启动方法
CN106554083B (zh) 一种a/o工艺处理含氨废水的快速启动方法
CN111349577B (zh) 一种氨氧化细菌的培养方法
CN211521743U (zh) 利用部分亚硝化-厌氧氨氧化工艺处理城市污水的装置
CN104609551B (zh) 一种同步硝化反硝化处理含氨废水的方法
CN112746052B (zh) 一种提高硝化细菌抗性的培养方法
CN104609566B (zh) 同步硝化反硝化处理含氨废水的方法
CN112746030B (zh) 一种硝化细菌的培养方法
CN106754452B (zh) 一种亚硝酸细菌富集培养方法
CN111286467A (zh) 一种基于反应速率调节流加速率的厌氧氨氧化菌富集方法
CN116426443B (zh) 具有群体感应行为的菌株及其在促进厌氧氨氧化脱氮上的应用
CN112744924A (zh) 适用于同步硝化反硝化系统的脱氮微生物培养方法
CN104609540B (zh) 一种含氨废水的处理方法
CN114426933B (zh) 一种提高亚硝酸细菌细胞产率的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231016

Address after: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen

Patentee after: CHINA PETROLEUM & CHEMICAL Corp.

Patentee after: Sinopec (Dalian) Petrochemical Research Institute Co.,Ltd.

Address before: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen

Patentee before: CHINA PETROLEUM & CHEMICAL Corp.

Patentee before: DALIAN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC Corp.