CN111072908A - 一种高阻氧水性聚氨酯/蒙脱土纳米复合乳液及制备方法 - Google Patents

一种高阻氧水性聚氨酯/蒙脱土纳米复合乳液及制备方法 Download PDF

Info

Publication number
CN111072908A
CN111072908A CN201911421964.2A CN201911421964A CN111072908A CN 111072908 A CN111072908 A CN 111072908A CN 201911421964 A CN201911421964 A CN 201911421964A CN 111072908 A CN111072908 A CN 111072908A
Authority
CN
China
Prior art keywords
montmorillonite
polyethyleneimine
emulsion
waterborne polyurethane
nano composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911421964.2A
Other languages
English (en)
Other versions
CN111072908B (zh
Inventor
张胜文
陆俊
田大为
徐正午
东为富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Heyu New Energy Technology Co ltd
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201911421964.2A priority Critical patent/CN111072908B/zh
Publication of CN111072908A publication Critical patent/CN111072908A/zh
Application granted granted Critical
Publication of CN111072908B publication Critical patent/CN111072908B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6692Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6415Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63 having nitrogen
    • C08G18/6423Polyalkylene polyamines; polyethylenimines; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/14Gas barrier composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种高阻氧水性聚氨酯/蒙脱土纳米复合乳液及制备方法,属于高分子材料改性技术领域。本发明的纳米乳液由下述重量份的原料制得:40‑80wt%的结晶多元醇,15‑50wt%的对称性异氰酸酯,2‑6wt%的亲水单体,50‑80wt%蒙脱土,0.1‑10wt%的超支化的聚乙烯亚胺。本发明制备的纳米复合乳液具有较好的分散稳定性,同时无机纳米粒子的引入使水性聚氨酯涂层的热稳定性、力学性能明显提高,蒙脱土独特的片层结构又使得阻隔性能增强,可广泛应用于耐高温的食品、医药包装等领域。

Description

一种高阻氧水性聚氨酯/蒙脱土纳米复合乳液及制备方法
技术领域
本发明涉及一种高阻氧水性聚氨酯/蒙脱土纳米复合乳液及制备方法,属于高分子材料改性技术领域。
背景技术
水性聚氨酯(WPU)以水为分散介质,具有高分子量、低黏度、综合性能好、环保、安全、卫生等优点,符合绿色环保可持续发展理念,近年来在涂料、胶黏剂、油墨等领域得到了广泛应用。但是水性聚氨酯的力学性能、耐水性等性能还不能与传统溶剂型聚氨酯相媲美,因而限制了其进一步广泛应用。水性聚氨酯/无机纳米复合涂层将聚氨酯合成技术与无机纳米材料的合成、分散技术有机结合是提升水性涂层性能的有效途径。
蒙脱土(MMT)是典型的层状硅酸盐,具有来源广泛、价格低廉等优点,将其引入WPU中可有效提升其性能。通常选用有机季铵盐、胺类化合物、硅烷偶联剂等通过离子交换、氢键和共价键等作用方式对蒙脱土表面或层间进行不同程度的有机改性,以提高MMT在WPU膜中的分散性及相容性。但通常小分子改性剂对MMT层间距增大效果不明显,且改性MMT在水中的分散性受限。
发明内容
为了解决上述至少一个问题,本发明提供一种高阻氧水性聚氨酯/蒙脱土纳米复合乳液及制备方法;通过聚乙烯亚胺改性蒙脱土,提高材料的机械性能以及耐水性,且形成定向排列提高其阻隔性能和耐热性。
本发明选用高分子量超支化聚乙烯亚胺PEI插层改性MMT,将聚乙烯亚胺改性蒙脱土PEI-MMT与WPU复合后,可以制备出高含量(50%及以上含量)分散性好且稳定的WPU/PEI-MMT纳米复合乳液,得到了具有优异力学性能和阻氧性能的WPU/PEI-MMT纳米复合膜。
本发明的第一个目的是提供一种纳米复合乳液,由下述重量份的原料制得:40-80wt%的结晶性多元醇、15-50wt%的结构对称型异氰酸酯、2-6wt%的亲水单体、50-80wt%蒙脱土、0.1-10wt%的超支化的聚乙烯亚胺。
在一种实施方式中,所述的结构对称型异氰酸酯选用4,4'-二环己基甲烷二异氰酸酯、间苯二甲基异氰酸酯、2,6-甲苯二异氰酸酯或异佛尔酮二异氰酸酯、二苯基亚甲基二异氰酸酯、甲基环己基二异氰酸酯、六亚甲基二异氰酸酯中的一种或者几种。
在一种实施方式中,所述的结晶性多元醇选用聚四亚甲基醚二醇、聚四氢呋喃二醇、聚己二酸乙二醇酯二醇、聚己二酸-1,4-丁二醇酯二醇、聚己二酸-1.6-己二醇酯二醇中的一种或者几种,其分子量范围为1000-6000。
在一种实施方式中,所述的亲水单体选用二羟甲基丙酸,二羟甲基丁酸,1,2-二羟基-3-丙磺酸钠中的一种或者几种。
在一种实施方式中,所述的蒙脱土为纳基蒙脱土、钾基蒙脱土、钙基蒙脱土或锂基蒙脱土的一种;蒙脱土比表面积为30-1000m2/g,孔径3-30nm,阳离子交换容量30-300meq/100g。
在一种实施方式中,所述的聚乙烯亚胺为高分子量超支化聚乙烯亚胺,其分子量范围为25000-70000。
本发明的第二个目的是本发明所述的纳米复合乳液的制备方法,包括以下步骤:
利用聚乙烯亚胺改性蒙脱土得到聚乙烯亚胺改性蒙脱土分散液;然后在高速搅拌下逐滴加入中和后的聚氨酯预聚体反应,再升温进行反应,得到水性聚氨酯/聚乙烯亚胺改性蒙脱土纳米复合乳液。
在一种实施方式中,所述的升温进行反应具体为:升温到60℃进行反应。
在一种实施方式中,所述的水性聚氨酯/聚乙烯亚胺改性蒙脱土纳米复合乳液的固含量为5%-20%。
在一种实施方式中,所述的聚乙烯亚胺改性蒙脱土分散液的制备步骤具体为:
S1将聚乙烯亚胺与水按配比加入搅拌器中搅拌分散,得到聚乙烯亚胺溶液;
S2将蒙脱土与水加入到搅拌器中搅拌,得到蒙脱土分散液;
S3在步骤S2的蒙脱土溶液中加入步骤S1的聚乙烯亚胺水溶液,得到混合液,并将混合液的pH值调至9,在30-100℃下搅拌3-12h,之后离心洗涤,得到固体;
S4将步骤S3得到的固体重新分散到水和有机溶剂的混合溶剂中,得到分散液;
S5将步骤S4的分散液在冰水浴下用细胞破碎仪超声处理得到聚乙烯亚胺改性蒙脱土分散液。
在一种实施方式中,S1所述的聚乙烯亚胺与水质量比为(1-10):25。
在一种实施方式中,S1所述的搅拌分散具体为:磁力搅拌2h,之后在超声波下超声分散1h。
在一种实施方式中,S2所述的聚乙烯亚胺与蒙脱土的比例为2-8:1。
在一种实施方式中,S2所述的搅拌速度为300rpm,搅拌时间为24h。
在一种实施方式中,S4所述的有机溶剂为N,N-二甲基甲酰胺、甲醇、四氢呋喃、二甲基亚砜中的一种或者一种以上。
在一种实施方式中,S4所述的有机溶剂为N,N-二甲基甲酰胺DMF,水和N,N-二甲基甲酰胺DMF在混合溶剂中的质量比为10:90。
在一种实施方式中,S5所述的超声处理具体为:超声功率为200-400W分散0.5-1h。
在一种实施方式中,所述的聚氨酯预聚体的制备方法为:按配比在结构对称型异氰酸酯中,滴加结晶性多元醇和催化剂,滴加完毕后在80℃反应1-2h;然后逐渐降温至60℃,加入亲水单体,在此温度下进行反应6-8h;之后用甲苯-二正丁胺法测定生成预聚体的异氰酸酯基(NCO)含量,控制NCO含量,当接近NCO理论值时,在冰水浴中将温度降低到10-15℃;之后加入三乙胺反应1-2h得到中和后的聚氨酯预聚体。
在一种实施方式中,所述的二异氰酸酯化合物、低聚物多元醇、催化剂、亲水单体的用量比为(15-50):(40-80):(0.01-0.1):(2-6)。
在一种实施方式中,所述的NCO理论值的范围为6%-12%。
在一种实施方式中,所述的纳米复合乳液的制备方法具体为:将聚乙烯亚胺改性蒙脱土分散液在高速搅拌下逐滴加入中和后的聚氨酯预聚体反应2h,再升温到60℃反应2h,得到水性聚氨酯/聚乙烯亚胺改性蒙脱土纳米复合乳液。
在一种实施方式中,所述的催化剂为二月桂酸二丁基锡。
本发明的第三个目的是本发明得到的纳米复合乳液制备得到的纳米复合膜。
在一种实施方式中,将本发明的纳米复合乳液移入玻璃模具中,干燥即得纳米复合膜。
本发明的第四个目的是本发明得到纳米复合乳液在食品包装材料或者医药包装材料中的应用。
本发明的第五个目的是提供一种包装材料,所述的包装材料的制备需要本发明所述的纳米复合乳液。
在一种实施方式中,所述的包装材料为食品包装材料或者医药包装材料。
本发明的有益效果:
(1)本发明采用超支化的聚乙烯亚胺对蒙脱土有效插层,显著提高了层间距,并形成了高度的定性排列,提高了蒙脱土和聚氨酯预聚体的相容性。
(2)本发明采用结构对称型异氰酸酯和结晶性多元醇制备聚氨酯预聚体,使得蒙脱土和聚氨酯预聚体的相容性提高,从而使得其可以分散高浓度的蒙脱土溶液。
(3)本发明采用的聚乙烯亚胺链中大量的伯胺、仲胺、叔胺和聚氨酯中的对称性异氰酸酯基团反应,实现了化学介质,有效地提高了其机械性能,制备出高强度、高阻氧水性聚氨酯复合材料,可用于食品、医药的包装材料。
(4)本发明首先采用聚乙烯亚胺对蒙脱土进行插层改性,通过质子化后的铵离子替换蒙脱土层间金属阳离子(如Na+),对蒙脱土进行表面处理,使蒙脱土层间距增加,同时引入与异氰酸酯基有反应活性的氨基,然后将形成的插层改性的有机蒙脱土溶液与聚氨酯反应,从而实现化学接枝,充分将有机-无机材料结合起来,即可制得聚乙烯亚胺改性蒙脱土/水性聚氨酯纳米复合乳液。本发明制备的纳米复合乳液具有较好的分散稳定性,同时无机纳米粒子的引入使水性聚氨酯涂层的热稳定性、力学性能明显提高,蒙脱土独特的片层结构又使得阻隔性能增强
(5)本发明制备的纳米复合乳液具有较好的分散稳定性,同时无机纳米粒子的引入使水性聚氨酯涂层的热稳定性、力学性能明显提高,蒙脱土独特的片层结构又使得阻隔性能增强
附图说明
图1为实施例1的水性聚氨酯膜的SEM图。
图2为实施例3的水性聚氨酯/聚乙烯亚胺改性蒙脱土纳米复合膜的SEM图(WPU/PEI-MMT-50%)。
图3为实施例3中不同聚乙烯亚胺改性蒙脱土含量的水性聚氨酯/聚乙烯亚胺改性蒙脱土纳米复合乳液的照片;a为纯WPU;b为WPU/PEI-MMT-50%;c为WPU/PEI-MMT-60%;d为WPU/PEI-MMT-70%;e为WPU/PEI-MMT-80%。
具体实施方式
以下对本发明的优选实施例进行说明,应当理解实施例是为了更好地解释本发明,不用于限制本发明。
拉伸性能的测试方法:采用美国Instron公司型号为5967X的电子拉伸机对复合膜进行拉伸测试,将复合膜裁成哑铃状样条,有效长度50mm,宽度4mm,拉伸速率为50mm/min,测试温度25℃,重复三组以上平行实验取其平均值。
阻氧性能测试:将得到的乳液涂覆在40μm的PET薄膜上,80℃干燥24h,将涂覆后的PET薄膜裁剪成直径为10cm的圆片,采用美国MOCON公司OX-TRAN2/21MD型氧气渗透仪进行测试,每个样品至少测试3组。
实施例1
聚乙烯亚胺(Mw=25000)改性蒙脱土分散液的制备,具体操作如下:
称取蒙脱土MMT1.0g,加200mL蒸馏水配成0.5wt%的蒙脱土分散液,在常温下搅拌(搅拌速度为300rpm)24h,超声波(功率为300W)分散30min。称取2.16g聚乙烯亚胺,常温下在烧杯中配置成25g水溶液并搅拌(搅拌速度为150rpm)2h;然后在30℃搅拌(搅拌速度为300rpm)下逐滴加入蒙脱土分散液中,滴加时间控制在30min,反应12h,待反应完成后,自然冷却至常温,8000-12000rpm高速离心;然后用去离子水洗涤离心2-3遍,将离心后的改性蒙脱土MMT重新分散在水和二甲基甲酰胺(DMF)(水和DMF的比例为10:90),改性蒙脱土和混合溶剂的比例为1:100,然后在冰水浴下采用细胞破碎仪处理1h(超声功率为300W),使其充分分散在水和DMF的混合溶剂中,并调节固含在1wt%,得到聚乙烯亚胺改性蒙脱土分散液。
实施例2
一种水性聚氨酯纳米复合乳液及膜的制备,具体操作如下:
在装有搅拌器、温度计和球形冷凝管的250mL四口烧瓶中加入43.5g 4,4'-二环己基甲烷二异氰酸酯(HMDI)和46.5g聚丁二醇(PTMG),并加入0.15g二月桂酸二丁基锡(DBTDL)催化剂和20g丙酮在80℃反应2h,温度控制在85℃;然后降温至60℃,分三次加入6g(2g+2g+2g)二羟甲基丙酸(DMPA),每次均加入20g丙酮,分别反应1h、1h、4h;最后降温至50℃,加入4g 1,4-丁二醇(BDO)和20g丙酮反应2h;通过甲苯-二正丁胺反滴定法测定反应程度,直到测定NCO基团含量达到理论值,得到聚氨酯预聚体;然后在冰水浴中将温度降低到15℃,向聚氨酯预聚体中加入5.44g三乙胺,反应1.5h得到中和后的聚氨酯预聚体。
向体系中滴加去离子水进行乳化得到乳液;将乳液移入玻璃模具中干燥即制得水性聚氨酯膜。
对照例1
采用非对称性异氰酸酯和非结晶性多元醇制备水性聚氨酯乳液及膜:
在装有搅拌器、温度计和回流冷凝管的250mL四颈烧瓶中加入25.1g异佛尔酮二异氰酸酯(IPDI),室温下一边搅拌一边用滴液漏斗滴加70.0g聚碳酸酯多元(PCDL2000)和0.15g催化剂二月桂酸二丁基锡(DBTDL),滴加速度控制在1.5h内,滴加完毕后在50±5℃反应1-2h;然后升温至60±5℃,加入4.96g二羟甲基丙酸(DMPA),反应5-6h,通过甲苯-二正丁胺反滴定法测定反应程度,直到测定NCO基团含量达到理论值,得到预聚体;然后向预聚体中加入2.10g的三乙胺,反应1.5h;向体系中滴加去离子水进行乳化得到乳液;将乳液移入玻璃模具中,干燥即制得水性聚氨酯膜。
实施例2和对照例1的不同水性聚氨酯膜的拉伸性能测试结果如下表1所示:
表1实施例2和对照例1的不同水性聚氨酯膜的拉伸性能测试结果
水性聚氨酯类别 拉伸强度/MPa 弹性模量/MPa 断裂伸长率/%
对比例1 32.7 304.7 257
实施例2 54.6 433.7 323
从表1可以看出:实施例2制备得到的水性聚氨酯膜的拉伸性能远远高于对照例1,说明实施例2采用结构对称型异氰酸酯和结晶性多元醇制备聚氨酯预聚体,最终得到的水性聚氨酯膜拉伸性能更好。
实施例3
一种水性聚氨酯/聚乙烯亚胺改性蒙脱土纳米复合乳液及膜的制备,具体操作如下:
取实施例1的聚乙烯亚胺改性蒙脱土分散液倒入250mL三口烧瓶中,逐滴加入中和后的聚氨酯预聚体(实施例2制备的聚氨酯预聚体),其中,改性蒙脱土与预聚体的质量比如表2所示,反应温度为15℃,在1000rpm下高速搅拌;待反应2h后,再升温到60℃反应2h,反应结束后自然冷却至常温,得到水性聚氨酯/聚乙烯亚胺改性蒙脱土纳米复合乳液;将乳液移入玻璃模具中干燥,最后制得水性聚氨酯/聚乙烯亚胺改性蒙脱土纳米复合膜。
实施例3中不同的(蒙脱土溶液中蒙脱土的量)改性蒙脱土(PEI-MMT)与(预聚体中纯聚氨酯的量)预聚体(PU)的质量比得到的水性聚氨酯/聚乙烯亚胺改性蒙脱土纳米复合膜的拉伸性能测试如下表2所示:
表2实施例3中的纳米复合膜的拉伸性能测试结果
PEI-MMT:纯PU/% 拉伸强度/MPa 弹性模量/MPa 断裂伸长率/%
0 54.6 433.7 323
50% 64.2 2893.5 2.8
60% 67.4 3167.9 2.1
70% 70.9 3518.2 1.2
80% 75.8 4272.3 0.8
从表2中可以看出:随着蒙脱土MMT含量的不断提升复合膜的拉伸应力呈现出不断提升的趋势,且弹性模量也同样得到了大幅度的提升,当聚乙烯亚胺改性蒙脱土的含量为80%的时候,拉伸应力达到了75.8MPa,弹性模量更是达到了4272.3MPa,但是断裂伸长率较低,这是由于高聚乙烯亚胺改性蒙脱土的引入虽然可以有效提高复合膜的力学强度但使得其变硬变脆,牺牲了其延伸率。
实施例3中不同的改性蒙脱土(蒙脱土溶液中蒙脱土的质量)(PEI-MMT)与(预聚体中纯聚氨酯的质量)聚氨酯(PU)的质量比得到的水性聚氨酯/聚乙烯亚胺改性蒙脱土纳米复合膜的阻氧性能测试如下表3所示:
表3实施例3中的纳米复合膜的阻氧性能测试结果
PEI-MMT:纯PU/% 氧气透过率/cm<sup>3</sup>m<sup>-2</sup>day<sup>-1</sup>bar<sup>-1</sup>
0 50
50% 6.23
60% 4.82
70% 1.28
80% 0.57
从表3可以看出:与纯水性聚氨酯相比,WPU/PEI-MMT-50%的氧气透过率显著下降,且随着PEI-MMT的含量的不断提升,当达到80%含量时氧气透过率更是达到了0.57cm3m-2day-1bar-1,说明高含量的聚乙烯亚胺改性蒙脱土片层在WPU中形成“曲折路径”,这在图2的水性聚氨酯/聚乙烯亚胺改性蒙脱土纳米复合膜的SEM图中得到了验证,使得氧气分子在WPU基质中的扩散受阻,降低了其扩散系数,从而降低了复合膜的氧气透过率。
对照例2
调整实施例1中聚乙烯亚胺(Mw=10000),得到聚乙烯亚胺改性蒙脱土分散液。
取上述的聚乙烯亚胺改性蒙脱土分散液倒入250mL三口烧瓶中,逐滴加入中和后的聚氨酯预聚体(实施例2制备的聚氨酯预聚体),其中,改性蒙脱土与预聚体的质量比为50%:1,反应温度为15℃,在1000rpm下高速搅拌;待反应2h后,再升温到60℃反应2h,反应结束后自然冷却至常温,得到水性聚氨酯/聚乙烯亚胺改性蒙脱土纳米复合乳液;将乳液移入玻璃模具中干燥,最后制得水性聚氨酯/聚乙烯亚胺改性蒙脱土纳米复合膜。
将对照例2得到的膜进行力学性能测试,结果如下表4所示:
表4对照例2得到的膜进行力学性能测试结果
PEI-MMT:纯PU/% 拉伸强度/MPa 拉伸模量/MPa 断裂伸长率/%
50% 55.6 2517.2 3.4
从表4中可以看出:与25000分子量超支化的聚乙烯亚胺改性蒙脱土的水性聚氨酯复合膜相比该复合膜的性能提升不明显。
图1为实施例1的水性聚氨酯膜的SEM图。从图中可以看出:纯水性聚氨酯膜的断裂面较平整光滑。
图2为实施例3的水性聚氨酯/聚乙烯亚胺改性蒙脱土纳米复合膜的SEM图。从图中可以看出:50%聚乙烯亚胺改性蒙脱土的加入在水性聚氨酯体系中呈现出高度有序的定向排列,展现出类似于“砖墙”的结构,增加了曲折路径,可以延长水汽通过涂层的路径,为提高复合膜的阻隔性能提供了有效证明。
图3为实施例3的水性聚氨酯/聚乙烯亚胺改性蒙脱土纳米复合乳液的照片;b为WPU/PEI-MMT-50%(复合膜中改性蒙脱土的量为50%);c为WPU/PEI-MMT-60%(复合膜中改性蒙脱土的量为60%);d为WPU/PEI-MMT-70%(复合膜中改性蒙脱土的量为70%);e为WPU/PEI-MMT-80%(复合膜中改性蒙脱土的量为80%)。从图中可以看出:随着聚乙烯亚胺改性蒙脱土含量的提升,水性聚氨酯/聚乙烯亚胺改性蒙脱土纳米复合乳液的颜色逐渐加深,但复合乳液具有良好的稳定性,且高含量聚乙烯亚胺改性蒙脱土在复合乳液中的分散性良好。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

1.一种纳米复合乳液,其特征在于,由下述重量份的原料制得:40-80wt%的结晶性多元醇、15-50wt%的异氰酸酯、2-6wt%的亲水单体、50-80wt%蒙脱土、0.1-10wt%的聚乙烯亚胺。
2.权利要求1所述的纳米复合乳液的制备方法,其特征在于,包括以下步骤:
利用聚乙烯亚胺改性蒙脱土得到聚乙烯亚胺改性蒙脱土分散液;然后在高速搅拌下逐滴加入中和后的水性聚氨酯预聚体反应,再升温进行反应,得到水性聚氨酯/聚乙烯亚胺改性蒙脱土纳米复合乳液。
3.根据权利要求2所述的制备方法,其特征在于,所述的聚乙烯亚胺改性蒙脱土分散液的制备步骤具体为:
S1将聚乙烯亚胺与水按配比加入搅拌器中搅拌分散,得到聚乙烯亚胺溶液;
S2将蒙脱土与水加入到搅拌器中搅拌,得到蒙脱土分散液;
S3在步骤S2的蒙脱土溶液中加入步骤S1的聚乙烯亚胺水溶液,得到混合液,并将混合液的pH值调至9,在30-100℃下搅拌3-12h,之后离心洗涤,得到固体;
S4将步骤S3得到的固体重新分散到水和有机溶剂的混合溶剂中,得到分散液;
S5将步骤S4的分散液在冰水浴下用细胞破碎仪超声处理得到聚乙烯亚胺改性蒙脱土分散液。
4.根据权利要求3所述的制备方法,其特征在于,S2所述的聚乙烯亚胺与蒙脱土的比例为(2-8):1。
5.根据权利要求1或2所述的制备方法,其特征在于,所述的聚乙烯亚胺为高分子量、超支化聚乙烯亚胺,其分子量范围为25000-70000。
6.根据权利要求1或2所述的制备方法,其特征在于,所述的蒙脱土为纳基蒙脱土、钾基蒙脱土、钙基蒙脱土或锂基蒙脱土的一种;蒙脱土比表面积为30-1000m2/g,孔径3-30nm,阳离子交换容量30-300meq/100g。
7.根据权利要求2所述的制备方法,其特征在于,具体为:将聚乙烯亚胺改性蒙脱土分散液在高速搅拌下逐滴加入中和后水性的聚氨酯预聚体反应2h,再升温到60℃反应2h,得到水性聚氨酯/聚乙烯亚胺改性蒙脱土纳米复合乳液。
8.权利要求1所述的纳米复合乳液制备得到的纳米复合膜或涂层。
9.权利要求1所述的纳米复合乳液在食品包装材料或者医药包装材料中的应用。
10.一种包装材料,所述的包装材料的制备需要权利要求1所述的纳米复合乳液。
CN201911421964.2A 2019-12-31 2019-12-31 一种高阻氧水性聚氨酯/蒙脱土纳米复合乳液及制备方法 Active CN111072908B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911421964.2A CN111072908B (zh) 2019-12-31 2019-12-31 一种高阻氧水性聚氨酯/蒙脱土纳米复合乳液及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911421964.2A CN111072908B (zh) 2019-12-31 2019-12-31 一种高阻氧水性聚氨酯/蒙脱土纳米复合乳液及制备方法

Publications (2)

Publication Number Publication Date
CN111072908A true CN111072908A (zh) 2020-04-28
CN111072908B CN111072908B (zh) 2021-07-27

Family

ID=70321409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911421964.2A Active CN111072908B (zh) 2019-12-31 2019-12-31 一种高阻氧水性聚氨酯/蒙脱土纳米复合乳液及制备方法

Country Status (1)

Country Link
CN (1) CN111072908B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113249024A (zh) * 2021-06-16 2021-08-13 四川大学 一种单宁酸修饰铈离子改性蒙脱土/水性聚氨酯的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1878836A (zh) * 2003-10-15 2006-12-13 三井武田化学株式会社 阻气性水性树脂组合物及使用它的层合膜
CN101812167A (zh) * 2010-04-20 2010-08-25 浙江工业大学 一种水性聚氨酯/有机硅蒙脱土纳米复合材料的制备方法
CN102251400A (zh) * 2011-05-30 2011-11-23 四川大学 一种有机锂皂土-水性聚氨酯皮革涂饰剂及其制备方法
CN102333803A (zh) * 2009-03-27 2012-01-25 三井化学株式会社 聚氨酯分散体及其制造方法
CN103193242A (zh) * 2013-04-09 2013-07-10 苏州旭达环保科技有限公司 蒙脱土负载聚乙烯亚胺水处理剂、制备方法以及应用
CN108603050A (zh) * 2016-02-03 2018-09-28 巴斯夫欧洲公司 用于氧气阻隔涂层的含有聚氨酯和页硅酸盐的单组分水性涂料组合物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1878836A (zh) * 2003-10-15 2006-12-13 三井武田化学株式会社 阻气性水性树脂组合物及使用它的层合膜
CN102333803A (zh) * 2009-03-27 2012-01-25 三井化学株式会社 聚氨酯分散体及其制造方法
CN101812167A (zh) * 2010-04-20 2010-08-25 浙江工业大学 一种水性聚氨酯/有机硅蒙脱土纳米复合材料的制备方法
CN102251400A (zh) * 2011-05-30 2011-11-23 四川大学 一种有机锂皂土-水性聚氨酯皮革涂饰剂及其制备方法
CN103193242A (zh) * 2013-04-09 2013-07-10 苏州旭达环保科技有限公司 蒙脱土负载聚乙烯亚胺水处理剂、制备方法以及应用
CN108603050A (zh) * 2016-02-03 2018-09-28 巴斯夫欧洲公司 用于氧气阻隔涂层的含有聚氨酯和页硅酸盐的单组分水性涂料组合物

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MORGAN A. PRIOLO ETC.: "Transparent Clay-Polymer Nano Brick Wall", 《APPLIED MATERIALS & INTERFACES》 *
QINGZE CHEN ETC.: "Adsorption of polyhydroxy fullerene on polyethylenimine-modified montmorillonite", 《APPLIED CLAY SCIENCE》 *
廖晓凤等: "蒙脱土的改性及其悬浮液的流变行为", 《功能材料》 *
张玉龙主编: "《纳米复合材料手册》", 30 July 2005, 中国石化出版社 *
王凯等: "聚乙烯亚胺改性蒙脱土对刚果红的吸附性能", 《赤峰学院学报(自然科学版)》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113249024A (zh) * 2021-06-16 2021-08-13 四川大学 一种单宁酸修饰铈离子改性蒙脱土/水性聚氨酯的制备方法

Also Published As

Publication number Publication date
CN111072908B (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
CN107828046B (zh) 一种水性聚氨酯/多巴胺改性石墨烯纳米复合乳液的制备方法
CN111793188B (zh) 含羟基自消光水性聚氨酯及由其组成的自消光涂料
KR101375414B1 (ko) 폴리우레탄 디스퍼젼 및 그의 제조방법
CN101845217B (zh) 水性聚氨酯/纳米二氧化硅复合乳液的制备方法
CN110204682B (zh) 含有反应型非离子乳化剂和磺酸盐基团的聚氨酯水分散体
CN103524696B (zh) 一种硅烷改性的磺酸型水性聚氨酯乳液及其制备方法
CN1854165A (zh) 有机硅改性水性聚氨酯
CN109825180B (zh) 一种氨基硅油改性的弹性体材料及其制备方法
CN111116859B (zh) 一种抗菌改性水性聚氨酯的制备方法
CN105622857A (zh) 一种互穿网络结构水性聚氨酯纳米复合材料的制备方法
CN109810239B (zh) 一种水性聚氨酯/改性氧化石墨烯复合乳液及其制备方法
CN109651922A (zh) 一种水性聚氨酯增韧水性环氧树脂防腐涂料及制备方法
CN107163217B (zh) 一种纳米金刚石改性水性聚氨酯的制备方法
CN111909346B (zh) 高温自交联聚氨酯水分散体的制备
CN111087651B (zh) 一种高导电水性聚氨酯/改性石墨烯复合乳液及制备方法
US20130131301A1 (en) Method for Making Waterborne Polyurethane with a Reactive Functional Group and a Nanocomposite Made of the Same
CN113755064B (zh) 水性防结冰清漆及其制备方法
CN109796576B (zh) 一种玻璃纤维成膜剂及其制备方法
US11965076B2 (en) Self-healing polyurethane (PU) material, double-layer self-healing PU film, and preparation method and use thereof
CN111019507B (zh) 一种高强度水性聚氨酯/纤维素纳米复合乳液及制备方法
CN111072908B (zh) 一种高阻氧水性聚氨酯/蒙脱土纳米复合乳液及制备方法
JP5227561B2 (ja) ウレア樹脂組成物
CN115651524A (zh) 一种高强度自清洁聚氨酯防水涂料及其制备方法
CN102356197B (zh) 纸涂料组合物
CN113817437A (zh) 一种增硬聚氨酯丙烯酸酯胶黏剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240115

Address after: 214204 Yizhuang Village, Guanlin Town, Yixing City, Wuxi City, Jiangsu Province

Patentee after: Wuxi Heyu New Energy Technology Co.,Ltd.

Address before: 214000 1800 Lihu Avenue, Binhu District, Wuxi, Jiangsu

Patentee before: Jiangnan University

TR01 Transfer of patent right