CN111081543A - 一种基于二维材料/氮化镓的双极型三极管及其制备方法 - Google Patents
一种基于二维材料/氮化镓的双极型三极管及其制备方法 Download PDFInfo
- Publication number
- CN111081543A CN111081543A CN201911365414.3A CN201911365414A CN111081543A CN 111081543 A CN111081543 A CN 111081543A CN 201911365414 A CN201911365414 A CN 201911365414A CN 111081543 A CN111081543 A CN 111081543A
- Authority
- CN
- China
- Prior art keywords
- type doped
- layer
- nitride
- dimensional material
- nitride layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910002601 GaN Inorganic materials 0.000 title claims abstract description 50
- 239000000463 material Substances 0.000 title claims abstract description 50
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 238000002360 preparation method Methods 0.000 title claims abstract description 6
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 150000004767 nitrides Chemical class 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 31
- 238000000151 deposition Methods 0.000 claims description 24
- 238000005530 etching Methods 0.000 claims description 13
- 230000008021 deposition Effects 0.000 claims description 9
- 238000005229 chemical vapour deposition Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 238000001312 dry etching Methods 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 4
- 238000005240 physical vapour deposition Methods 0.000 claims description 4
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 claims description 3
- ROUIDRHELGULJS-UHFFFAOYSA-N bis(selanylidene)tungsten Chemical compound [Se]=[W]=[Se] ROUIDRHELGULJS-UHFFFAOYSA-N 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- HITXEXPSQXNMAN-UHFFFAOYSA-N bis(tellanylidene)molybdenum Chemical compound [Te]=[Mo]=[Te] HITXEXPSQXNMAN-UHFFFAOYSA-N 0.000 claims description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 2
- 239000010409 thin film Substances 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 1
- 239000007789 gas Substances 0.000 claims 1
- 239000012535 impurity Substances 0.000 claims 1
- 229910017464 nitrogen compound Inorganic materials 0.000 claims 1
- 150000002830 nitrogen compounds Chemical class 0.000 claims 1
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 7
- 229910003090 WSe2 Inorganic materials 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 229910016021 MoTe2 Inorganic materials 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 229910015844 BCl3 Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 3
- 238000001259 photo etching Methods 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical group S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- GPBUGPUPKAGMDK-UHFFFAOYSA-N azanylidynemolybdenum Chemical compound [Mo]#N GPBUGPUPKAGMDK-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052961 molybdenite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D10/00—Bipolar junction transistors [BJT]
- H10D10/01—Manufacture or treatment
- H10D10/021—Manufacture or treatment of heterojunction BJTs [HBT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D10/00—Bipolar junction transistors [BJT]
- H10D10/80—Heterojunction BJTs
- H10D10/821—Vertical heterojunction BJTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
Landscapes
- Bipolar Transistors (AREA)
Abstract
本发明提供一种基于二维材料/氮化镓的双极型三极管及其制备方法,在GaN基衬底1上外延第一N型掺杂III族氮化物层2作为集电区;在所述第一N型掺杂III族氮化物层上淀积P型掺杂二维材料层3,P型掺杂浓度为1018cm‑3‑1020cm‑3,所述P型掺杂二维材料层3为基区;在所述P型掺杂二维材料层3上淀积第二N型掺杂III族氮化物层4,刻蚀所述第二N型III族氮化物层4的端部暴露出所述P型掺杂二维材料层并定义发射区;由于二维材料的价带与氮化镓的价带具有较大的能量差,使得异质结具有较高的电子发射效率,有利于提高晶体管的增益。而得益于二维材料的超薄特性,可大幅降低基区度越时间,提高晶体管的频率。
Description
技术领域
本发明属于半导体器件技术领域,具体涉及一种基于二维材料/氮化镓的双极型三极管及其制备方法。
背景技术
双极型晶体管(BJT)是利用电子和空穴两种载流子的开关半导体器件。通过注入少量的基区载流子,促使发射区发射出大量的少数载流子,从而产生电流放大的效果。双极型晶体管使用垂直的器件结构,电流可在垂直于整个器件平面的方向上流动,而非如金属-氧化物-半导体场效应晶体管(MOSFET)只能在最表面导通电流。因此,其特点是可以导通大电流和较大的电流增益特性。与单极晶体管相比,双极型晶体管可广泛用于大功率,大容量的电子系统中(例如用于太阳能发电的功率调节器,电动汽车和射频放大中)。而异质结双极型晶体管(HBT)具有较高的电流增益和截止频率,可广泛应用于各类射频电路中。
传统的异质结双极型晶体管基于硅/锗硅的异质结,利用硅/锗硅的价带能带差实现高增益,并使用超薄的锗外延层达到高截止频率的效果。然而,由于硅/锗硅的异质结双极型晶体管的禁带宽度较小,其击穿电压不高,难以应用于高功率的射频器件中。III族氮化物如氮化镓和铝镓氮,作为第三代半导体的代表性材料,具有大禁带宽度,高电子迁移率等特点,适合用于耐受高电压的功率器件中。基于氮化镓的场效应晶体管已经被大量研究。然而,由于氮化镓中较难获得P型掺杂,使得基于氮化镓的双极型晶体管的发展处于停滞状态。
发明内容
为了解决上述问题,本发明提供一种基于二维材料/氮化物的双极型三极管制备方法:包括如下步骤
提供一氮化镓基衬底1;
在所述氮化镓基衬底1上外延第一N型掺杂III族氮化物层2,定义所述第一N型掺杂III族氮化物层2为集电区;
在所述第一N型掺杂III族氮化物层上淀积P型掺杂二维材料层3,其中P型掺杂浓度为1018cm-3-1020cm-3,定义所述P型掺杂二维材料层3为基区;
在所述P型掺杂二维材料层3上淀积第二N型掺杂III族氮化物层4,刻蚀所述第二N型掺杂III族氮化物层4的端部暴露出所述P型掺杂二维材料层,定义暴露出的P型掺杂二维材料层为发射区;所述第一N型掺杂III族氮化物层2的掺杂浓度小于所述第二N型掺杂III族氮化物层4的掺杂浓度;
在所述第二N型III族氮化物层4上淀积金属形成发射极7,在暴露出的所述P型掺杂二维材料层3上淀积基极6,在所述第一N型III族氮化物层2底部沉积集电极5。
优选的,所述氮化镓基衬底1为均一材质的氮化镓衬底或氮化镓外延片。
优选的,所述氮化镓基衬底1为N型掺杂,掺杂浓度为1019cm-3-1021cm-3。
优选的,所述第一N型掺杂III族氮化物层2为弱N型掺杂,掺杂浓度为1015cm-3-1017cm-3。
优选的,淀积所述P型掺杂二维材料层3方式为薄膜转移工艺或化学气相淀积。
优选的,所述第二N型掺杂III族氮化物层4为重N型掺杂,掺杂浓度为1018cm-3-1021cm-3。
优选的,淀积所述第二N型掺杂III族氮化物层4方式为化学气相沉积或物理气相沉积;刻蚀所述第二N型掺杂III族氮化物层4方式为干法刻蚀,刻蚀气体为Cl2或BCl3。
优选的,淀积金属包括退火过程,退火时间为300℃-900℃。
优选的,所述第一N型掺杂III族氮化物层2和/或所述第二N型掺杂III族氮化物层4材料选自氮化镓、铝镓氮、铟镓氮、铝氮。
优选的,所述P型掺杂二维材料层3选自二硒化钨,二碲化钼、黑磷。
基于同样的发明构思,本发明还提供一种基于上述方法的双极型三极管晶体管,该三极管结构自下而上依次为氮化镓基衬底1,第一N型掺杂III族氮化物层2,P型掺杂二维材料层3、第二N型掺杂III族氮化物层4;所述第一N型掺杂III族氮化物层2为集电区;所述P型掺杂二维材料层3为基区;所述第二N型掺杂III族氮化物层3为发射区。
优选的,所述第一N型掺杂III族氮化物层2和/或所述第二N型掺杂III族氮化物层4厚度为100nm-10um。
优选的,所述P型二维材料层3的厚度为1nm-100nm。二维材料是近年来兴起的新型半导体材料,其具有可掺杂,禁带宽度和厚度灵活可调的优点。二维材料可通过控制材料生长和掺杂的方式形成N型掺杂或P型掺杂的掺杂。本发明将P型掺杂的二维材料和N型掺杂III族氮化物结合,以二维材料作为基区,氮化物作为发射区和集电区。由于P型掺杂二维材料和N型掺杂III族氮化物结合具有巨大的价带能量差,N型掺杂的III族氮化物结合的发射区向P型掺杂的二维材料的基区中发射电子的发射效率可得到大幅提升从而提高晶体管的电流增益。此外,由于二维材料的薄膜厚度具有灵活可控的特点,薄可至单原子层。使用超薄的二维材料作为基区,可大幅降低基区的载流子渡越时间,提升晶体管的截止频率。本半导体器件可广泛应用于射频功率放大,信号放大或混频等领域。即可作为分立器件单独使用,又可集成在单片集成系统中。
附图说明
图1为本发明实施例1的双极晶体管结构示意图。
图2为本发明实施例1的双极晶体管制备流程示意图。
GaN基衬底1,弱N型掺杂的GaN层2,P型掺杂WSe2层3,重N型掺杂的GaN层4,集电极5,基极6,发射极7
具体实施方式
下面结合附图对本发明的较佳实施例进行详细说明,以使本发明的特点与功能更易于被本领域人员所理解,但本发明并不限于以下实施例。
实施例1:本实施例提供一种基于WSe2的双极晶体管及其制备方法
如图1所示,为晶体管结构示意图,该三极管结构自下而上依次为GaN基衬底1,厚度为50nm的第一N型掺杂III族氮化物层2,厚度为10nm的P型掺杂WSe2层3,厚度为1um的第二N型掺杂III族氮化物层4;所述第一N型掺杂III族氮化物层2为集电区;所述P型掺杂WSe2层3为基区,所述第二N型掺杂III族氮化物层4为发射区;所述第一N型掺杂III族氮化物层4底部沉积集电极5,所述第二N型掺杂III族氮化物层4上沉积发射极7,所述P型掺杂WSe2层3上沉积基极6。
如图2所示,为该晶体管制备方法,包括如下步骤:
如图2(a)所示,提供一起始的GaN基衬底1,其衬底掺杂为重N型掺杂,掺杂浓度为1020cm-3,衬底可为均一材质的GaN。
如图2(b)所示,在重N型掺杂的GaN基衬底1上使用外延工艺形成弱N型掺杂的GaN层2作为集电区的耐受电压区,掺杂浓度为1015cm-3;
如图2(c)所示,在弱N掺杂的氮化镓上淀积一层P型掺杂WSe2层3,掺杂浓度为1018cm-3,二硫化钼的淀积采用转移的方法;
如图2(d)所示,在P型WSe2层淀积重N型掺杂的GaN层,掺杂浓度为1020cm-3,淀积采用化学气相淀积(CVD)方法。淀积后进行光刻并刻蚀从而定义出顶层的氮化镓发射区,并露出下面的P型WSe2层。刻蚀采用干法刻蚀,刻蚀气体一般为Cl2或BCl3等。
如图2(e)所示,淀积金属镍并在400℃退火以形成基极、集电极和发射极。
二硒化钨相较于二硫化钼或氮化物更易形成P型掺杂,且价带与氮化镓价带的能量差更大,有利于进一步提高晶体管的电流增益。
实施例2:本实施例提供一种基于MoTe2的双极晶体管制备方法
提供一起始的GaN基衬底1,其衬底掺杂为重N型掺杂,掺杂浓度为1020cm-3,衬底为硅外延出的氮化镓层;
在重N型掺杂的氮化镓基衬底1上使用外延工艺形成一层弱N型掺杂的氮化镓层作为集电区的耐受电压区,掺杂浓度为1016cm-3;
在弱N掺杂的氮化镓上淀积一层P型掺杂的MoTe2层,掺杂浓度为1019cm-3,MoTe2层的淀积采用化学气相沉积方法;
在MoTe2上淀积一层重N型掺杂的氮化镓,掺杂浓度为1020cm-3,淀积采用物理气相沉积方法,淀积后进行光刻并刻蚀从而定义出顶层的氮化镓发射区,并露出下面的MoTe2层。刻蚀采用干法刻蚀,刻蚀气体为Cl2。
淀积钛金属并在600℃退火以形成基极、集电极和发射极。
实施例3:本实施例提供另一种基于WSe2的双极晶体管制备方法
提供一起始的AlGaN衬底1,其衬底掺杂为重N型掺杂,掺杂浓度为1020cm-3;
在重N型掺杂的氮化镓基衬底1上使用外延工艺形成一层弱N型掺杂的AlGaN层作为集电区的耐受电压区,掺杂浓度为1015cm-3;
在弱N掺杂的AlGaN层上淀积一层P型掺杂的WSe2层,掺杂浓度为1020cm-3,MoS2层的淀积采用化学气相沉积方法;
在WSe2层上淀积一层重N型掺杂的AlGaN层,掺杂浓度为1019cm-3,淀积采用物理气相沉积方法。淀积后进行光刻并刻蚀从而定义出顶层的AlGaN层发射区,并露出下面的WSe2层。刻蚀采用干法刻蚀,刻蚀气体为BCl3。
淀积钛/铝/镍/金复合金属层并在800℃退火以形成基极、集电极和发射极。
铝镓氮相比于氮化镓具有更大的禁带宽度,因此可以耐受更高的工作电压,有利于形成高功率器件。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明。凡在本发明的精神和原则之内,通过改变某个区域厚度或掺杂浓度,改变横向结构的位置和名称,均应包含在本发明的保护范围之内。
Claims (13)
1.一种基于二维材料/氮化镓的双极型三极管制备方法,其特征在于:
提供一氮化镓基衬底(1);
在所氮化镓基衬底(1)上外延第一N型掺杂III族氮化物层(2),定义所述第一N型掺杂III族氮化物层(2)为集电区;
在所述第一N型掺杂III族氮化物层上淀积P型掺杂二维材料层(3),其中P型掺杂浓度为1018cm-3-1020cm-3,定义所述P型掺杂二维材料层(3)为基区;
在所述P型掺杂二维材料层(3)上淀积第二N型掺杂III族氮化物层(4),刻蚀所述第二N型掺杂III族氮化物层(4)的端部暴露出所述P型掺杂二维材料层,定义暴露出的P型掺杂二维材料层为发射区;所述第一N型掺杂III族氮化物层(2)的掺杂浓度小于所述第二N型掺杂III族氮化物层(4)的掺杂浓度;
在所述第二N型III族氮化物层(4)上淀积金属形成发射极(7),在暴露出的所述P型掺杂二维材料层(3)上淀积基极(6),在所述第一N型III族氮化物层(2)底部沉积集电极(5)。
2.如权利要求1所述的双极型三极管制备方法,其特征在于:所述氮化镓基衬底(1)为均一材质的氮化镓衬底或氮化镓外延片。
3.如权利要求1所述的双极型三极管制备方法,其特征在于:所述氮化镓基衬底(1)为N型掺杂,掺杂浓度为1019cm-3-1021cm-3。
4.如权利要求1所述的双极型三极管制备方法,其特征在于:所述第一N型掺杂III族氮化物层(2)为弱N型掺杂,掺杂浓度为1015cm-3-1017cm-3。
5.如权利要求1所述的双极型三极管制备方法,其特征在于:淀积所述P型掺杂二维材料层(3)方式为薄膜转移工艺或化学气相淀积。
6.如权利要求1所述的双极型三极管制备方法,其特征在于:所述第二N型掺杂III族氮化物层(4)为重N型掺杂,掺杂浓度为1018cm-3-1021cm-3。
7.如权利要求1所述的双极型三极管制备方法,其特征在于:淀积所述第二N型掺杂III族氮化物层(4)方法为化学气相沉积或物理气相沉积;刻蚀所述第二N型掺杂III族氮化物层(4)方式为干法刻蚀,刻蚀气体为Cl2或BCl3。
8.如权利要求1所述的双极型三极管制备方法,其特征在于:淀积金属包括退火过程,退火时间为300℃-900℃。
9.如权利要求1所述的双极型三极管制备方法,其特征在于:所述第一N型掺杂III族氮化物层(2)和/或所述第二N型掺杂III族氮化物层(4)材料选自氮化镓、铝镓氮、铟镓氮、铝氮。
10.如权利要求1所述的双极型三极管制备方法,其特征在于:所述P型掺杂二维材料层(3)选自二硒化钨,二碲化钼、黑磷。
11.一种如权利要求1-10所述方法制备的晶体管,其特征在于:该三极管结构自下而上依次为氮化镓基衬底(1),第一N型掺杂III族氮化物层(2),P型掺杂二维材料层(3)、第二N型掺杂III族氮化物层(4);所述第一N型掺杂III族氮化物层(2)为集电区;所述P型掺杂二维材料层(3)为基区;所述第二N型掺杂III族氮化物层(4)为发射区。
12.如权利要求11所述的晶体管,其特征在于:所述第一N型掺杂III族氮化物层(2)和/或所述第二N型掺杂III族氮化物层(4)厚度为100nm-10um。
13.如权利要求11所述的晶体管,其特征在于:所述P型掺杂二维材料层(3)的厚度为1nm-100nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911365414.3A CN111081543A (zh) | 2019-12-26 | 2019-12-26 | 一种基于二维材料/氮化镓的双极型三极管及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911365414.3A CN111081543A (zh) | 2019-12-26 | 2019-12-26 | 一种基于二维材料/氮化镓的双极型三极管及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111081543A true CN111081543A (zh) | 2020-04-28 |
Family
ID=70317969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911365414.3A Pending CN111081543A (zh) | 2019-12-26 | 2019-12-26 | 一种基于二维材料/氮化镓的双极型三极管及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111081543A (zh) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6313488B1 (en) * | 1999-04-21 | 2001-11-06 | Abb Research Limited | Bipolar transistor having a low doped drift layer of crystalline SiC |
US20040124435A1 (en) * | 2002-12-27 | 2004-07-01 | General Electric Company | Homoepitaxial gallium-nitride-based electronic devices and method for producing same |
US20070114518A1 (en) * | 2005-11-22 | 2007-05-24 | Yue-Ming Hsin | GaN HETEROJUNCTION BIPOLAR TRANSISTOR WITH A P-TYPE STRAINED InGaN BASE LAYER AND FABRICATING METHOD THEREOF |
JP2008016615A (ja) * | 2006-07-05 | 2008-01-24 | Matsushita Electric Ind Co Ltd | バイポーラトランジスタ |
US20080128745A1 (en) * | 2006-12-04 | 2008-06-05 | Mastro Michael A | Group iii-nitride growth on silicon or silicon germanium substrates and method and devices therefor |
US20080296617A1 (en) * | 2007-05-01 | 2008-12-04 | The Regents Of The University Of California | METHOD USING LOW TEMPERATURE WAFER BONDING TO FABRICATE TRANSISTORS WITH HETEROJUNCTIONS OF Si(Ge) TO III-N MATERIALS |
US20150357446A1 (en) * | 2014-06-04 | 2015-12-10 | Infineon Technologies Dresden Gmbh | Bipolar transistor structure and a method of manufacturing a bipolar transistor structure |
CN106298513A (zh) * | 2016-08-31 | 2017-01-04 | 厦门市三安光电科技有限公司 | 一种hbt制造方法 |
JP2017076715A (ja) * | 2015-10-15 | 2017-04-20 | 富士通株式会社 | 半導体デバイス及びその製造方法 |
CN107123581A (zh) * | 2017-04-07 | 2017-09-01 | 中山大学 | 一种基于二维层状材料的器件及制备方法 |
CN108305834A (zh) * | 2018-01-11 | 2018-07-20 | 北京华碳科技有限责任公司 | 一种增强型氮化镓场效应器件的制备方法 |
CN108365008A (zh) * | 2018-01-11 | 2018-08-03 | 北京华碳科技有限责任公司 | 具p型二维材料栅极增强型氮化镓场效应器件的制备方法 |
-
2019
- 2019-12-26 CN CN201911365414.3A patent/CN111081543A/zh active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6313488B1 (en) * | 1999-04-21 | 2001-11-06 | Abb Research Limited | Bipolar transistor having a low doped drift layer of crystalline SiC |
US20040124435A1 (en) * | 2002-12-27 | 2004-07-01 | General Electric Company | Homoepitaxial gallium-nitride-based electronic devices and method for producing same |
US20070114518A1 (en) * | 2005-11-22 | 2007-05-24 | Yue-Ming Hsin | GaN HETEROJUNCTION BIPOLAR TRANSISTOR WITH A P-TYPE STRAINED InGaN BASE LAYER AND FABRICATING METHOD THEREOF |
JP2008016615A (ja) * | 2006-07-05 | 2008-01-24 | Matsushita Electric Ind Co Ltd | バイポーラトランジスタ |
US20080128745A1 (en) * | 2006-12-04 | 2008-06-05 | Mastro Michael A | Group iii-nitride growth on silicon or silicon germanium substrates and method and devices therefor |
US20080296617A1 (en) * | 2007-05-01 | 2008-12-04 | The Regents Of The University Of California | METHOD USING LOW TEMPERATURE WAFER BONDING TO FABRICATE TRANSISTORS WITH HETEROJUNCTIONS OF Si(Ge) TO III-N MATERIALS |
US20150357446A1 (en) * | 2014-06-04 | 2015-12-10 | Infineon Technologies Dresden Gmbh | Bipolar transistor structure and a method of manufacturing a bipolar transistor structure |
JP2017076715A (ja) * | 2015-10-15 | 2017-04-20 | 富士通株式会社 | 半導体デバイス及びその製造方法 |
CN106298513A (zh) * | 2016-08-31 | 2017-01-04 | 厦门市三安光电科技有限公司 | 一种hbt制造方法 |
CN107123581A (zh) * | 2017-04-07 | 2017-09-01 | 中山大学 | 一种基于二维层状材料的器件及制备方法 |
CN108305834A (zh) * | 2018-01-11 | 2018-07-20 | 北京华碳科技有限责任公司 | 一种增强型氮化镓场效应器件的制备方法 |
CN108365008A (zh) * | 2018-01-11 | 2018-08-03 | 北京华碳科技有限责任公司 | 具p型二维材料栅极增强型氮化镓场效应器件的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20010026986A1 (en) | Process for forming a silicon-germanium base of a heterojunction bipolar transistor | |
CN106024914A (zh) | 混合阳极电极结构的GaN基肖特基二极管及其制备方法 | |
CN109873034B (zh) | 沉积多晶AlN的常关型HEMT功率器件及其制备方法 | |
CN111384171B (zh) | 高沟道迁移率垂直型umosfet器件及其制备方法 | |
KR20160100918A (ko) | 헤테로 접합으로부터 제조된 hemt | |
CN110690277A (zh) | 一种台面型肖特基集电区NPN SiGe HBT器件及其制备方法 | |
JP2008016615A (ja) | バイポーラトランジスタ | |
US6410396B1 (en) | Silicon carbide: germanium (SiC:Ge) heterojunction bipolar transistor; a new semiconductor transistor for high-speed, high-power applications | |
CN109950324A (zh) | p型阳极的Ⅲ族氮化物二极管器件及其制作方法 | |
JP3515944B2 (ja) | ヘテロバイポーラトランジスタ | |
US6573539B2 (en) | Heterojunction bipolar transistor with silicon-germanium base | |
CN110581167B (zh) | 一种台面型AlGaN/GaN异质结双极晶体管器件及其制备方法 | |
CN112713190A (zh) | 一种垂直结构氮化镓hemt器件的制备方法 | |
CN108831932B (zh) | 一种氮化镓横向mis-肖特基混合阳极二极管 | |
US20060284282A1 (en) | Heterjunction bipolar transistor with tunnelling mis emitter junction | |
WO2020240725A1 (ja) | ヘテロ接合バイポーラトランジスタおよびその作製方法 | |
CN111081543A (zh) | 一种基于二维材料/氮化镓的双极型三极管及其制备方法 | |
CN110518067A (zh) | 基于沟道阵列的异质结场效应晶体管及其制作方法和应用 | |
CN111653473B (zh) | 一种散热增强的硅基氮化镓微波器件材料结构 | |
CN115775730A (zh) | 一种准垂直结构GaN肖特基二极管及其制备方法 | |
CN210110780U (zh) | PNP型肖特基集电区AlGaN/GaN HBT器件 | |
CN111211176B (zh) | 一种氮化镓基异质结集成器件结构及制造方法 | |
KR102074320B1 (ko) | 헤테로 접합 바이폴라 트랜지스터 | |
US11195940B2 (en) | High-voltage terahertz strained SiGe/InGaP heterojunction bipolar transistor and preparation method thereof | |
CN111081769B (zh) | NPN型肖特基集电区AlGaN/GaN HBT器件及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230329 Address after: No. 1088, Xueyuan Avenue, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province Applicant after: Southern University of Science and Technology Address before: Taizhou building, No. 1088, Xueyuan Avenue, Xili University Town, Nanshan District, Shenzhen City, Guangdong Province Applicant before: SHENZHEN THIRD GENERATION SEMICONDUCTOR Research Institute |
|
AD01 | Patent right deemed abandoned | ||
AD01 | Patent right deemed abandoned |
Effective date of abandoning: 20240319 |