CN111054416B - 一种氮掺杂碳材料负载合金催化剂及其制备方法和应用 - Google Patents

一种氮掺杂碳材料负载合金催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN111054416B
CN111054416B CN201911250724.0A CN201911250724A CN111054416B CN 111054416 B CN111054416 B CN 111054416B CN 201911250724 A CN201911250724 A CN 201911250724A CN 111054416 B CN111054416 B CN 111054416B
Authority
CN
China
Prior art keywords
nitrogen
active metal
catalyst
sio
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911250724.0A
Other languages
English (en)
Other versions
CN111054416A (zh
Inventor
王平
丘玉萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201911250724.0A priority Critical patent/CN111054416B/zh
Publication of CN111054416A publication Critical patent/CN111054416A/zh
Application granted granted Critical
Publication of CN111054416B publication Critical patent/CN111054416B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J35/393
    • B01J35/647
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于催化材料技术领域,公开了一种氮掺杂碳材料负载合金催化剂及其制备方法和应用。将SiO2纳米球加入到含有载体材料前驱体和活性金属盐的Tris缓冲液中,搅拌反应,产物在400~800℃还原性气氛下进行热处理,然后加入到碱溶液中反应移除SiO2纳米球模板,得到具有中空结构的氮掺杂碳负载镍基合金催化剂;所述载体材料前驱体是指异质氮原子掺杂的碳材料,所述活性金属盐是指Fe、Co、Ni、Pt、Mo、Ir、La、Ce中至少两种金属的可溶性盐。本发明制备方法原料易得、操作简便、便于量产,所得催化剂兼具高本征催化活性、丰富的活性位点数和良好的传质,可在碱性条件下高效催化水合肼分解制氢。

Description

一种氮掺杂碳材料负载合金催化剂及其制备方法和应用
技术领域
本发明属于催化材料技术领域,具体涉及一种氮掺杂碳材料负载合金催化剂及其制备方法和应用。
背景技术
发展储氢材料和制氢技术对于解决能源危机与环境污染等全球性问题,实现可持续发展具有重大意义。储氢材料领域历经长期发展,主要可分为可逆储氢材料和化学储氢材料。研究表明:可逆储氢材料的储氢容量、工作温度、可逆性等性能指标,尚不能或同时满足车载氢源燃料电池应用要求。鉴于此研究现状,自2000年前后,各国学者开始致力于化学氢化物可控放氢及氢化物高效再生技术研究,由此引发了化学储氢材料的研究热潮。近年来,研究人员将关注点转移到以水合肼(N2H4·H2O)为代表的化学储氢材料。N2H4·H2O分解制氢具有理论储氢容量高(8wt%)、制氢成本低(约$35/Kg H2)、制氢反应不产生固体残余物等突出优点。此外,N2H4·H2O在常温常压下为液体,便于贮存和输运,且在现有液体燃料(汽油)输运/加注基础设施上具备使用兼容性。正是这些特性,促使N2H4·H2O在车载/便携式移动氢源方面的应用潜力最被看好。
N2H4·H2O的有效储氢组分为肼(N2H4),其分解可按两条竞争性路径进行:N2H4→N2+2H2,3N2H4→4NH3+N2。从储氢应用角度,需选择性促进N2H4分解为N2和H2,同时有效抑制其分解为N2和NH3的反应。研发N2H4·H2O化学储氢技术的关键在于研发兼具高活性、高制氢选择性、良好耐久性的高效催化剂。研究发现:Ir、Rh、Ni三种金属对于N2H4·H2O分解反应具有催化活性,其中贵金属Ir的催化活性最高,但制氢选择性过低;廉价金属Ni的活性较低,但制氢选择性较高。近年来,各国学者重点围绕Ni基合金负载型催化剂开展研究,通过采用成分合金化、结构纳米化、引入金属氧化物及碳材料等载体改性等策略,调控催化剂的性能。目前Ni-Pt合金负载型催化剂具有优异的催化性能,是研究的热点材料。但总体而言,该组分催化剂仍的催化活性远未达到实用化的要求。目前报道的Ni基合金催化剂的制备方法主要沿用液相还原法和高温热处理方法,前者存在合金化不充分和活性组分与载体的相互作用弱的缺点,后者虽能改善前者的不足,但存在高温下颗粒团聚的现象。因此,发展先进的合成方法有效的避免传统方法的不足仍是推进水合肼制氢技术实用化进程中亟待解决的重要问题。
发明内容
针对以上现有技术存在的缺点和不足之处,本发明的首要目的在于提供一种氮掺杂碳材料负载合金催化剂的制备方法。该方法原料易得、操作简便、便于量产。
本发明的另一目的在于提供一种通过上述方法制备得到的氮掺杂碳材料负载合金催化剂。所得催化剂兼具高本征催化活性、丰富的活性位点和良好的传质能力,可在碱性条件下高效地催化水合肼分解制氢反应,综合催化性能接近目前报道的最优性能Ni-Pt催化剂。
本发明的再一目的在于提供上述氮掺杂碳材料负载合金催化剂在催化水合肼分解制氢中的应用。
本发明目的通过以下技术方案实现:
一种氮掺杂碳材料负载合金催化剂的制备方法,包括如下制备步骤:
将SiO2纳米球加入到含有载体材料前驱体和活性金属盐的Tris缓冲液中,搅拌反应,固体产物经分离、干燥,然后在400~800℃还原性气氛下进行热处理,所得产物加入到碱溶液中反应移除SiO2纳米球模板,得到具有中空结构的氮掺杂碳负载镍基合金催化剂;所述载体材料前驱体是指异质氮原子掺杂的碳材料,所述活性金属盐是指Fe、Co、Ni、Pt、Mo、Ir、La、Ce中至少两种金属的可溶性盐。
进一步地,所述SiO2纳米球通过如下方法制备得到:在室温下将乙醇、去离子水及氨水搅拌混合均匀,然后加入正硅酸乙酯反应,产物经分离洗涤,得到白色SiO2纳米球。
进一步地,所述异质氮原子掺杂的碳材料包括多巴胺、双聚氰胺或苯胺;更优选为多巴胺。
进一步地,所述活性金属盐是指活性金属的卤化物、硝酸盐、硫酸盐、氨基磺酸盐、醋酸盐,或活性金属的含氧或不含氧酸盐中的至少一种。
进一步地,所述载体材料前驱体的浓度优选为1~10mM;活性金属盐的浓度优选为0.01~0.2mM。
进一步地,所述搅拌反应的温度优选为30~60℃;反应时间优选为6~24h。
进一步地,所述还原性气氛是指氢气和氩气的混合气氛。
进一步地,所述热处理的时间为1~2h。
进一步地,所述碱溶液是指浓度为2M的NaOH溶液。
一种氮掺杂碳材料负载合金催化剂,通过上述方法制备得到;所述催化剂由活性金属相和氮掺杂碳基体相组成,活性金属相以细小纳米颗粒形式弥散分布于基体相表面;所述活性金属相是指Fe、Co、Ni、Pt、Mo、Ir、La、Ce中至少两种金属的合金。
进一步地,所述活性金属相是指Ni-Co、Ni-Fe、Co-Fe、Ni-Pt、Co-Pt、Ni-Ir、Co-Ir二元合金或Ni-Co-Fe、Ni-Co-Pt、Fe-Co-Ir、Ni-Fe-Pt三元合金。
进一步地,所述活性金属相纳米颗粒尺寸优选为2~15纳米。
进一步地,所述基体相具有纳米分级孔结构,孔尺寸优选为1~150纳米。
上述氮掺杂碳材料负载合金催化剂在催化水合肼分解制氢中的应用。
本发明原理为:首先先合成SiO2模板,接着以含有过渡金属盐及盐酸多巴胺等载体材料前驱体的水溶液为起始原料,利用过渡金属与载体材料前驱体的金属螯合效应,载体材料前驱体如多巴胺在室温及碱性条件下聚合成聚多巴胺(双聚氰胺或苯胺聚合成密胺或聚苯胺)后具有超强黏性黏附在SiO2模板上,然后通过调控热处理条件来使聚多巴胺热解同时析出活性金属相,同时制得具有缺陷结构和纳米孔分级结构的氮掺杂的碳基体,实现两相的原位复合。
