CN111063549A - 二维MOFs纳米片衍生的混合电容器全电极材料 - Google Patents

二维MOFs纳米片衍生的混合电容器全电极材料 Download PDF

Info

Publication number
CN111063549A
CN111063549A CN201911338153.6A CN201911338153A CN111063549A CN 111063549 A CN111063549 A CN 111063549A CN 201911338153 A CN201911338153 A CN 201911338153A CN 111063549 A CN111063549 A CN 111063549A
Authority
CN
China
Prior art keywords
electrode material
capacitor
prepared
dimensional mofs
mofs nanosheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911338153.6A
Other languages
English (en)
Other versions
CN111063549B (zh
Inventor
汪快兵
吴华
王子恺
王徽健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN201911338153.6A priority Critical patent/CN111063549B/zh
Publication of CN111063549A publication Critical patent/CN111063549A/zh
Application granted granted Critical
Publication of CN111063549B publication Critical patent/CN111063549B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了二维MOFs纳米片衍生的混合电容器全电极材料,包括正极材料和负极材料;正极材料由以下方法制得:将3‑氨基‑1,2,4‑三氮唑‑5羧酸钾与醋酸镍加入到水/乙醇混合溶剂中,滴加到聚乙烯吡咯烷酮水溶液中,先超声分散,再搅拌反应,离心、乙醇清洗、干燥,得二维MOFs纳米片层材料,研磨成细粉,煅烧,得粉体样品;负极材料由以下方法制得:用盐酸处理正极材料直至反应生成的绿色消失,蒸馏水洗涤至悬浮液无色,过滤,干燥,得粉末材料。本发明还公开了一种由正、负极材料制成的电池‑超级电容器混合器件,混合电容器表现出比电容量高,库伦效率优异,循环性能好等实用性潜力。

Description

二维MOFs纳米片衍生的混合电容器全电极材料
技术领域
本发明属于电池-超级电容器混合型储能技术领域,涉及一种二维MOFs纳米片衍生的混合电容器全电极材料。
背景技术
到21世纪中叶,人们对能源的需求量将达到目前的两倍以上。面对这一严峻形势,纳米、材料、化学等学科必须探索、研发新能源材料来满足日益增加的能量存储于转换需求。因此,新能源材料的开发、研究,是能量有效储存和转换的核心与基础,目前已上升至各国发展的重要战略。
电池-超级电容器混合储能器件,一般是指电池型电极材料作为正极、超级电容器电极材料作为负极装配而成的混合型储能器件。电池型电极材料包括金属有机框架材料(MOFs)、锂电池用锰酸盐、钴酸盐及金属氧化物等电极材料。超级电容器负极材料通常选择活性炭、石墨烯等碳及纳米材料。
碳基纳米材料,如介孔碳、活性炭、碳纳米管、石墨烯、碳量子点等,因具有高导电、导热、结构稳定等系列优点,是组成电化学储能器件的理想电极材料和活性单元,尤其是作为活性物质单元已被广泛运用于超级电容器、锂电池、燃料电池等电化学储能器件中。并且,碳电极材料因其特有的纳米尺度、大比表面积、短的离子/电子传输路径,在电化学储能方面显示出奇特的小尺寸效应与动力学优势,为新一代电化学储能器件的发展提供了新的机遇。
氮原子修饰的碳材料,可增大表面的氧化还原活性、增加表面缺陷、提升材料润湿性来提升电化学性能,相较于复合金属氧化物/氢氧化物的方法来提升电容量,杂化方法均匀度更高、可控性更好,但结构易遭破坏、杂原子含量低、功能性差。
发明内容
本发明的目的是提供一种由二维MOFs纳米片衍生制备的新型镍@氮掺杂碳核壳材料,该核壳材料为球形纳米颗粒,可直接作为混合储能器件的正极材料,正极材料经化学酸洗处理得到氮掺杂碳,成为储能器件负极材料,因而具有潜在的实用价值。
为解决上述技术问题,本发明采用的技术方案如下:
二维MOFs纳米片衍生的混合电容器全电极材料,包括正极材料和负极材料。
所述的正极材料是由以下方法制得的:将3-氨基-1,2,4-三氮唑-5羧酸钾与醋酸镍加入到水/乙醇混合溶剂中,滴加到聚乙烯吡咯烷酮水溶液中,经超声分散10–30分钟,再搅拌反应30–90分钟,然后离心、乙醇清洗3–5次、60–80℃干燥8–12h,得二维MOFs纳米片层材料;二维MOFs纳米片层材料研磨成细粉,平铺在刚玉坩埚中,置于管式炉中,650–950℃煅烧0.5–2h,得粉体样品。
所述的3-氨基-1,2,4-三氮唑-5羧酸钾和醋酸镍的摩尔比为1–2:1。
所述的3-氨基-1,2,4-三氮唑-5羧酸钾是由3-氨基-1,2,4-三氮唑-5-羧酸和氢氧化钾按照摩尔比1:1制成的。
所述的水/乙醇混合溶剂由水与乙醇按照体积比为1:1混合而成。
所述的醋酸镍和聚乙烯吡咯烷酮的质量比为1:3–20。
所述的聚乙烯吡咯烷酮水溶液的浓度为0.002–0.012g/mL。
优选的,二维MOFs纳米片层材料研磨成细粉,平铺在刚玉坩埚中,置于管式炉中,为了获得更好的结晶度,以升温速率3℃/min升温至650–950℃,煅烧0.5–2h,得黑色正极材料。
所述的负极材料是由以下方法制得的:用3–6mol/L盐酸处理正极材料,直至反应生成的绿色消失,再经蒸馏水反复洗涤至悬浮液无色,60–80℃干燥6–10h,得粉末材料。
以X-射线粉末衍射、X-射线光电子能谱、扫描电子显微镜等表征后,确定了正极材料是单质镍复合的氮掺杂石墨碳型核壳球形颗粒,负极材料是氮掺杂石墨碳型核壳球形颗粒。同时,发明过程中分别对正、负以及正负极组装而成的混合型电容器进行了电化学性质分析,明确了由二维MOFs纳米片衍生的正、负极材料在电化学能源存储方面的应用,经过数据分析,混合电容器表现出比电容量高,库伦效率优异,循环性能好等实用性潜力。因此,本发明的另一个目的是提供正极与负极材料的储能应用。
一种电池-超级电容器混合器件,它是以正极材料与乙炔黑、PTFE制备成单个电极,以负极材料与乙炔黑、PTFE制备成单个电极,再两两组装成电池-超级电容器混合器件,1–6mol/L KOH溶液为电解液。
所述的正极材料与乙炔黑、PTFE的质量比为7:2:1,所述的负极材料与乙炔黑、PTFE的质量比为7:2:1。
本发明具有以下有益效果:
(1)、本发明采用富氮型MOFs(Metal-organic Frameworks)模板合成得到的单质与氮原子共掺杂的镍@氮掺杂碳材料,氮原子含量高且可控性更好,更高的氮原子掺杂,说明更多的材料缺陷,提升电极浸润性同时,有助于离子/电子的迁移;金属单质的引入,可以进一步提升电极材料的导电性能;同时,MOFs作为模板,样品可塑性强,方便分子水平上调控氮原子含量,在增强电极材料的润湿性同时,进一步提升器件材料的电容特性。镍@氮掺杂碳材料可以直接作为正极材料,相比于其他类型无机材料,本发明全面性更高,且制备的镍@氮掺杂碳材料稳定性高,比电容量更大,多孔结构适合电解液离子/电子传输。
(2)、本发明镍@氮掺杂碳材料进一步处理后,得到的氮掺杂碳可以作为混合电容器的负极材料,酸处理后的丰富表面缺陷与氧化还原位点,比商业活性炭表现出的电化学性能更突出,表现出良好的商业价值。
(3)、本发明制成的镍@氮掺杂碳材料、氮掺杂碳材料装配成混合型电容器后,库伦效率高,电阻率低,比容量与能量密度高,循环稳定性好。
(4)、镍@氮掺杂碳材料、氮掺杂碳材料都是核壳球形颗粒,提高了材料稳定性,长时循环过程中结构不易遭到破坏。
附图说明
图1为实施例1制备的二维MOFs纳米片的SEM图。
图2为实施例1制备的Ni@NC1核壳球形颗粒的SEM图。
图3为实施例1制备的Ni@NC1的XRD图谱。
图4为实施例1制备的Ni@NC1的XPS图谱。
图5为实施例1制备的NC1的SEM图谱。
图6为实施例1制备的NC1在不同电流密度下的充放电曲线。
图7为实施例1中活性炭对比样品的充放电曲线。
图8为实施例1制备的Ni@NC1//NC1的CV图。
图9为实施例1制备的Ni@NC1//NC1的充放电曲线。
图10为实施例2制备的Ni@NC2核壳球形颗粒的SEM图。
图11为实施例2制备的Ni@NC1的XRD图谱。
图12为实施例2制备的Ni@NC1的XPS图谱。
图13为实施例2制备的NC2的SEM图谱。
图14为实施例2制备的NC2在不同电流密度下的充放电曲线。
图15为实施例2制备的Ni@NC2//NC2的CV图。
图16为实施例2制备的Ni@NC2//NC2的充放电曲线。
图17为对比例1制备的Ni@NC1//AC的充放电曲线。
图18为对比例2制备的Ni@NC2//AC的充放电曲线。
具体实施方式
下面通过具体实施方式对本发明的技术方案作进一步说明。
实施例1
二维MOFs纳米片衍生的混合电容器正极材料的制备:
将3-氨基-1,2,4-三氮唑-5羧酸钾(3-氨基-1,2,4-三氮唑-5-羧酸和氢氧化钾按照摩尔比1:1制得)与醋酸镍按摩尔比3:2加入到20mL水/乙醇混合溶剂(水与乙醇的体积比为1:1)中,再滴加到10mL0.012g/mL聚乙烯吡咯烷酮(PVP)水溶液中,其中,醋酸镍与PVP的质量比为1:3;先超声分散10分钟,再搅拌反应60分钟,离心,乙醇清洗3–5次,通过乙醇洗涤不仅能够使滤饼得到更好的分散,而且更容易烘干得到粉体材料,得到的粉体材料不易粘结,80℃干燥12h,得二维MOFs纳米片层材料。二维MOFs纳米片层材料的扫描电子显微镜(SEM)图谱见图1,可知,通过简单配位方法合成得到的MOFs纳米片层材料厚度均匀,且不致密。
称取MOFs纳米片层材料200mg,用玛瑙研钵研磨成细粉,均匀平铺在刚玉坩埚中,置于管式炉中,以升温速率3℃/min从室温升温到750℃,温度750℃下煅烧1h,得黑色粉体样品,标记为Ni@NC1。Ni@NC1的SEM图谱见图2,可知,煅烧产物为核壳型球形颗粒,核部分直径约为20-60nm。Ni@NC1的X-射线粉末衍射(XRD)图谱见图3,证实核部分为单质镍,且碳层已经石墨化。如图4所示,经X-射线光电子能谱(XPS)分析,Ni@NC1表面仍有丰富的Ni-O及Ni-OH键存在。
二维MOFs纳米片衍生的混合电容器负极材料的制备:
用3mol/L盐酸处理Ni@NC1粉体样品,直至反应生成的绿色消失,再经蒸馏水反复洗涤至悬浮液无色,过滤,80℃干燥10h,得粉末材料,标记为NC1。经盐酸处理后,NC1样品中镍的含量减少,由于外层碳层的保护,仍有所残留,NC1的SEM图见图5,可知,碳环仍大面积保留,未受盐酸破坏。
将NC1与乙炔黑、PTFE按照质量比7:2:1制备成工作电极,充放电曲线见图6,表明其形状接近活性炭(图7),可知,由于表面官能团提供的赝电容贡献,其比电容量为133F/g,大于同为1A/g电流密度下的商业活性炭(高表面活性炭,AB-520,合肥科晶材料技术有限公司)比电容103F/g。
电池-超级电容器混合器件:
将Ni@NC1粉体样品作为正极,与乙炔黑、PTFE按照质量比7:2:1制备成单个电极,将NC1样品作为负极,与乙炔黑、PTFE按照质量比7:2:1制备成单个电极,电解液选择3mol/LKOH水溶液,装配成混合型电容器,标记为Ni@NC1//NC1,其循环伏安图(CV)见图8,充放电曲线见图9。由图8、图9可知,Ni@NC1//NC1混合电容器充电电压可达1.5V,且不同扫速下可逆性较好,说明在水系电解液条件下,该电压范围可以克服1.2V电压下水的分解,较高的电压平台还可以进一步提升材料的能量密度。该混合型电容器在200mA/g大电流密度条件下,比容量为4000mF/g,且该器件具有非常优异的循环性能,即使在4000mA/g超高的电流密度条件下,充放电曲线可逆性仍较高,化学稳定性好。加上该器件表现出的高能量密度、低溶液阻抗等优点,因此,本发明制备的镍@氮掺杂碳核壳材料非常适合作为混合型电容器的全电极材料。
实施例2
二维MOFs纳米片衍生的混合电容器正极材料的制备:
将3-氨基-1,2,4-三氮唑-5羧酸钾(3-氨基-1,2,4-三氮唑-5-羧酸和氢氧化钾按照摩尔比1:1制得)与醋酸镍按摩尔比2:1加入到30mL水/乙醇混合溶剂(水与乙醇的体积比为1:1)中,滴加到10mL0.008g/mL聚乙烯吡咯烷酮(PVP)水溶液中,其中,醋酸镍与聚乙烯吡咯烷酮的质量比为1:5;先超声30分钟,再搅拌反应60分钟,然后离心,乙醇清洗3–5次,60℃干燥10h,得二维MOFs纳米片层材料。
称取MOFs纳米片层材料200mg,用玛瑙研钵研磨成细粉,均匀平铺在刚玉坩埚中,置于管式炉中,以升温速率3℃/min从室温升温到850℃,850℃温度下煅烧1.5h,得黑色粉体样品,标记为Ni@NC2。Ni@NC2的SEM图谱见图10,可知,煅烧产物为核壳型球形颗粒,核部分直径约为15-70nm。Ni@NC2的X-射线粉末衍射(XRD)图谱见图11,核部分同Ni@NC1,也为单质镍,且碳层同样高度石墨化。如图12所示,经X-射线光电子能谱(XPS)分析,Ni@NC2表面也有丰富的Ni-O及Ni-OH键存在。
二维MOFs纳米片衍生的混合电容器负极材料的制备
用3mol/L盐酸多次处理Ni@NC2样品,直至反应生成的绿色消失,再经蒸馏水反复洗涤至悬浮液无色,过滤,80℃干燥12h,得粉末材料,标记为NC2。经盐酸处理后,NC2样品中镍的含量急剧减少,因外层碳层的保护,也仍有所残留,其SEM图见图13,可知,碳环也受到一定程度破坏,显示类似石墨烯的卷片层。
将NC2与乙炔黑、PTFE按照质量比7:2:1制备成工作电极,充放电曲线形状见图14,较NC1更接近活性炭,其比电容量为103.5F/g,基本与活性炭(同实施例1)的比电容持平。
电池-超级电容器混合器件:
将Ni@NC2作为正极,与乙炔黑、PTFE按照质量比7:2:1制备成单个电极,NC2样品作为负极,与乙炔黑、PTFE按照质量比7:2:1制备成单个电极,电解液选择3mol/L KOH水溶液,装配成电池-超级电容器混合器件,标记为Ni@NC2//NC2。其循环伏安图见图15,充放电曲线见图16,由图15、图16可知,Ni@NC2//NC2混合电容器充电电压同样可达1.5V,不同扫速下可逆性较好,较Ni@NC1//NC1,循环伏安面积稍小。该混合型电容器在200mA/g大电流密度条件下,比容量约为3600mF/g,该混合器件同样具有非常优异的循环性能,即使在4000mA/g超高的电流密度条件下,充放电曲线可逆性仍较高,化学稳定性也很好。因此,再一次验证本发明制备的镍掺杂碳核壳材料完全适用于作为混合型电容器的全电极材料。
对比例1
将Ni@NC1作为正极,与乙炔黑、PTFE按照质量比7:2:1制备成工作电极,将商业活性炭(同实施例1)样品作为负极,与乙炔黑、PTFE按照质量比7:2:1制备成工作电极,电解液选择3mol/L KOH水溶液,装配成混合型电容器,标记为Ni@NC1//AC。
Ni@NC1//AC的充放电曲线见图17,可知,Ni@NC1//AC混合电容器充电电压同样可达1.5V。但相比于Ni@NC1//NC1与Ni@NC2//NC2,该混合型电容器在同等的200mA/g电流密度条件下,比容量只有1870mF/g,比容量值降低一半,这主要是由于合成得到的氮掺杂碳材料表面基团丰富,缺陷较多,可以提供更多的氧化还原位点,而商业活性炭表面未经改造,缺乏赝电容贡献。因此,将活性炭作为负极材料,混合型电容器表现出更差的电化学性能。
对比例2
将Ni@NC2作为正极,与乙炔黑、PTFE按照质量比7:2:1制备成工作电极,将商业活性炭(同实施例1)样品作为负极,与乙炔黑、PTFE按照质量比7:2:1制备成工作电极,电解液选择3mol/L KOH水溶液,装配成混合型电容器,标记为Ni@NC2//AC。
Ni@NC2//AC的充放电曲线见图18,可知,Ni@NC2//AC混合电容器充电电压同样可达1.5V。但是,相比于Ni@NC1//NC1与Ni@NC2//NC2,该混合型电容器在同等的200mA/g电流密度条件下,比容量只有1730mF/g,比容量值进一步降低,主要还是因商业活性炭表面未经改造,缺乏赝电容贡献,而合成得到的氮掺杂碳材料表面基团丰富,缺陷较多,可以提供更多的氧化还原位点。因此,将活性炭作为负极材料,Ni@NC2//AC混合电容器表现出更差的电化学性能。

Claims (10)

1.二维MOFs纳米片衍生的混合电容器全电极材料,其特征在于包括正极材料和负极材料;
所述的正极材料是由以下方法制得的:将3-氨基-1,2,4-三氮唑-5羧酸钾与醋酸镍加入到水/乙醇混合溶剂中,滴加到聚乙烯吡咯烷酮水溶液中,先超声分散10–30分钟,再搅拌反应30–90分钟,然后离心、乙醇清洗、干燥,得二维MOFs纳米片层材料;二维MOFs纳米片层材料研磨成细粉,平铺在刚玉坩埚中,置于管式炉中,650–950℃煅烧0.5–2h,得粉体样品;
所述的负极材料是由以下方法制得的:用盐酸处理正极材料,直至反应生成的绿色消失,再经蒸馏水洗涤至悬浮液无色,过滤,干燥,得粉末材料。
2.根据权利要求1所述的二维MOFs纳米片衍生的混合电容器全电极材料,其特征在于所述的3-氨基-1,2,4-三氮唑-5羧酸钾是由3-氨基-1,2,4-三氮唑-5-羧酸和氢氧化钾按照摩尔比1:1制成的。
3.根据权利要求1所述的二维MOFs纳米片衍生的混合电容器全电极材料,其特征在于所述的3-氨基-1,2,4-三氮唑-5羧酸钾和醋酸镍的摩尔比为1–2:1。
4.根据权利要求1所述的二维MOFs纳米片衍生的混合电容器全电极材料,其特征在于所述的水/乙醇混合溶剂由水与乙醇按照体积比为1:1混合而成。
5.根据权利要求1所述的二维MOFs纳米片衍生的混合电容器全电极材料,其特征在于所述的醋酸镍和聚乙烯吡咯烷酮的质量比为1:3–20。
6.根据权利要求1所述的二维MOFs纳米片衍生的混合电容器全电极材料,其特征在于所述的聚乙烯吡咯烷酮水溶液的浓度为0.002–0.012g/mL。
7.根据权利要求1所述的二维MOFs纳米片衍生的混合电容器全电极材料,其特征在于二维MOFs纳米片层材料研磨成细粉,平铺在刚玉坩埚中,置于管式炉中,以升温速率3℃/min升温至650–950℃,煅烧0.5–2h,得黑色正极材料。
8.根据权利要求1所述的二维MOFs纳米片衍生的混合电容器全电极材料,其特征在于所述的盐酸浓度为3–6mol/L。
9.一种电池-超级电容器混合器件,其特征在于它是以权利要求1所述的正极材料与乙炔黑、PTFE制备成单个电极,以利要求1所述的负极材料与乙炔黑、PTFE制备成单个电极,再两两组装成电池-超级电容器混合器件,1–6mol/L KOH溶液为电解液。
10.根据权利要求9所述的电池-超级电容器混合器件,其特征在于所述的正极材料与乙炔黑、PTFE的质量比为7:2:1,所述的负极材料与乙炔黑、PTFE的质量比为7:2:1。
CN201911338153.6A 2019-12-23 2019-12-23 二维MOFs纳米片衍生的混合电容器全电极材料 Active CN111063549B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911338153.6A CN111063549B (zh) 2019-12-23 2019-12-23 二维MOFs纳米片衍生的混合电容器全电极材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911338153.6A CN111063549B (zh) 2019-12-23 2019-12-23 二维MOFs纳米片衍生的混合电容器全电极材料

Publications (2)

Publication Number Publication Date
CN111063549A true CN111063549A (zh) 2020-04-24
CN111063549B CN111063549B (zh) 2021-05-18

Family

ID=70300795

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911338153.6A Active CN111063549B (zh) 2019-12-23 2019-12-23 二维MOFs纳米片衍生的混合电容器全电极材料

Country Status (1)

Country Link
CN (1) CN111063549B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995760A (zh) * 2020-07-17 2020-11-27 扬州大学 一种钴-金属有机框架纳米片及其制备方法和应用
CN113247891A (zh) * 2021-05-18 2021-08-13 青岛科技大学 碳材料的石墨化装置及石墨化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013113682A1 (de) * 2012-01-31 2013-08-08 Westfälische Wilhelms-Universität Münster Elektrodenmaterial für lithium-ionen-batterien, verfahren zur herstellung und verwendung
CN108417803A (zh) * 2018-03-12 2018-08-17 华南理工大学 一种氮掺杂空心碳球复合材料及其制备方法和应用
CN108711624A (zh) * 2018-07-17 2018-10-26 常州大学 用于锂电池的有机正极材料的多羰基氮杂环有机化合物及其制备方法
CN109309214A (zh) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 碳包覆镍纳米复合材料的制备方法
CN109904391A (zh) * 2019-03-14 2019-06-18 福建师范大学 一种锂金属电池锂负极的改性方法及锂金属电池
CN110600695A (zh) * 2019-09-06 2019-12-20 扬州大学 蛋黄-蛋壳结构锡@空心介孔碳球材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013113682A1 (de) * 2012-01-31 2013-08-08 Westfälische Wilhelms-Universität Münster Elektrodenmaterial für lithium-ionen-batterien, verfahren zur herstellung und verwendung
CN109309214A (zh) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 碳包覆镍纳米复合材料的制备方法
CN108417803A (zh) * 2018-03-12 2018-08-17 华南理工大学 一种氮掺杂空心碳球复合材料及其制备方法和应用
CN108711624A (zh) * 2018-07-17 2018-10-26 常州大学 用于锂电池的有机正极材料的多羰基氮杂环有机化合物及其制备方法
CN109904391A (zh) * 2019-03-14 2019-06-18 福建师范大学 一种锂金属电池锂负极的改性方法及锂金属电池
CN110600695A (zh) * 2019-09-06 2019-12-20 扬州大学 蛋黄-蛋壳结构锡@空心介孔碳球材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CUIHUA AN: "Mesoporous Ni@C hybrids for a high energy aqueous asymmetric supercapacitor device", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995760A (zh) * 2020-07-17 2020-11-27 扬州大学 一种钴-金属有机框架纳米片及其制备方法和应用
CN113247891A (zh) * 2021-05-18 2021-08-13 青岛科技大学 碳材料的石墨化装置及石墨化方法

Also Published As

Publication number Publication date
CN111063549B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
Ou et al. Honeysuckle-derived hierarchical porous nitrogen, sulfur, dual-doped carbon for ultra-high rate lithium ion battery anodes
Bi et al. One-pot microwave synthesis of NiO/MnO2 composite as a high-performance electrode material for supercapacitors
Acharya et al. Leaf-like integrated hierarchical NiCo2O4 nanorods@ Ni-Co-LDH nanosheets electrodes for high-rate asymmetric supercapacitors
Chen et al. Solvothermal synthesis of novel pod-like MnCo2O4. 5 microstructures as high-performance electrode materials for supercapacitors
Zhao et al. Titanium niobium oxides (TiNb2O7): Design, fabrication and application in energy storage devices
Dhas et al. Sol-gel synthesized nickel oxide nanostructures on nickel foam and nickel mesh for a targeted energy storage application
CN110336002A (zh) 一种用于锂离子电池的氮掺杂碳包覆氧化锌复合纳米材料
CN103903873A (zh) 一种全赝电容超级电容器
CN114520323A (zh) 一种双策略改性层状氧化物钠离子电池正极材料及其制备方法和应用
Chen et al. Biomass-mediated synthesis of carbon-supported ZnMn2O4 nanoparticles as high-performance anode materials for lithium-ion batteries
Li et al. Enhancement of lithium storage capacity and rate performance of Se-modified MnO/Mn3O4 hybrid anode material via pseudocapacitive behavior
CN111063549B (zh) 二维MOFs纳米片衍生的混合电容器全电极材料
Ji et al. Electrospinning preparation of one-dimensional Co 2+-doped Li 4 Ti 5 O 12 nanofibers for high-performance lithium ion battery
CN112927947A (zh) 一种基于蛋黄壳结构的镍钴硫电极材料、制备方法及超级电容器
CN106299344A (zh) 一种钠离子电池钛酸镍负极材料及其制备方法
Li et al. Construction of a novel three-dimensional porous lead-carbon network for improving the reversibility of deep discharge lead-carbon batteries
Luo et al. Graphene-controlled FeSe nanoparticles embedded in carbon nanofibers for high-performance potassium-ion batteries
Dang et al. ZnNi‐MnCo2O4@ CNT porous double heterojunction cage‐like structure with three‐dimensional network for superior lithium‐ion batteries and capacitors
Zhang et al. Morphology and electrochemical properties of NiCo2O4 powders prepared by a facile hydrothermal method
Wang et al. A novel three-dimensional hierarchical porous lead-carbon composite prepared from corn stover for high-performance lead-carbon batteries
Yuan et al. NiO loaded on hydrothermally treated mesocarbon microbeads (h-MCMB) and their supercapacitive behaviors
Zhou et al. Evaporation induced uniform polypyrrole coating on CuO arrays for free-standing high lithium storage anode
Su et al. N-doped carbon nanolayer modified nickel foam: A novel substrate for supercapacitors
Ding et al. Tubular nanocarbon/SnS nanosheets/amorphous carbon composites with enhanced sodium ion storage performance
Li et al. High-loading cobalt-doped manganese tetroxide on carbon cloth as an electrode material for high-performance zinc ion hybrid capacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant