CN111056857A - 一种规则孔隙结构多孔陶瓷3d打印方法 - Google Patents

一种规则孔隙结构多孔陶瓷3d打印方法 Download PDF

Info

Publication number
CN111056857A
CN111056857A CN201911228024.1A CN201911228024A CN111056857A CN 111056857 A CN111056857 A CN 111056857A CN 201911228024 A CN201911228024 A CN 201911228024A CN 111056857 A CN111056857 A CN 111056857A
Authority
CN
China
Prior art keywords
ceramic
pore structure
printing method
regular pore
porous ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911228024.1A
Other languages
English (en)
Inventor
张耿
陈桦
曹岩
刘宝龙
刘峥
房亚东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Technological University
Original Assignee
Xian Technological University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Technological University filed Critical Xian Technological University
Priority to CN201911228024.1A priority Critical patent/CN111056857A/zh
Publication of CN111056857A publication Critical patent/CN111056857A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

本发明公开了一种规则孔隙结构多孔陶瓷3D打印方法,包括配制具有涂挂特性的陶瓷浆料,将浆料浸涂于有机纤维网格片材上,经干燥后制成有机纤维网格骨架陶瓷复合材料片材;建立目标坯体的三维数字模型,对数字模型进行计算机分层处理,获取每层二维数字模型外围轮廓对应的激光扫描切割路径数据;将激光扫描切割设备与铺料装置相连接;将一层陶瓷复合材料片材铺设在打印平台上,采用激光扫描该层片材对应的二维数字模型外围轮廓,实现对片材的气化切割,在该层片材上表面均匀涂覆粘结材料。本发明可制得多孔结构陶瓷,具有孔隙形状规则、孔径大小一致、孔隙分布均匀、零件比强度高、加工成本低、效率高等优点。

Description

一种规则孔隙结构多孔陶瓷3D打印方法
技术领域
本发明涉及多孔陶瓷材料生产技术领域,具体为一种规则孔隙结构多孔陶瓷3D打印方法。
背景技术
多孔陶瓷是一种含有较多气孔的材料,不仅具有陶瓷基体本身的优良性能,还具有生物相容性好、孔隙率高、渗透率高、比表面积大、体积密度小和导热率低等优异特性,在环保节能、航空航天、生物医疗等诸多领域具有重要应用,例如,世界上90%的车用尾气催化剂载体为多孔陶瓷;作为热交换材料时,多孔陶瓷的应用可节能30%以上;利用多孔陶瓷耐高温、耐磨损、质轻等特性制备的“超级隔热材料”应用在导弹、航空航天领域;在生物医学应用中,多孔陶瓷被作为骨骼的替代物使用。
制备多孔陶瓷的传统工艺有添加造孔剂法、有机泡沫浸渍法、发泡法、挤压成型法、颗粒堆积法、冷冻干燥法等。这些常用的方法需借助模具进行成形,可用于制备简单形状的零件,模具的设计、加工需消耗大量的时间、人力和经济成本,且难以成形复杂形状陶瓷零件。
3D打印技术是高新加工技术的重要分支,加工过程无需刀具、模具和夹具,相对于传统的减法制造,在加工复杂形状产品时具有明显优势,且大大减少了加工过程中的材料浪费。应用3D打印技术加工多孔陶瓷,具有效率高、成本低、浪费少的优点。
多孔陶瓷3D打印技术将传统的发泡法、冷冻干燥法等与三维挤出工艺相结合,配制具有造孔特性的陶瓷浆料,如添加有发泡剂或有机泡沫模板的陶瓷浆料、具有冷冻干燥特性的陶瓷浆料,采用可三维移动的挤出装置将浆料逐层堆积成形坯体,经过相应的后处理去除坯体中的发泡剂、有机泡沫、冰晶等造孔剂,最后烧结制得多孔陶瓷。但发泡剂、有机泡沫、冰晶等造孔剂的位置分布难以控制、尺寸大小均匀性差、形状不规则,造成多孔陶瓷的孔隙结构可控性不高,进而影响多孔陶瓷的物理性能。
例如专利号CN 107500781 A公布了一种多孔陶瓷的制备方法按照程序3D打印有机材料多孔模具,将陶瓷浆料浸入模具,经干燥、脱脂、烧结后多孔陶瓷,利用3D打印有机模板进行造孔。这种技术受有机材料3D打印技术分辨率限制,难以成型微米级孔隙结构;当有机模板结构细密时,陶瓷浆料难以充分浸入模板内部。以上缺点造成这种技术难以成型微米级细密多孔结构陶瓷。
发明内容
本发明的目的在于提供一种规则孔隙结构多孔陶瓷3D打印方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种规则孔隙结构多孔陶瓷3D打印方法,包括如下操作步骤;
S1:配制具有涂挂特性的陶瓷浆料;将浆料浸涂于有机纤维网格片材上,经过干燥后,制成有机纤维网格骨架陶瓷复合材料片材;建立目标坯体的三维数字模型,对数字模型进行计算机分层处理,获取每层二维数字模型外围轮廓对应的激光扫描切割路径数据;
S2:在打印平台上铺设一层陶瓷复合材料片材;采用激光扫描设备依据步骤S1中获取的轮廓路径数据对该层片材进行选择性的辐照,去除片材轮廓处的有机纤维和有机添加剂,然后在该层片材表面均匀涂覆层间粘结材料,调节打印平台的高度降低一层;
S3:重复步骤S2,通过层层累积,完成坯体的三维成形;去除坯体轮廓外部的多余材料,得到目标坯体,然后将坯体置于烧结炉中进行脱脂烧结,去除坯体内有机纤维网格及有机添加剂,后即可得到具有以有机纤维网格为模板的孔隙结构的目标零件。
优选的,步骤S1中,所述具有涂挂特性的陶瓷浆料组份包括5~90重量份的陶瓷粉体、1~30重量份的粘接剂、其余为溶剂。
优选的,所述粘接剂为水溶性的粘接剂,所述溶剂为水。
优选的,所述具有涂挂特性的陶瓷浆料组份还包括分散剂、消泡剂。
优选的,所述水溶性的粘接剂为羧甲基纤维素、聚乙烯醇、丙烯酸、环氧树脂、聚氨酯中的一种。
优选的,所述陶瓷粉体为氧化铝陶瓷、氧化锆陶瓷、羟基磷灰石陶瓷、磷酸三钙陶瓷、碳化硅中的一种或几种。
优选的,所述有机纤维为涤纶、腈纶、锦纶、尼龙、聚乙烯纤维中的一种。
优选的,所述有机纤维网格所用丝材截面形状为圆形、三角形、四边形、六边形中的一种或几种。
优选的,所述有机纤维网格的网孔形状为圆形、三角形、四边形、六边形中的一种或几种。
优选的,步骤S1中,所述浸涂方法为刮涂、挤压中的一种。
优选的,步骤S2中,所述激光的发生器为二氧化碳激光器、光纤激光器中的一种。
优选的,步骤S2中,所述激光扫描设备为X-Y双坐标激光扫描设备、振镜激光扫描设备中的一种。
优选的,步骤S2中,所述激光扫描设备辐照时,激光功率为1~100W,激光扫描速度为10~1000mm/s。
优选的,步骤S2中,所述层间粘结材料为水、陶瓷浆料中的一种。
优选的,所述陶瓷浆料与步骤S1中所述陶瓷浆料组分相同。
本发明提出的一种规则孔隙结构多孔陶瓷3D打印方法,有益效果在于:
1、利用有机纤维网格骨架陶瓷复合材料片材进行激光分层实体制造,加工工艺简单、高效;有机纤维网格片材来源广泛、成本低廉;陶瓷浆料可用材料广泛,制备工艺简单,只要能配制成可于机纤维网格片材上涂挂的浆料即可,拓展了3D打印技术的应用领域;
2、采用有机纤维网格作为模板造孔,市售有机网格采用的丝材截面尺寸形状种类多,网络的编制方法丰富,可用于成型各种尺寸、形状、空间结构的规则孔隙,孔隙结构可设计性强,多孔陶瓷的比强度高;
3、在前期制备有机纤维网格骨架陶瓷复合材料片材的过程中,采用浸涂浆料的方式可保证固含量5~90wt%的陶瓷浆料可充分浸满各种目数的有机纤维网格,可用于成型微米级细密孔隙结构陶瓷;
本发明提供的技术方案,可获得规则孔隙结构,具有原料制备工艺简单、材料应用范围广泛、加工过程无需模具、加工效率高、成本低、孔隙结构可设计性强、多孔陶瓷比强度高等优点。
附图说明
图1为本发明所述规则孔隙结构多孔陶瓷3D打印方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1;
如图1所示,本发明的工艺步骤包括:
1)配制具有涂挂特性的陶瓷浆料:称取140g氧化铝粉(分析纯,过325目);称取50gPVA溶液(浓度4wt%),称取1.4g聚丙烯酸铵(分散剂),量取蒸馏水8.6ml,将上述原料加入刚玉球磨罐中进行高速球磨2h;
2)将球磨后的浆料置于真空除泡机中除泡10min;
3)制备有机纤维网格骨架陶瓷复合材料片材:选择尼龙66网格(目数100,丝材直径100微米,网孔正方形)作为骨架,将浆料挤压进入有机纤维网格片材网孔,经过自然干燥后,制成有机纤维网格骨架陶瓷复合材料卷材;
4)采用Pro/E、UG等设计软件或三维扫描仪建立目标坯体的STL格式模型;
5)用计算机软件对所建三维模型进行沿高度方向的分层处理,每层的厚度为0.1~1mm,厚度不小于复合片材的厚度,获取每层二维数字模型外围轮廓对应的激光扫描切割路径数据;
6)利用辊筒将一层复合片材铺展在打印平台上;
7)开启二氧化碳激光器,激光功率为1~100W,激光扫描速度为10~1000mm/s,X-Y双坐标工作台根据步骤5)中建立的扫描路径数据控制激光对该层复合片材选择性辐照,使激光作用的区域的有机纤维和添加剂气化或碳化,气化或碳化的深度略大于复合片材的厚度;
8)关闭激光器;
9)在该层复合片材上均匀喷涂蒸馏水(层间粘结剂);
重复步骤6)到步骤9),直到打印完成;
去除外围多余材料,取出含有有机纤维骨架的三维坯体;
经脱脂烧结后,得到目标多孔陶瓷。
实施例2;
如图1所示,本发明的工艺步骤包括:
1)配制具有涂挂特性的陶瓷浆料:称取100g羟基磷灰石陶瓷粉;称取66.67g羧甲基纤维素溶液(浓度3wt%),称取2g聚丙烯酸铵(分散剂),称取1g消泡剂,量取蒸馏水30.33ml;将上述原料加入刚玉球磨罐中进行高速球磨2h;
2)将球磨后的浆料置于真空除泡机中除泡10min;
3)制备有机纤维网格骨架陶瓷复合材料片材:选择聚乙烯纤维网格(目数120,丝材直径150微米,网孔六边形)作为骨架,将浆料均匀刮涂于有机纤维网格片材上,采用红外加热器对复合片材进行加热,待片材干燥后进行二次刮涂、干燥,保证网格孔隙被陶瓷材料充分填充,将复合片材制成有机纤维网格骨架陶瓷复合材料卷材;
4)采用Pro/E、UG等设计软件或三维扫描仪建立目标坯体的STL格式模型;
5)用计算机软件对所建三维模型进行沿高度方向的分层处理,每层的厚度为0.1~1mm,厚度不小于复合片材的厚度,获取每层二维数字模型外围轮廓对应的激光扫描切割路径数据;
6)利用辊筒将一层复合片材铺展在打印平台上;
7)开启光纤激光器,激光功率为1~100W,激光扫描速度为10~1000mm/s,阵镜扫描工作台根据步骤5)中建立的扫描路径数据控制激光对该层复合片材选择性辐照,使激光作用的区域的有机纤维和添加剂气化或碳化,气化或碳化的深度略大于复合片材的厚度;
8)关闭激光器;
9)采用刮刀在该层复合片材上均匀涂覆陶瓷浆料(层间粘结剂);
重复步骤6)到步骤9),直到打印完成;
去除外围多余材料,取出含有有机纤维骨架的三维坯体;
经脱脂烧结后,得到目标多孔陶瓷。
实施例3;
本实施例与实施例2不同的是,步骤6)铺展复合片材后,采用红外加热器使层间粘结剂固化,以提高层间的粘结强度。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (15)

1.一种规则孔隙结构多孔陶瓷3D打印方法,其特征在于:包括如下操作步骤;
S1:配制具有涂挂特性的陶瓷浆料;将浆料浸涂于有机纤维网格片材上,经过干燥后,制成有机纤维网格骨架陶瓷复合材料片材;建立目标坯体的三维数字模型,对数字模型进行计算机分层处理,获取每层二维数字模型外围轮廓对应的激光扫描切割路径数据;
S2:在打印平台上铺设一层陶瓷复合材料片材;采用激光扫描设备依据步骤S1中获取的轮廓路径数据对该层片材进行选择性的辐照,去除片材轮廓处的有机纤维和有机添加剂,然后在该层片材表面均匀涂覆层间粘结材料,调节打印平台的高度降低一层;
S3:重复步骤S2,通过层层累积,完成坯体的三维成形;去除坯体轮廓外部的多余材料,得到目标坯体,然后将坯体置于烧结炉中进行脱脂烧结,去除坯体内有机纤维网格及有机添加剂,后即可得到具有以有机纤维网格为模板的孔隙结构的目标零件。
2.根据权利要求1所述的一种规则孔隙结构多孔陶瓷3D打印方法,其特征在于:步骤S1中,所述具有涂挂特性的陶瓷浆料组份包括5~90重量份的陶瓷粉体、1~30重量份的粘接剂、其余为溶剂。
3.根据权利要求2所述的一种规则孔隙结构多孔陶瓷3D打印方法,其特征在于:所述粘接剂为水溶性的粘接剂,所述溶剂为水。
4.根据权利要求1或2所述的一种规则孔隙结构多孔陶瓷3D打印方法,其特征在于:所述具有涂挂特性的陶瓷浆料组份还包括分散剂、消泡剂。
5.根据权利要求2所述的一种规则孔隙结构多孔陶瓷3D打印方法,其特征在于:所述水溶性的粘接剂为羧甲基纤维素、聚乙烯醇、丙烯酸、环氧树脂、聚氨酯中的一种。
6.根据权利要求2所述的一种规则孔隙结构多孔陶瓷3D打印方法,其特征在于:所述陶瓷粉体为氧化铝陶瓷、氧化锆陶瓷、羟基磷灰石陶瓷、磷酸三钙陶瓷、碳化硅中的一种或几种。
7.根据权利要求1所述的一种规则孔隙结构多孔陶瓷3D打印方法,其特征在于:所述有机纤维为涤纶、腈纶、锦纶、尼龙、聚乙烯纤维中的一种。
8.根据权利要求1所述的一种规则孔隙结构多孔陶瓷3D打印方法,其特征在于:所述有机纤维网格所用丝材截面形状为圆形、三角形、四边形、六边形中的一种或几种。
9.根据权利要求1所述的一种规则孔隙结构多孔陶瓷3D打印方法,其特征在于:所述有机纤维网格的网孔形状为圆形、三角形、四边形、六边形中的一种或几种。
10.根据权利要求1所述的一种规则孔隙结构多孔陶瓷3D打印方法,其特征在于:步骤S1中,所述浸涂方法为刮涂、挤压中的一种。
11.根据权利要求1所述的一种规则孔隙结构多孔陶瓷3D打印方法,其特征在于:步骤S2中,所述激光的发生器为二氧化碳激光器、光纤激光器中的一种。
12.根据权利要求1所述的一种规则孔隙结构多孔陶瓷3D打印方法,其特征在于:步骤S2中,所述激光扫描设备为X-Y双坐标激光扫描设备、振镜激光扫描设备中的一种。
13.根据权利要求1所述的一种规则孔隙结构多孔陶瓷3D打印方法,其特征在于:步骤S2中,所述激光扫描设备辐照时,激光功率为1~100W,激光扫描速度为10~1000mm/s。
14.根据权利要求1所述的一种规则孔隙结构多孔陶瓷3D打印方法,其特征在于:步骤S2中,所述层间粘结材料为水、陶瓷浆料中的一种。
15.根据权利要求14所述的一种规则孔隙结构多孔陶瓷3D打印方法,其特征在于:所述陶瓷浆料与步骤S1中所述陶瓷浆料组分相同。
CN201911228024.1A 2019-12-04 2019-12-04 一种规则孔隙结构多孔陶瓷3d打印方法 Pending CN111056857A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911228024.1A CN111056857A (zh) 2019-12-04 2019-12-04 一种规则孔隙结构多孔陶瓷3d打印方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911228024.1A CN111056857A (zh) 2019-12-04 2019-12-04 一种规则孔隙结构多孔陶瓷3d打印方法

Publications (1)

Publication Number Publication Date
CN111056857A true CN111056857A (zh) 2020-04-24

Family

ID=70299653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911228024.1A Pending CN111056857A (zh) 2019-12-04 2019-12-04 一种规则孔隙结构多孔陶瓷3d打印方法

Country Status (1)

Country Link
CN (1) CN111056857A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112692287A (zh) * 2021-01-14 2021-04-23 昆明理工大学 一种三维连通网格状分布的有序多孔钛制备方法
CN112707738A (zh) * 2020-12-30 2021-04-27 松山湖材料实验室 整体有序-局部无序多孔陶瓷及其制备方法
CN113386349A (zh) * 2021-06-16 2021-09-14 西南交通大学 一种碳纤维增强树脂基板材的3d打印方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109227877A (zh) * 2018-10-31 2019-01-18 南京航空航天大学 一种基于光固化3d打印技术成型的多孔骨羟基磷灰石陶瓷细胞支架的方法
CN109809811A (zh) * 2019-03-13 2019-05-28 华南理工大学 一种纳米/微米多级孔结构的生物活性陶瓷支架及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109227877A (zh) * 2018-10-31 2019-01-18 南京航空航天大学 一种基于光固化3d打印技术成型的多孔骨羟基磷灰石陶瓷细胞支架的方法
CN109809811A (zh) * 2019-03-13 2019-05-28 华南理工大学 一种纳米/微米多级孔结构的生物活性陶瓷支架及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨少斌: "叠层实体工艺制备可控孔隙结构多孔陶瓷", 《陶瓷学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112707738A (zh) * 2020-12-30 2021-04-27 松山湖材料实验室 整体有序-局部无序多孔陶瓷及其制备方法
CN112692287A (zh) * 2021-01-14 2021-04-23 昆明理工大学 一种三维连通网格状分布的有序多孔钛制备方法
CN113386349A (zh) * 2021-06-16 2021-09-14 西南交通大学 一种碳纤维增强树脂基板材的3d打印方法
CN113386349B (zh) * 2021-06-16 2022-07-12 西南交通大学 一种碳纤维增强树脂基板材的3d打印方法

Similar Documents

Publication Publication Date Title
CN111056857A (zh) 一种规则孔隙结构多孔陶瓷3d打印方法
Zhang et al. A review of 3D printed porous ceramics
Franks et al. Colloidal processing: enabling complex shaped ceramics with unique multiscale structures
Gibbons et al. 3D Printing of cement composites
CN106927846B (zh) 一种C/C-SiC复合材料零件的制备方法及其产品
Zocca et al. Additive manufacturing of ceramics: issues, potentialities, and opportunities
CN107226693B (zh) 增材制造支架结合凝胶浇注制备多孔磷酸钙陶瓷的方法
CN109261967B (zh) 一种多孔钨材料的电子束分区扫描成形方法
CN104259460B (zh) 一种梯度孔隙结构金属纤维烧结板及制造方法
CN110950651A (zh) 一种基于墨水直书写3d打印技术制备多级多孔陶瓷的方法
CN107127342B (zh) 一种粉床多材料区域铺放成形的工艺方法
Zhang et al. Organic mesh template-based laminated object manufacturing to fabricate ceramics with regular micron scaled pore structures
KR101387159B1 (ko) 이중 기공을 가지는 스캐폴드 제조 방법 및 이를 이용하여 제조된 스캐폴드
CN110272294A (zh) 异型石英复合陶瓷透波天线窗快速成型方法
CN101279850A (zh) 一种孔结构可控的多孔陶瓷的制备方法
Nachum et al. Additive manufacturing of ceramics: Stereolithography versus binder jetting
CN101111336B (zh) 制造烧结体的方法
Li et al. Material extrusion based ceramic additive manufacturing
Waetjen et al. Slurry deposition by airbrush for selective laser sintering of ceramic components
CN105948810B (zh) 一种三维网状通孔复合材料及其制备
Tian et al. Net-shaping of ceramic components by using rapid prototyping technologies
CN113248234A (zh) 一种共晶陶瓷涂层及其制备方法
CN110204348A (zh) 一种3d打印SiC晶须增强C/SiC多孔陶瓷的制备方法
KR100395036B1 (ko) 개포형 금속포움 제조방법
CN113103576B (zh) 面向有序梯度多孔材料的3d打印方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200424

WD01 Invention patent application deemed withdrawn after publication