对于水合肼分解制氢催化剂,影响其表观催化活性的三个要素是:本征活性、活性位数量、传质。传统的催化剂制备方法往往只能集中解决其中的一或两个方面,本发明所提供的催化剂在设计思路上同时优化这三个要素,并提供了简单易行的制备方法加以实现。首先,采用多巴胺等高氮含量的异质氮原子掺杂的碳材料,在水相中与金属离子通过螯合作用,保证强相互作用,聚合成的聚合物具有超强粘性能够黏附SiO2模板,在高温下热解聚合物,能够脱除含氧、含氮等物质造出微孔、介孔,同时SiO2模板的移除可以留下大孔,多级孔结构的特征保证良好的传质。在载体表面生长催化剂活性组分且与载体具有强相互作用,为合成高性能催化剂奠定材料组成与结构基础。原位析出的金属相与基体组合构筑催化活性相,其中金属合金相对催化剂的活性起至关重要的作用,基体相中的氮具有路易斯碱性质,对催化剂的制氢选择性有促进作用,复合相催化剂的本征催化性能显著优于单相金属催化剂;热处理过程中与碳前驱体盐螯合的金属阳离子原位析出,导致载体与合金活性相具有强相互作用,有助于提高催化剂的性能;碳前驱体材料含有碳、氢、氧及氮元素,在加热过程中发生脱氧、脱氮及脱氢反应会导致大量的纳米孔生成,模板SiO2的移除留下大孔,分级孔的形成进一步提高了材料的比表面积,从而提供更多的活性位点。综上,本发明所提供的水合肼分解制氢催化剂兼具高本征活性、丰富的活性位和良好的传质能力。
本发明的制备方法及所得到的产物具有如下优点及有益效果:
(1)本发明提供了一种适用于水合肼分解制氢反应的合金负载型催化剂的制备新方法。该方法区别于传统方法的关键之处在于同时优化本征活性、活性位数量、传质三方面要素。在合成纳米结构前驱体材料的基础上,通过调控还原热处理条件来析出活性金属相,与基体材料组合构筑催化活性相;同时,基体碳前驱体在不同热处理条件下导致不同含量的C/N比例,有助于提高基体材料的本征活性;此外,载体前驱体材料在加热过程中因脱氧、脱氮及脱氢反应会导致大量的纳米孔生成,模板SiO2的移除留下大孔,在提供更多活性位的同时,进一步改善催化剂的传质性能。
(2)本发明的制备方法原料易得、工艺简单、便于量产、全程无污染。
(3)本发明提供了高性能合金催化剂,可在碱性条件下高效催化水合肼分解反应,催化性能接近目前报道的最优Ni-Pt负载型催化剂。
附图说明
图1为实施例1中所得SiO2模板(a)与制备态样品SiO2@Ni2+PtCl4 2--PDA(b)的透射电镜形貌图。
图2为实施例1中所得目标催化剂的X射线衍射图(a)及拉曼光谱图(b)。
图3为实施例1中所得目标催化剂NiPt/NC的透射电镜形貌图(a);高分辨电镜照片图(b);高角度环形暗场扫描透射电子显微镜图(c)。
图4为实施例1中所得目标催化剂NiPt/NC的X射线光电子能谱图:(a)Ni2p;(b)Pt4f;(C)N 1s,其中NC样品作为参比样品。
图5为实施例1中所得目标催化剂NiPt/NC与NiPt/C参比样品的N2吸脱附等温曲线图(a);孔径分布图(b)。
图6为实施例1中不同合金比例所得目标催化剂催化N2H4·H2O分解制氢性能对比图(a);目标催化剂Ni60Pt40/NC的热解温度对催化N2H4·H2O分解制氢性能对比图(b);Ni60Pt40/NC-700催化剂的稳定性测试结果图(c)。
图7为实施例1中Ni60Pt40/NCHS-700催化剂经10次循环稳定性测试后的X射线衍射图(a)与透射电镜形貌图(b)。
图8为实施例2中采用的商业用胶态SiO2模板(a)与所得制备态样品SiO2@Ni2+IrCl4 2--PDA(b)的透射电镜形貌图。
图9为实施例2中所得目标催化剂Ni60Ir40/NC的X射线衍射图(a)及单金属Ni/NC、Ir/NC对照样品与NiIr/NC、NC样品的拉曼光谱图(b)。
图10实施例2中所得目标催化剂Ni60Ir40/NC的透射电镜形貌图(a);高分辨电镜照片图(b)。
图11实施例2中所得目标催化剂Ni60Ir40/NC与NiIr/C参比样品催化N2H4·H2O分解制氢性能对比图(a)和Ni60Ir40/NC催化剂的稳定性测试结果图(b)。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
(1)催化剂制备:
以SiO2为模板,SiO2
Figure BDA0002308966520000061
缩合反应获得。利用富含氮量的多巴胺在碱性条件中容易聚合成聚多巴胺,具有超强粘性,同时还能与过渡金属离子发生螯合反应为基础条件。900mg的SiO2、连同350mL含有900mg的多巴胺、400mg的Tris缓冲剂、77mg的Ni(NO3)2·6H2O和94mg的H2PtCl6·6H2O的去离子水溶液置于容积为500mL的单口圆底烧瓶中,经50℃恒温处理12小时后自然冷却至室温,制得样品经充分清洗后在室温进行鼓风干燥12小时,得到制备态样品(SiO2@Ni2+PtCl4 2--PDA,PDA指代聚多巴胺);所得制备态样品在H2/Ar(1/10,v/v)气氛下加热至400-800℃,升温速率5℃/分钟,经1小时恒温处理后冷却至室温;经2M NaOH溶液恒温处理12小时后离心冷冻干燥12小时后,制得目标催化剂(NiPt/NC,NC是指氮掺杂碳基体,通过调节Ni和Pt的比例可以分别得到Ni20Pt80/NC、Ni40Pt60/NC、Ni50Pt50/NC、Ni60Pt40/NC和Ni80Pt20/NC等)。
(2)催化剂的物相/结构/元素化学态表征:
本实施例所得SiO2模板的透射电镜图如图1中a所示,可见:经
Figure BDA0002308966520000062
缩合反应获得了均匀分散,尺寸在150纳米左右的SiO2纳米球;采用水相中在SiO2模板上包覆聚多巴胺材料及螯合金属前驱体的制备态样品(SiO2@Ni2+PtCl4 2--PDA,PDA指代聚多巴胺)的透射电镜图如图1中b所示,发现SiO2模板表面包覆上一层物质,形貌未见明显改变。
本实施例不同合金比例所得目标催化剂(Ni20Pt80/NC、Ni60Pt40/NC、Ni80Pt20/NC)的XRD分析图如图2中a所示。可见如此制备的样品均具有C的非晶峰,单金属Ni/NC与Pt/NC分别具有明显的Ni和Pt的衍射峰,双金属的衍射峰介于Ni和Pt之间,说明NiPt形成了合金;拉曼光谱图(图2中b)证实了C具有石墨碳和缺陷碳结构。
图3为本实施例所得目标催化剂的透射电镜形貌图(a),插图为颗粒尺寸分布图(上)及选区电子衍射图谱(下);高分辨电镜照片图(b);高角度环形暗场扫描透射电子显微镜图(c),插图为单个纳米颗粒的EDX线扫图。透射电镜观察(图3中a)进一步确证了NiPt的合金化,颗粒细小分布在载体上,平均颗粒尺寸在6.8纳米左右;同时发现载体上存在大量新生成的纳米孔,其孔径为5~30纳米;选区电子衍射分析确证了NiPt纳米晶相的生成,根据高角度环形暗场扫描透射电子显微镜观察和单个颗粒的EDX线扫结果(图3中b和c),进一步证实了NiPt纳米晶相的生成。
图4为本实施例所得目标催化剂NiPt/NC的X射线光电子能谱图:(a)Ni 2p;(b)Pt4f;(C)N 1s,其中NC样品作为参比样品。根据X射线光电子能谱分析(图4中a和b),NiPt/NC样品中的Ni元素有少量的金属态Ni0,而Pt元素主要为金属态Pt0,说明在碱刻蚀的过程中NiPt纳米晶相表面被氧化;NiPt/NC和NC样品中的N元素均可分为石墨氮、吡啶氮和氧化氮,同时观察到NiPt/NC中的石墨氮相对比于NC样品中的石墨氮负移了0.3eV(图4中c),说明电子从活性NiPt相转移到了N元素中,证实NiPt/NC样品中的活性相和载体间具有强相互作用。
图5为本实施例所得目标催化剂NiPt/NC与NiPt/C参比样品的N2吸脱附等温曲线图(a)和孔径分布图(b)。N2吸脱附等温曲线结果(图5中a)表明,NiPt/NC与NiPt/C样品均呈现典型的IV型等温线与H3型介孔回滞环,在低的相对压下(p/p0<0.05)有较大的N2吸附量说明具有微孔特征;相应的孔径尺寸分布证实了上述两样品微孔、介孔的存在(图5中b)。
(3)催化性能测试:
图6为不同合金比例所得目标催化剂(Ni20Pt80/NC、Ni40Pt60/NC、Ni50Pt50/NC、Ni60Pt40/NC和Ni80Pt20/NC)催化N2H4·H2O分解制氢性能对比图(a);目标催化剂(Ni60Pt40/NC)的热解温度(600℃、700℃和800℃分别对应产物Ni60Pt40/NCHS-600、Ni60Pt40/NCHS-700和Ni60Pt40/NCHS-800)对催化N2H4·H2O分解制氢性能对比图(b);Ni60Pt40/NC-700催化剂的稳定性测试结果图(c)。图6中a结果显示,相比较于单金属Ni/NC、Pt/NC和NC样品,经合金化后的样品对催化N2H4·H2O分解制氢性能有了极大的提升(包括活性和制氢选择性),经优化后的最优比例Ni60Pt40/NC在2M NaOH、50度的反应条件下快速催化N2H4·H2O分解制氢(TOF值为1602h-1;制氢选择性为100%),与目前报道最优的催化剂性能相当。相比较与参比样品Ni60Pt40/C,活性有极大的提高应源于本征活性(N物种的存在)、活性位点数量(分级纳米结构)及良好的传质。图6中b给出了不同热处理温度下的Ni60Pt40/NC样品催化N2H4·H2O分解制氢性能对比图,性能差异源于活性位点数量(比表面积在600、700和800度下分别为464、430和216m2 g-1)及C/N比例(C/N比在600、700和800度下分别为13、22和67)。图6中c给出了Ni60Pt40/NC样品催化N2H4·H2O分解制氢性能的循环稳定性测试,发现样品在10次循环测试后还能维持100%的制氢选择性,活性下降了35%,与目前报道的催化剂的稳定性相当。
图7给出了Ni60Pt40/NCHS-700催化剂经10次循环稳定性测试后的X射线衍射图(a)与透射电镜形貌图(b),结果表明催化剂的结构和分级纳米结构特征未见明显改变,说明催化剂具备良好的结构稳定性。
实施例2
(1)催化剂制备:
模板采用商业用胶态SiO2,水相反应过程中应用的过渡金属盐及其含量为:Ni(NO3)2·6H2O(77mg)、H2IrCl6·6H2O(72.5mg)。其余制备条件同实施例1。得到制备态样品(SiO2@Ni2+IrCl4 2--PDA),所得制备态样品经还原性气氛下加热处理及NaOH溶液处理,制得目标催化剂Ni60Ir40/NC。
(2)催化剂的物相/结构表征:
本实施例采用的商业用胶态SiO2模板(a)与所得制备态样品SiO2@Ni2+IrCl4 2--PDA(b)的透射电镜形貌图如图8所示。TEM形貌表明:商业用胶态SiO2尺寸在20纳米左右,水相反应过程中SiO2模板表面生成了Ni2+IrCl4 2--PDA复合物。
图9为本实施例中所得目标催化剂Ni60Ir40/NC的X射线衍射图(a)及单金属Ni/NC、Ir/NC对照样品与NiIr/NC、NC样品的拉曼光谱图(b)。XRD表征发现(图9中a):Ni60Ir40/NC样品与单金属Ni/NC和Ir/NC均具有C的非晶峰,单金属Ni/NC与Ir/NC分别具有明显的Ni和Ir的衍射峰,双金属的衍射峰介于Ni和Ir之间,说明NiIr形成了合金;拉曼光谱图证实了C具有石墨碳和缺陷碳结构(图9中b)。
图10为本实施例所得目标催化剂Ni60Ir40/NC的透射电镜形貌图(a);高分辨电镜照片图(b)。透射电镜观察(图10中a)目标催化剂有大量的纳米孔,尺寸与模板SiO2相近(约20纳米);高分辨电镜照片进一步确证了NiIr的合金化(图10中b)。
(3)催化性能测试:
图11为本实施例所得目标催化剂Ni60Ir40/NC与NiIr/C参比样品催化N2H4·H2O分解制氢性能对比图(a)和Ni60Ir40/NC催化剂的稳定性测试结果图(b)。N2H4·H2O分解制氢性能结果(图11中a)表明,Ni60Ir40/NC催化剂具有优异的催化N2H4·H2O分解制氢性能,其在2M碱液中室温条件下仅需5分钟即可完全分解N2H4·H2O产氢,催化活性与目前报道的Ni-Ir双金属负载型催化剂相当;图11中b给出了Ni60Ir40/NC样品催化N2H4·H2O分解制氢性能的循环稳定性测试,发现样品在10次循环测试后还能维持100%的制氢选择性,活性下降了40%,与目前报道的催化剂的稳定性相当。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种氮掺杂碳材料负载合金催化剂在催化水合肼分解制氢中的应用,其特征在于,所述氮掺杂碳材料负载合金催化剂的制备包括如下步骤:
将SiO2纳米球加入到含有载体材料前驱体和活性金属盐的Tris缓冲液中,搅拌反应,固体产物经分离、干燥,然后在400~800℃还原性气氛下进行热处理,所得产物加入到碱溶液中反应移除SiO2纳米球模板,得到具有中空结构的氮掺杂碳负载镍基合金催化剂;所述载体材料前驱体是指异质氮原子掺杂的碳材料,所述活性金属盐是指Fe、Co、Ni、Pt、Mo、Ir、La、Ce中至少两种金属的可溶性盐;
所述异质氮原子掺杂的碳材料为多巴胺。
2.根据权利要求1所述的应用,其特征在于所述SiO2纳米球通过如下方法制备得到:在室温下将乙醇、去离子水及氨水搅拌混合均匀,然后加入正硅酸乙酯反应,产物经分离洗涤,得到白色SiO2纳米球。
3.根据权利要求1所述的应用,其特征在于:所述活性金属盐是指活性金属的卤化物、硝酸盐、硫酸盐、氨基磺酸盐、醋酸盐中的至少一种。
4.根据权利要求1所述的应用,其特征在于:所述载体材料前驱体的浓度为1~10 mM;活性金属盐的浓度为0.01~0.2 mM;所述搅拌反应的温度为30~60℃;反应时间为6~24h。
5.根据权利要求1所述的应用,其特征在于:所述还原性气氛是指氢气和氩气的混合气氛;所述热处理的时间为1~2h;所述碱溶液是指浓度为2 M 的NaOH溶液。
6.根据权利要求1所述的应用,其特征在于:所述催化剂由活性金属相和氮掺杂碳基体相组成,活性金属相以细小纳米颗粒形式弥散分布于基体相表面;所述活性金属相是指Fe、Co、Ni、Pt、Mo、Ir、La、Ce中至少两种金属的合金。
7.根据权利要求6所述的应用,其特征在于:所述活性金属相是指Ni-Co、Ni-Fe、Co-Fe、Ni-Pt、Co-Pt、Ni-Ir、Co-Ir二元合金或Ni-Co-Fe、Ni-Co-Pt、Fe-Co-Ir、Ni-Fe-Pt三元合金。
8.根据权利要求6所述的应用,其特征在于:所述活性金属相纳米颗粒尺寸为2~15纳米;所述基体相具有纳米分级孔结构,孔尺寸为1~150纳米。
CN201911250724.0A 2019-12-09 2019-12-09 一种氮掺杂碳材料负载合金催化剂及其制备方法和应用 Active CN111054416B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911250724.0A CN111054416B (zh) 2019-12-09 2019-12-09 一种氮掺杂碳材料负载合金催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911250724.0A CN111054416B (zh) 2019-12-09 2019-12-09 一种氮掺杂碳材料负载合金催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111054416A CN111054416A (zh) 2020-04-24
CN111054416B true CN111054416B (zh) 2021-12-21

Family

ID=70300189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911250724.0A Active CN111054416B (zh) 2019-12-09 2019-12-09 一种氮掺杂碳材料负载合金催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111054416B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106491B (zh) * 2021-04-30 2022-02-22 佛山仙湖实验室 一种氮掺杂介孔中空碳球负载铂-氧化钴复合电催化材料的制备方法及其产品和应用
CN113398988B (zh) * 2021-05-06 2022-08-16 华南理工大学 一种以含氮聚合物为分散剂的负载型催化剂及其制备方法与应用
CN113871642B (zh) * 2021-08-23 2024-01-30 温州大学 一种氮掺杂碳负载Mo/Pt合金催化剂及应用
CN113652708B (zh) * 2021-09-02 2023-04-07 广西师范大学 一种Pt/Ni3N@Mo2C氢氧化氢析出电催化剂制备方法
CN114618551A (zh) * 2022-03-01 2022-06-14 西北工业大学 一种负载型纳米合金催化剂及普适性制备方法
CN114700488A (zh) * 2022-04-11 2022-07-05 河北省科学院能源研究所 氮掺杂多孔碳微球包覆Ni/Co合金的制备方法
CN114453002B (zh) * 2022-04-13 2022-06-28 北京单原子催化科技有限公司 一种含铱铁单原子催化剂、制备方法及应用
CN114864972A (zh) * 2022-04-21 2022-08-05 华南理工大学 一种应用于燃料电池的高比表面积空心碗状的含氮碳基载体及其制备方法与应用
CN115283001B (zh) * 2022-08-22 2023-11-14 西北工业大学 一种耐高温负载型金属催化剂及其制备方法
CN115445665B (zh) * 2022-08-29 2023-10-13 江西师范大学 一种用于水合肼分解产氢的复合纳米催化剂及其制备方法和应用
CN115475648B (zh) * 2022-10-09 2023-06-06 陕西师范大学 一种内外表面同时负载Ni2P的介孔P掺杂氮化碳空心球催化剂的制备方法
CN115779954A (zh) * 2022-12-21 2023-03-14 北京化工大学 一种双层核壳结构的金属单原子氮碳材料及其制备方法和用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105214673A (zh) * 2014-05-27 2016-01-06 中国科学院大连化学物理研究所 一种镍基催化剂在肼分解制氢中的应用
CN106620702A (zh) * 2017-02-14 2017-05-10 扬州大学 一种金/氮掺杂的空心碳纳米球核壳材料的制备方法
CN106984261A (zh) * 2017-05-16 2017-07-28 浙江工业大学 一种CoFe2O4/N/C空心纳米球及其制备与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105214673A (zh) * 2014-05-27 2016-01-06 中国科学院大连化学物理研究所 一种镍基催化剂在肼分解制氢中的应用
CN106620702A (zh) * 2017-02-14 2017-05-10 扬州大学 一种金/氮掺杂的空心碳纳米球核壳材料的制备方法
CN106984261A (zh) * 2017-05-16 2017-07-28 浙江工业大学 一种CoFe2O4/N/C空心纳米球及其制备与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
In situ synthesis of cobalt ferrites-embedded hollow N-doped carbon as an outstanding catalyst for elimination of organic pollutants;Tao Zeng et al.;《Science of the Total Environment》;20170324;286-296 *
Ni基催化剂催化水合肼分解制氢的研究进展;董永利等;《石油化工》;20180831;885页左栏第1段,886页2.3部分 *

Also Published As

Publication number Publication date
CN111054416A (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
CN111054416B (zh) 一种氮掺杂碳材料负载合金催化剂及其制备方法和应用
Huang et al. Selective selenization of mixed-linker Ni-MOFs: NiSe2@ NC core-shell nano-octahedrons with tunable interfacial electronic structure for hydrogen evolution reaction
Alpaydın et al. A review on the catalysts used for hydrogen production from ammonia borane
Zhang et al. Recent advances in 1D electrospun nanocatalysts for electrochemical water splitting
Han et al. Metallic ruthenium-based nanomaterials for electrocatalytic and photocatalytic hydrogen evolution
Chen et al. Metal–organic framework-derived porous materials for catalysis
Wang et al. Recent advances in carbon substrate supported nonprecious nanoarrays for electrocatalytic oxygen evolution
CN109524678B (zh) 一种析氧铁钴合金-铁酸钴/氮掺杂纳米碳管复合催化剂及其制备方法和应用
Ma et al. MOF-derived N-doped carbon coated CoP/carbon nanotube Pt-based catalyst for efficient methanol oxidation
Men et al. CoBP nanoparticles supported on three-dimensional nitrogen-doped graphene hydrogel and their superior catalysis for hydrogen generation from hydrolysis of ammonia borane
Dou et al. Shaggy-like Ru-clusters decorated core-shell metal-organic framework-derived CoOx@ NPC as high-efficiency catalyst for NaBH4 hydrolysis
CN110635141B (zh) 一种基于协同改性的非贵金属肼氧化催化剂及其制备方法
Yang et al. Metal-organic framework-derived metal-free highly graphitized nitrogen-doped porous carbon with a hierarchical porous structure as an efficient and stable electrocatalyst for oxygen reduction reaction
CN110512231B (zh) 一种镍基复合纳米颗粒及其制备方法和应用
Jiang et al. 2D coordination polymer-derived CoSe 2–NiSe 2/CN nanosheets: the dual-phase synergistic effect and ultrathin structure to enhance the hydrogen evolution reaction
Guo et al. Fullerenes and derivatives as electrocatalysts: Promises and challenges
Sun et al. Non-noble metal single atom-based catalysts for electrochemical reduction of CO2: Synthesis approaches and performance evaluation
Sun et al. Recent advances in cobalt-based catalysts for efficient electrochemical hydrogen evolution: a review
CN112705235B (zh) 碳包覆碳化镍的纳米复合材料及其制备方法和应用
Chen et al. Carbon nanosheet-carbon nanocage encapsulated Cu composite from chemical vapor deposition of real-world plastic waste for tailored CO2 conversion to various products
Zhou et al. Unsupported NiPt alloy metal catalysts prepared by water-in-oil (W/O) microemulsion method for methane cracking
Ma et al. Versatile construction of a hierarchical porous electrode and its application in electrochemical hydrogen production: a mini review
CN110386626B (zh) 一种氧化亚钴薄片、其制备方法和其在可见光催化全分解水中的应用
CN112909271A (zh) 一种具有海胆状形貌的整体式过渡金属磷化物电催化剂及其制备方法与应用
CN115475641B (zh) 一种金属原子锚定的硼氮共掺杂碳材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant