CN111081543A - 一种基于二维材料/氮化镓的双极型三极管及其制备方法 - Google Patents

一种基于二维材料/氮化镓的双极型三极管及其制备方法 Download PDF

Info

Publication number
CN111081543A
CN111081543A CN201911365414.3A CN201911365414A CN111081543A CN 111081543 A CN111081543 A CN 111081543A CN 201911365414 A CN201911365414 A CN 201911365414A CN 111081543 A CN111081543 A CN 111081543A
Authority
CN
China
Prior art keywords
type doped
iii
dimensional material
layer
nitride layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911365414.3A
Other languages
English (en)
Inventor
刘冉
万景
叶怀宇
张国旗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southern University of Science and Technology
Original Assignee
Shenzhen Third Generation Semiconductor Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Third Generation Semiconductor Research Institute filed Critical Shenzhen Third Generation Semiconductor Research Institute
Priority to CN201911365414.3A priority Critical patent/CN111081543A/zh
Publication of CN111081543A publication Critical patent/CN111081543A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/6631Bipolar junction transistors [BJT] with an active layer made of a group 13/15 material
    • H01L29/66318Heterojunction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)

Abstract

本发明提供一种基于二维材料/氮化镓的双极型三极管及其制备方法,在GaN基衬底1上外延第一N型掺杂III族氮化物层2作为集电区;在所述第一N型掺杂III族氮化物层上淀积P型掺杂二维材料层3,P型掺杂浓度为1018cm‑3‑1020cm‑3,所述P型掺杂二维材料层3为基区;在所述P型掺杂二维材料层3上淀积第二N型掺杂III族氮化物层4,刻蚀所述第二N型III族氮化物层4的端部暴露出所述P型掺杂二维材料层并定义发射区;由于二维材料的价带与氮化镓的价带具有较大的能量差,使得异质结具有较高的电子发射效率,有利于提高晶体管的增益。而得益于二维材料的超薄特性,可大幅降低基区度越时间,提高晶体管的频率。

Description

一种基于二维材料/氮化镓的双极型三极管及其制备方法
技术领域
本发明属于半导体器件技术领域,具体涉及一种基于二维材料/氮化镓的双极型三极管及其制备方法。
背景技术
双极型晶体管(BJT)是利用电子和空穴两种载流子的开关半导体器件。通过注入少量的基区载流子,促使发射区发射出大量的少数载流子,从而产生电流放大的效果。双极型晶体管使用垂直的器件结构,电流可在垂直于整个器件平面的方向上流动,而非如金属-氧化物-半导体场效应晶体管(MOSFET)只能在最表面导通电流。因此,其特点是可以导通大电流和较大的电流增益特性。与单极晶体管相比,双极型晶体管可广泛用于大功率,大容量的电子系统中(例如用于太阳能发电的功率调节器,电动汽车和射频放大中)。而异质结双极型晶体管(HBT)具有较高的电流增益和截止频率,可广泛应用于各类射频电路中。
传统的异质结双极型晶体管基于硅/锗硅的异质结,利用硅/锗硅的价带能带差实现高增益,并使用超薄的锗外延层达到高截止频率的效果。然而,由于硅/锗硅的异质结双极型晶体管的禁带宽度较小,其击穿电压不高,难以应用于高功率的射频器件中。III族氮化物如氮化镓和铝镓氮,作为第三代半导体的代表性材料,具有大禁带宽度,高电子迁移率等特点,适合用于耐受高电压的功率器件中。基于氮化镓的场效应晶体管已经被大量研究。然而,由于氮化镓中较难获得P型掺杂,使得基于氮化镓的双极型晶体管的发展处于停滞状态。
发明内容
为了解决上述问题,本发明提供一种基于二维材料/氮化物的双极型三极管制备方法:包括如下步骤
提供一氮化镓基衬底1;
在所述氮化镓基衬底1上外延第一N型掺杂III族氮化物层2,定义所述第一N型掺杂III族氮化物层2为集电区;
在所述第一N型掺杂III族氮化物层上淀积P型掺杂二维材料层3,其中P型掺杂浓度为1018cm-3-1020cm-3,定义所述P型掺杂二维材料层3为基区;
在所述P型掺杂二维材料层3上淀积第二N型掺杂III族氮化物层4,刻蚀所述第二N型掺杂III族氮化物层4的端部暴露出所述P型掺杂二维材料层,定义暴露出的P型掺杂二维材料层为发射区;所述第一N型掺杂III族氮化物层2的掺杂浓度小于所述第二N型掺杂III族氮化物层4的掺杂浓度;
在所述第二N型III族氮化物层4上淀积金属形成发射极7,在暴露出的所述P型掺杂二维材料层3上淀积基极6,在所述第一N型III族氮化物层2底部沉积集电极5。
优选的,所述氮化镓基衬底1为均一材质的氮化镓衬底或氮化镓外延片。
优选的,所述氮化镓基衬底1为N型掺杂,掺杂浓度为1019cm-3-1021cm-3
优选的,所述第一N型掺杂III族氮化物层2为弱N型掺杂,掺杂浓度为1015cm-3-1017cm-3
优选的,淀积所述P型掺杂二维材料层3方式为薄膜转移工艺或化学气相淀积。
优选的,所述第二N型掺杂III族氮化物层4为重N型掺杂,掺杂浓度为1018cm-3-1021cm-3
优选的,淀积所述第二N型掺杂III族氮化物层4方式为化学气相沉积或物理气相沉积;刻蚀所述第二N型掺杂III族氮化物层4方式为干法刻蚀,刻蚀气体为Cl2或BCl3
优选的,淀积金属包括退火过程,退火时间为300℃-900℃。
优选的,所述第一N型掺杂III族氮化物层2和/或所述第二N型掺杂III族氮化物层4材料选自氮化镓、铝镓氮、铟镓氮、铝氮。
优选的,所述P型掺杂二维材料层3选自二硒化钨,二碲化钼、黑磷。
基于同样的发明构思,本发明还提供一种基于上述方法的双极型三极管晶体管,该三极管结构自下而上依次为氮化镓基衬底1,第一N型掺杂III族氮化物层2,P型掺杂二维材料层3、第二N型掺杂III族氮化物层4;所述第一N型掺杂III族氮化物层2为集电区;所述P型掺杂二维材料层3为基区;所述第二N型掺杂III族氮化物层3为发射区。
优选的,所述第一N型掺杂III族氮化物层2和/或所述第二N型掺杂III族氮化物层4厚度为100nm-10um。
优选的,所述P型二维材料层3的厚度为1nm-100nm。二维材料是近年来兴起的新型半导体材料,其具有可掺杂,禁带宽度和厚度灵活可调的优点。二维材料可通过控制材料生长和掺杂的方式形成N型掺杂或P型掺杂的掺杂。本发明将P型掺杂的二维材料和N型掺杂III族氮化物结合,以二维材料作为基区,氮化物作为发射区和集电区。由于P型掺杂二维材料和N型掺杂III族氮化物结合具有巨大的价带能量差,N型掺杂的III族氮化物结合的发射区向P型掺杂的二维材料的基区中发射电子的发射效率可得到大幅提升从而提高晶体管的电流增益。此外,由于二维材料的薄膜厚度具有灵活可控的特点,薄可至单原子层。使用超薄的二维材料作为基区,可大幅降低基区的载流子渡越时间,提升晶体管的截止频率。本半导体器件可广泛应用于射频功率放大,信号放大或混频等领域。即可作为分立器件单独使用,又可集成在单片集成系统中。
附图说明
图1为本发明实施例1的双极晶体管结构示意图。
图2为本发明实施例1的双极晶体管制备流程示意图。
GaN基衬底1,弱N型掺杂的GaN层2,P型掺杂WSe2层3,重N型掺杂的GaN层4,集电极5,基极6,发射极7
具体实施方式
下面结合附图对本发明的较佳实施例进行详细说明,以使本发明的特点与功能更易于被本领域人员所理解,但本发明并不限于以下实施例。
实施例1:本实施例提供一种基于WSe2的双极晶体管及其制备方法
如图1所示,为晶体管结构示意图,该三极管结构自下而上依次为GaN基衬底1,厚度为50nm的第一N型掺杂III族氮化物层2,厚度为10nm的P型掺杂WSe2层3,厚度为1um的第二N型掺杂III族氮化物层4;所述第一N型掺杂III族氮化物层2为集电区;所述P型掺杂WSe2层3为基区,所述第二N型掺杂III族氮化物层4为发射区;所述第一N型掺杂III族氮化物层4底部沉积集电极5,所述第二N型掺杂III族氮化物层4上沉积发射极7,所述P型掺杂WSe2层3上沉积基极6。
如图2所示,为该晶体管制备方法,包括如下步骤:
如图2(a)所示,提供一起始的GaN基衬底1,其衬底掺杂为重N型掺杂,掺杂浓度为1020cm-3,衬底可为均一材质的GaN。
如图2(b)所示,在重N型掺杂的GaN基衬底1上使用外延工艺形成弱N型掺杂的GaN层2作为集电区的耐受电压区,掺杂浓度为1015cm-3
如图2(c)所示,在弱N掺杂的氮化镓上淀积一层P型掺杂WSe2层3,掺杂浓度为1018cm-3,二硫化钼的淀积采用转移的方法;
如图2(d)所示,在P型WSe2层淀积重N型掺杂的GaN层,掺杂浓度为1020cm-3,淀积采用化学气相淀积(CVD)方法。淀积后进行光刻并刻蚀从而定义出顶层的氮化镓发射区,并露出下面的P型WSe2层。刻蚀采用干法刻蚀,刻蚀气体一般为Cl2或BCl3等。
如图2(e)所示,淀积金属镍并在400℃退火以形成基极、集电极和发射极。
二硒化钨相较于二硫化钼或氮化物更易形成P型掺杂,且价带与氮化镓价带的能量差更大,有利于进一步提高晶体管的电流增益。
实施例2:本实施例提供一种基于MoTe2的双极晶体管制备方法
提供一起始的GaN基衬底1,其衬底掺杂为重N型掺杂,掺杂浓度为1020cm-3,衬底为硅外延出的氮化镓层;
在重N型掺杂的氮化镓基衬底1上使用外延工艺形成一层弱N型掺杂的氮化镓层作为集电区的耐受电压区,掺杂浓度为1016cm-3
在弱N掺杂的氮化镓上淀积一层P型掺杂的MoTe2层,掺杂浓度为1019cm-3,MoTe2层的淀积采用化学气相沉积方法;
在MoTe2上淀积一层重N型掺杂的氮化镓,掺杂浓度为1020cm-3,淀积采用物理气相沉积方法,淀积后进行光刻并刻蚀从而定义出顶层的氮化镓发射区,并露出下面的MoTe2层。刻蚀采用干法刻蚀,刻蚀气体为Cl2
淀积钛金属并在600℃退火以形成基极、集电极和发射极。
实施例3:本实施例提供另一种基于WSe2的双极晶体管制备方法
提供一起始的AlGaN衬底1,其衬底掺杂为重N型掺杂,掺杂浓度为1020cm-3
在重N型掺杂的氮化镓基衬底1上使用外延工艺形成一层弱N型掺杂的AlGaN层作为集电区的耐受电压区,掺杂浓度为1015cm-3
在弱N掺杂的AlGaN层上淀积一层P型掺杂的WSe2层,掺杂浓度为1020cm-3,MoS2层的淀积采用化学气相沉积方法;
在WSe2层上淀积一层重N型掺杂的AlGaN层,掺杂浓度为1019cm-3,淀积采用物理气相沉积方法。淀积后进行光刻并刻蚀从而定义出顶层的AlGaN层发射区,并露出下面的WSe2层。刻蚀采用干法刻蚀,刻蚀气体为BCl3
淀积钛/铝/镍/金复合金属层并在800℃退火以形成基极、集电极和发射极。
铝镓氮相比于氮化镓具有更大的禁带宽度,因此可以耐受更高的工作电压,有利于形成高功率器件。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明。凡在本发明的精神和原则之内,通过改变某个区域厚度或掺杂浓度,改变横向结构的位置和名称,均应包含在本发明的保护范围之内。

Claims (13)

1.一种基于二维材料/氮化镓的双极型三极管制备方法,其特征在于:
提供一氮化镓基衬底(1);
在所氮化镓基衬底(1)上外延第一N型掺杂III族氮化物层(2),定义所述第一N型掺杂III族氮化物层(2)为集电区;
在所述第一N型掺杂III族氮化物层上淀积P型掺杂二维材料层(3),其中P型掺杂浓度为1018cm-3-1020cm-3,定义所述P型掺杂二维材料层(3)为基区;
在所述P型掺杂二维材料层(3)上淀积第二N型掺杂III族氮化物层(4),刻蚀所述第二N型掺杂III族氮化物层(4)的端部暴露出所述P型掺杂二维材料层,定义暴露出的P型掺杂二维材料层为发射区;所述第一N型掺杂III族氮化物层(2)的掺杂浓度小于所述第二N型掺杂III族氮化物层(4)的掺杂浓度;
在所述第二N型III族氮化物层(4)上淀积金属形成发射极(7),在暴露出的所述P型掺杂二维材料层(3)上淀积基极(6),在所述第一N型III族氮化物层(2)底部沉积集电极(5)。
2.如权利要求1所述的双极型三极管制备方法,其特征在于:所述氮化镓基衬底(1)为均一材质的氮化镓衬底或氮化镓外延片。
3.如权利要求1所述的双极型三极管制备方法,其特征在于:所述氮化镓基衬底(1)为N型掺杂,掺杂浓度为1019cm-3-1021cm-3
4.如权利要求1所述的双极型三极管制备方法,其特征在于:所述第一N型掺杂III族氮化物层(2)为弱N型掺杂,掺杂浓度为1015cm-3-1017cm-3
5.如权利要求1所述的双极型三极管制备方法,其特征在于:淀积所述P型掺杂二维材料层(3)方式为薄膜转移工艺或化学气相淀积。
6.如权利要求1所述的双极型三极管制备方法,其特征在于:所述第二N型掺杂III族氮化物层(4)为重N型掺杂,掺杂浓度为1018cm-3-1021cm-3
7.如权利要求1所述的双极型三极管制备方法,其特征在于:淀积所述第二N型掺杂III族氮化物层(4)方法为化学气相沉积或物理气相沉积;刻蚀所述第二N型掺杂III族氮化物层(4)方式为干法刻蚀,刻蚀气体为Cl2或BCl3
8.如权利要求1所述的双极型三极管制备方法,其特征在于:淀积金属包括退火过程,退火时间为300℃-900℃。
9.如权利要求1所述的双极型三极管制备方法,其特征在于:所述第一N型掺杂III族氮化物层(2)和/或所述第二N型掺杂III族氮化物层(4)材料选自氮化镓、铝镓氮、铟镓氮、铝氮。
10.如权利要求1所述的双极型三极管制备方法,其特征在于:所述P型掺杂二维材料层(3)选自二硒化钨,二碲化钼、黑磷。
11.一种如权利要求1-10所述方法制备的晶体管,其特征在于:该三极管结构自下而上依次为氮化镓基衬底(1),第一N型掺杂III族氮化物层(2),P型掺杂二维材料层(3)、第二N型掺杂III族氮化物层(4);所述第一N型掺杂III族氮化物层(2)为集电区;所述P型掺杂二维材料层(3)为基区;所述第二N型掺杂III族氮化物层(4)为发射区。
12.如权利要求11所述的晶体管,其特征在于:所述第一N型掺杂III族氮化物层(2)和/或所述第二N型掺杂III族氮化物层(4)厚度为100nm-10um。
13.如权利要求11所述的晶体管,其特征在于:所述P型掺杂二维材料层(3)的厚度为1nm-100nm。
CN201911365414.3A 2019-12-26 2019-12-26 一种基于二维材料/氮化镓的双极型三极管及其制备方法 Pending CN111081543A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911365414.3A CN111081543A (zh) 2019-12-26 2019-12-26 一种基于二维材料/氮化镓的双极型三极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911365414.3A CN111081543A (zh) 2019-12-26 2019-12-26 一种基于二维材料/氮化镓的双极型三极管及其制备方法

Publications (1)

Publication Number Publication Date
CN111081543A true CN111081543A (zh) 2020-04-28

Family

ID=70317969

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911365414.3A Pending CN111081543A (zh) 2019-12-26 2019-12-26 一种基于二维材料/氮化镓的双极型三极管及其制备方法

Country Status (1)

Country Link
CN (1) CN111081543A (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313488B1 (en) * 1999-04-21 2001-11-06 Abb Research Limited Bipolar transistor having a low doped drift layer of crystalline SiC
US20040124435A1 (en) * 2002-12-27 2004-07-01 General Electric Company Homoepitaxial gallium-nitride-based electronic devices and method for producing same
US20070114518A1 (en) * 2005-11-22 2007-05-24 Yue-Ming Hsin GaN HETEROJUNCTION BIPOLAR TRANSISTOR WITH A P-TYPE STRAINED InGaN BASE LAYER AND FABRICATING METHOD THEREOF
JP2008016615A (ja) * 2006-07-05 2008-01-24 Matsushita Electric Ind Co Ltd バイポーラトランジスタ
US20080128745A1 (en) * 2006-12-04 2008-06-05 Mastro Michael A Group iii-nitride growth on silicon or silicon germanium substrates and method and devices therefor
US20080296617A1 (en) * 2007-05-01 2008-12-04 The Regents Of The University Of California METHOD USING LOW TEMPERATURE WAFER BONDING TO FABRICATE TRANSISTORS WITH HETEROJUNCTIONS OF Si(Ge) TO III-N MATERIALS
US20150357446A1 (en) * 2014-06-04 2015-12-10 Infineon Technologies Dresden Gmbh Bipolar transistor structure and a method of manufacturing a bipolar transistor structure
CN106298513A (zh) * 2016-08-31 2017-01-04 厦门市三安光电科技有限公司 一种hbt制造方法
JP2017076715A (ja) * 2015-10-15 2017-04-20 富士通株式会社 半導体デバイス及びその製造方法
CN107123581A (zh) * 2017-04-07 2017-09-01 中山大学 一种基于二维层状材料的器件及制备方法
CN108305834A (zh) * 2018-01-11 2018-07-20 北京华碳科技有限责任公司 一种增强型氮化镓场效应器件的制备方法
CN108365008A (zh) * 2018-01-11 2018-08-03 北京华碳科技有限责任公司 具p型二维材料栅极增强型氮化镓场效应器件的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313488B1 (en) * 1999-04-21 2001-11-06 Abb Research Limited Bipolar transistor having a low doped drift layer of crystalline SiC
US20040124435A1 (en) * 2002-12-27 2004-07-01 General Electric Company Homoepitaxial gallium-nitride-based electronic devices and method for producing same
US20070114518A1 (en) * 2005-11-22 2007-05-24 Yue-Ming Hsin GaN HETEROJUNCTION BIPOLAR TRANSISTOR WITH A P-TYPE STRAINED InGaN BASE LAYER AND FABRICATING METHOD THEREOF
JP2008016615A (ja) * 2006-07-05 2008-01-24 Matsushita Electric Ind Co Ltd バイポーラトランジスタ
US20080128745A1 (en) * 2006-12-04 2008-06-05 Mastro Michael A Group iii-nitride growth on silicon or silicon germanium substrates and method and devices therefor
US20080296617A1 (en) * 2007-05-01 2008-12-04 The Regents Of The University Of California METHOD USING LOW TEMPERATURE WAFER BONDING TO FABRICATE TRANSISTORS WITH HETEROJUNCTIONS OF Si(Ge) TO III-N MATERIALS
US20150357446A1 (en) * 2014-06-04 2015-12-10 Infineon Technologies Dresden Gmbh Bipolar transistor structure and a method of manufacturing a bipolar transistor structure
JP2017076715A (ja) * 2015-10-15 2017-04-20 富士通株式会社 半導体デバイス及びその製造方法
CN106298513A (zh) * 2016-08-31 2017-01-04 厦门市三安光电科技有限公司 一种hbt制造方法
CN107123581A (zh) * 2017-04-07 2017-09-01 中山大学 一种基于二维层状材料的器件及制备方法
CN108305834A (zh) * 2018-01-11 2018-07-20 北京华碳科技有限责任公司 一种增强型氮化镓场效应器件的制备方法
CN108365008A (zh) * 2018-01-11 2018-08-03 北京华碳科技有限责任公司 具p型二维材料栅极增强型氮化镓场效应器件的制备方法

Similar Documents

Publication Publication Date Title
US10158009B2 (en) Method of making a graphene base transistor with reduced collector area
US20010026986A1 (en) Process for forming a silicon-germanium base of a heterojunction bipolar transistor
US20190067460A1 (en) Semiconductor device
JPH0677245A (ja) バイポーラ・トランジスタおよびその製造方法
CN109873034B (zh) 沉积多晶AlN的常关型HEMT功率器件及其制备方法
KR20160100918A (ko) 헤테로 접합으로부터 제조된 hemt
KR20210065843A (ko) 와이드 밴드갭 ⅲ-ⅴ족 화합물 반도체 드레인을 구비하는 금속 산화물 실리콘 반도체 전계효과 트랜지스터 및 그의 제조 방법
JP2008016615A (ja) バイポーラトランジスタ
US6410396B1 (en) Silicon carbide: germanium (SiC:Ge) heterojunction bipolar transistor; a new semiconductor transistor for high-speed, high-power applications
CN111682064B (zh) 高性能MIS栅增强型GaN基高电子迁移率晶体管及其制备方法
JP3515944B2 (ja) ヘテロバイポーラトランジスタ
US6573539B2 (en) Heterojunction bipolar transistor with silicon-germanium base
CN115775730B (zh) 一种准垂直结构GaN肖特基二极管及其制备方法
CN108831932B (zh) 一种氮化镓横向mis-肖特基混合阳极二极管
US20060284282A1 (en) Heterjunction bipolar transistor with tunnelling mis emitter junction
CN111081543A (zh) 一种基于二维材料/氮化镓的双极型三极管及其制备方法
KR102074320B1 (ko) 헤테로 접합 바이폴라 트랜지스터
US11195940B2 (en) High-voltage terahertz strained SiGe/InGaP heterojunction bipolar transistor and preparation method thereof
JP2007042936A (ja) Iii−v族化合物半導体エピタキシャルウェハ
CN210110780U (zh) PNP型肖特基集电区AlGaN/GaN HBT器件
KR100347520B1 (ko) 이종접합 쌍극자 소자 및 그 제조방법
JP4158683B2 (ja) ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハ
JP2017195217A (ja) ヘテロ接合バイポーラトランジスタおよびその製造方法
KR100839786B1 (ko) 실리콘게르마늄 반도체 소자 구조 및 그 제조방법
Chu-Kung et al. Process and performance improvements to type-II GaAsSb/InP DHBTs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20230329

Address after: No. 1088, Xueyuan Avenue, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province

Applicant after: Southern University of Science and Technology

Address before: Taizhou building, No. 1088, Xueyuan Avenue, Xili University Town, Nanshan District, Shenzhen City, Guangdong Province

Applicant before: SHENZHEN THIRD GENERATION SEMICONDUCTOR Research Institute

AD01 Patent right deemed abandoned
AD01 Patent right deemed abandoned

Effective date of abandoning: 20240319