CN111032205A - 制备含氧化铀UO2、任选氧化钚PuO2和任选氧化镅AmO2和/或其它次锕系元素氧化物的粉末的方法 - Google Patents

制备含氧化铀UO2、任选氧化钚PuO2和任选氧化镅AmO2和/或其它次锕系元素氧化物的粉末的方法 Download PDF

Info

Publication number
CN111032205A
CN111032205A CN201880054636.0A CN201880054636A CN111032205A CN 111032205 A CN111032205 A CN 111032205A CN 201880054636 A CN201880054636 A CN 201880054636A CN 111032205 A CN111032205 A CN 111032205A
Authority
CN
China
Prior art keywords
oxide
optionally
powder
suspension
puo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880054636.0A
Other languages
English (en)
Other versions
CN111032205B (zh
Inventor
纪尧姆·伯纳德-格兰格
弗兰克·多罗
塞西尔·帕诺克斯
弗洛里安·拉卢米亚
其他发明人请求不公开姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of CN111032205A publication Critical patent/CN111032205A/zh
Application granted granted Critical
Publication of CN111032205B publication Critical patent/CN111032205B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/06Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a liquid medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/28Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic using special binding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/30Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic using agents to prevent the granules sticking together; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/026Spray drying of solutions or suspensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G43/00Compounds of uranium
    • C01G43/006Compounds containing, besides uranium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G43/00Compounds of uranium
    • C01G43/01Oxides; Hydroxides
    • C01G43/025Uranium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G56/00Compounds of transuranic elements
    • C01G56/004Compounds of plutonium
    • C01G56/005Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G56/00Compounds of transuranic elements
    • C01G56/007Compounds of transuranic elements
    • C01G56/008Compounds of neptunium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G56/00Compounds of transuranic elements
    • C01G56/007Compounds of transuranic elements
    • C01G56/009Compounds of americium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/51Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on compounds of actinides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing
    • F26B5/065Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing the product to be freeze-dried being sprayed, dispersed or pulverised
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/045Pellets
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • G21C3/623Oxide fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Glanulating (AREA)

Abstract

本发明涉及一种制备含氧化铀UO2、任选的氧化钚PuO2和任选的氧化镅AmO2和/或其它次锕系元素氧化物MO2的粉末的方法,M为镎或锔,该方法包括以下步骤:a)制备水性悬浮液的步骤,使水与以下物质接触:任选的氧化铀UO2粉末、氧化钚PuO2粉末和任选的氧化镅AmO2粉末和/或其它次锕系元素氧化物MO2粉末,M是镎或锔;选自抗絮凝剂、有机粘合剂及它们的混合物的至少一种添加剂,所述添加剂以使得水性悬浮液的动态粘度不超过1000mPa.s的量来加入;b)对a)中制备的悬浮液进行低温造粒步骤;c)对b)中获得的颗粒进行冷冻干燥的步骤,由此获得含氧化铀UO2、氧化钚PuO2和任选的氧化镅AmO2和/或其它次锕系元素氧化物MO2的粉末,M为镎或锔。

Description

制备含氧化铀UO2、任选氧化钚PuO2和任选氧化镅AmO2和/或 其它次锕系元素氧化物的粉末的方法
技术领域
本发明涉及一种制备含氧化铀UO2、任选氧化钚PuO2和任选氧化镅AmO2和/或其它次锕系元素氧化物的粉末的方法。
应当注意的是,对于本公开的其余部分,术语“次锕系元素”是指通过标准燃料芯连续捕获中子而在反应堆中形成的除铀、钚和钍之外的锕系元素,上述次锕系元素为镅、锔和镎。
更具体地说,本发明涉及一种制备粉末的方法,所述粉末可以流动,粒度分析具有窄的单峰趋势,并且可以在不经预先混合的情况下进行压制,并且更具体地说,所述粉末可具有以下特定的物理化学特性:
良好的自发流动能力;
具有单峰趋势集中在150μm至350μm之间的值的粒径分布;
良好的粉末颗粒中元素的均匀性;
最小的粉末中细微粒比率,以防止细微粒在设备和手套箱中散布;
良好的压实能力;和
优异的对自然烧结的反应性。
由于上文提及的物理化学特性,通过本发明的方法获得的粉末可适用于制备以下材料:
铀和钚的混合氧化物(U,Pu)O2燃料,称为MOX燃料,目前用于轻水反应堆;
含有次锕系元素的包层,例如用于在快中子反应堆中进行核嬗变实验的含有次锕系元素的嬗变靶,具体地,为了更好地理解这些次锕系元素的嬗变机理,这些靶可由含有1wt%至5wt%的次锕系元素的MOX类型的材料(该材料可用式(U,Pu,Am,Np,Cm)O2来表示)组成或由其中含10wt%至20wt%的次锕系元素的氧化铀基质的材料(该材料可用式(U,Am,Np,Cm)O2来表示)组成。
背景技术
制造铀和钚的混合氧化物(U,Pu)O2(称为MOX燃料)是与在乏燃料的后处理过程中回收的钚进行再循环的愿望有关的多种研发的目标。如今,通过制造和辐照MOX燃料使钚进行再循环被认为是限制钚扩散的一种手段。
在过去的二十年中,已经研发了几种制造MOX燃料的方法,其中一些方法是将UO2和PuO2的粉末完全磨碎来提供紧密的混合物,而另一些方法仅限于对这些粉末的一部分进行研磨。
目前,混合氧化物(U,Pu)O2的制备是通过对UO2和PuO2氧化物进行机械混合来完成的。所获得的混合物能够在压制、烧结和精炼之后生产满足现行规范的MOX燃料靶块。最久经考验的工业方法被称为MIMAS方法,在粉末的制备中包括两个主要步骤:对氧化铀和钚的粉末进行共研磨以制造被称为母料的第一混合物,其特征在于钚的含量为25%至30%;然后,将该母料干稀释在氧化铀中,直到获得所需的最终钚含量。
为了制造燃料,所用的粉末必须满足精确的特征。它们必须具有尤其良好的流动性、良好的压缩特征和通过烧结达到致密化的能力。烧结材料最终性能的重要品质标准是钚的分布均匀性。一方面,在每个烧结芯块中,良好均匀性完全有利于MOX在反应堆中的行为,尤其是提高燃烧速率,并且另一方面,有助于在后处理操作期间使已辐照燃料完全溶解。
关于嬗变靶,除了上面提到的最终目标外,它们已经成为深入研究的主题,以能够使得来自压水反应堆的乏燃料处理中的次锕系元素再循环。
这种类型的再循环通过以下已知的两种不同渠道进行:
异质再循环;和
同质再循环。
在异质再循环的情况下,在乏燃料的处理过程中,使得次锕系元素与铀和钚相分离,然后将其以高含量(约10%至20%原子百分比)引入到包括非易裂变基质(例如贫UO2)的燃料元素中,其中该非易裂变基质与反应堆标准燃料元素不同。包括次锕系元素的燃料元素可例如由位于反应堆堆芯外围的包层元素组成。这种再循环渠道通过将这些锕系元素产生的问题集中在减少的材料流上,从而通过引入次锕系元素而尤其能够防止标准燃料的特性的裂化。
在同质再循环的情况下,次锕系元素以低含量(小于5%原子百分比)混入并且几乎均匀地分布在所有反应堆标准燃料元素中。为此,在乏燃料的处理过程中,将铀、钚和次锕系元素一起处理以形成氧化物,然后将其用于制造所述燃料。
无论是燃料还是嬗变靶,近来使用的制造方法都是趋向于限制细微粉末的散布和改善芯块内元素均匀性的方法。WAR方法的情况便是此种情况,与需要进行造粒(诸如研磨)、筛分、混合步骤的传统粉末冶金方法相反,WAR方法能够在不经过造粒阶段的情况下,得到混合氧化物(U,Am)O2的均匀球状物,从而极大地限制了细微粒的散布。
此外,WO 00/30978中记载了涉及喷雾干燥阶段的另一种方法。尽管这种方法没有利用研磨、混合、筛分的步骤,但是在喷雾过程中,它仍然产生了不可忽略的细粒比率。
因此,鉴于已经存在的方法以及现有技术方法的缺点,本发明的作者设定了这样的目标:提出一种制备含氧化铀UO2、氧化钚PuO2和任选氧化镅AmO2和/或其它次锕系元素氧化物的粉末的新方法,该方法可得到球状颗粒的粉末,从而使得能够获得良好的流动性,并且可以使构成粉末的元素具有良好的分布均匀性。最后,本发明的方法的目的是获得能够直接用于压实材料设计的粉末,即,不需要添加用于压实的添加剂并且也不需要通过干燥途径进行研磨或混合的步骤,从而能够防止形成散布的细微粒。
发明内容
因此,本发明涉及一种制备含氧化铀UO2、任选的氧化钚PuO2和任选地氧化镅AmO2和/或其它次锕系元素氧化物MO2的粉末的方法,其中,M为镎或锔,该方法包括以下步骤:
a)制备水性悬浮液的步骤,包括使以下物质进行接触:水;氧化铀UO2粉末,任选的氧化钚PuO2粉末和任选的氧化镅AmO2粉末和/或其它次锕系元素氧化物MO2粉末,其中M为镎或锔;选自抗絮凝剂、有机粘合剂及它们的混合物的至少一种添加剂相接触;其中所述添加剂以使得所述水性悬浮液的动态粘度不超过1000mPa.s,优选不超过300mPa.s的量来加入;
b)对a)中制备的悬浮液进行低温造粒步骤;
c)对b)中获得的颗粒进行冷冻干燥的步骤,由此获得含氧化铀UO2、任选的氧化钚PuO2和任选的氧化镅AmO2和/或其它次锕系元素氧化物MO2的粉末,其中,M为镎或锔。
除了在涉及技术领域的部分中已经提到的并且通过实施本发明的方法实现的目的之外,本发明的方法还具有以下优点:
使用水作为特别令人感兴趣的分散介质,因为它可以限制有机产品的使用,从而限制所获得最终粉末中的杂质;
简单、快速和可重现的实施,其中在步骤a)中得到悬浮液可通过简单的泵送来毫无困难地输送到低温造粒设备的注入喷嘴;
悬浮液、低温造粒和冷冻干燥的组合使用能够获得这样的粉末:该粉末包含具有受控孔隙率的颗粒,其中颗粒是实心的且呈良好的球状,具有良好的元素(U,任选的Pu和任选的Am和/或其它次锕系元素)分布均匀性和良好的流动性;
能够在悬浮液中获得非常高比率的干物质,这可以使粉末的颗粒致密、实心和呈良好的球状;和
考虑到设备的临界性和几何形状,能够在工业生产能力装置中实施该方法。
在该方法中,首先通过使水与氧化铀UO2粉末,任选的氧化钚PuO2粉末和任选的氧化镅AmO2粉末和/或其它次锕系元素的氧化物MO2的粉末(M为镎或锔),选自抗絮凝剂、有机粘合剂及它们的混合物的至少一种添加剂相接触来制备水性悬浮液,所述悬浮液具有不超过1000mPa.s,优选不超过300mPa.s的动态粘度,以适合低温造粒的操作。
动态粘度通常在圆柱锥体配置系统下,在环境温度(即,除了环境大气的温度和压力之外,没有施加任何外部加热和加压,环境温度可为20℃,并且环境压力为大气压力)下通过流变仪以至少103s-1(例如,等于1500s-1)的剪切速率来测量。更优选地,动态粘度不超过300mPa.s,这对应于非常流体化的悬浮液,从而能够容易地循环通过低温造粒装置的进料管和喷嘴。
氧化铀UO2粉末、任选的氧化钚PuO2粉末和任选的氧化镅AmO2粉末和/或其它次锕系元素氧化物MO2粉末(M为镎或锔)有利地相对于悬浮液的水体积以10vol%至50vol%的含量存在。
为了制备悬浮液,使用选自抗絮凝剂(也可称为分散剂)、有机粘合剂及它们的混合物的至少一种添加剂,并且优选使用至少一种抗絮凝剂和至少一种有机粘合剂的混合物。
抗絮凝剂的目的是使悬浮液流化。它可以由易于除去的有机产品形成,例如聚甲基丙烯酸铵,例如Polyplastic S.A.公司以名称DARVAN C商业化的产品,它是25wt%的聚甲基丙烯酸铵的水溶液。抗絮凝剂也可以是聚羧酸醚,例如BASF公司以名称MasterGlenium27商业化的产品。
所用抗絮凝剂以重量计的量通常占悬浮液的干物质重量的0.02wt%至1wt%,其中该悬浮液的干物质重量为氧化物UO2、任选的PuO2、任选的AmO2、任选的MO2(M为镎或锔)的总重量。
在悬浮液中使用有机粘合剂用于促进在低温造粒过程中粉末的团聚。所选择的有机粘合剂主要是能够容易除去的有机粘合剂。举例来说,可以提及聚乙烯醇(PVA)、聚乙二醇(PEG)、聚(乙烯醇缩丁醛)(缩写为PVB)、丙烯酸乳胶或它们的混合物。
为了制备悬浮液,可以在原始状态下以UO2开始或者以UO2和/或PuO2和/或AmO2的混合物开始和/或以其它次锕系元素氧化物MO2(M为镎或锔)开始,将其加入到包含一种或多种添加剂(抗絮凝剂和/或有机粘合剂)的水的混合物中。然后可通过机械搅拌,优选用辊式搅拌器和研磨珠(例如由钇稳定的氧化锆或钇稳定的氧化铝制成)将整个体系混合几个小时。悬浮液也可以使用棒磨机或通过磨擦(attrition)来制备。
下述低温造粒步骤可以在商用造粒装置中进行或者在用于实施该步骤的特制的实验室装置中进行。它可以由蠕动泵构成,其中该蠕动泵能够将悬浮液输送到喷嘴,以使得悬浮液能够粒化。通过喷嘴形成并喷射的这些微滴落入液氮杜瓦瓶中,并被直接冷冻成球形形状。在造粒结束时,为了进行冷冻干燥的步骤,则可以将冷冻的颗粒放置在冷冻干燥器中,以使得冷冻水能够升华,并使得颗粒保持形状(尤其是其球形度)及其个体特征。
在冷冻干燥结束时,颗粒的残留水分非常低,这使得能够防止在使用粉末之前对粉末进行干燥。
在该最后一步之后,获得了可尤其具有以下特征的粉末:
具有单峰趋势集中在150μm至350μm之间的值的粒径分布;
颗粒具有足以承受制备芯块的操作的内聚性,;
优异的流动性;
良好的压实能力;
优异的自然烧结能力;和
良好的粉末颗粒中元素分布均匀性。
这些颗粒实际上理想的球形度使得它们在压模中具有非常好的流动性,以便获得随后将被烧结的芯块。
关于元素分布的均匀性,当存在元素钚时,它对于元素钚尤其重要。一旦粉末被压实和烧结来由此制备MOX燃料,钚分布的均匀性有利于反应堆中燃料的行为,尤其提高燃烧速率,并且另一方面促进了已辐照燃料在将来的后处理操作过程中的完全溶解。
影响颗粒直径的参数是待造粒的悬浮液的流变性、造粒过程中空气的流量和悬浮液的流量。
根据本发明的方法获得的粉末可以直接(即,不需要添加其它成分)用于形成压实的材料,例如,为燃料芯块的形式。
因此,本发明还涉及一种制备核燃料芯块的方法,该方法依次包括以下步骤:
d)实施如上文所述的制备粉末的方法的步骤;
e)将d)中获得的粉末压实成芯块形式的步骤;和
f)对e)中获得的芯块进行烧结的步骤。
压实步骤e)一方面可包括将粉末放置在具有适于形成一个或多个芯块的形状的模具中,并且另一方面可包括例如利用活塞对该粉末进行单轴压制,其中活塞对放置在模具中的粉末施加压力,该压力可在250MPa至1500MPa的范围内并且持续1秒至30分钟。
烧结步骤f)可包括于中性气体气氛(诸如氩气)中,任选在氢气和水的存在下或者在包含氢气和任选的中性气体(诸如氩气)的还原介质下,将上文提及的芯块加热至例如1000℃至1800℃的温度并且可持续1小时至8小时,其中氢气在混合物中的含量可高达5vol%,任选包含的水含量可高达20000ppm。
在下述补充性描述中将呈现本发明的其他特征和优点,其中该补充性描述涉及根据本发明方法的实施方式来制备混合粉末和燃料芯块的实例。
当然,该补充性描述仅仅是为了说明本发明的目的而提供的,在任何情况下都不构成对本发明的限制。
具体实施方式
实施例1
该实施例示出了进行本发明的方法来制备含氧化铀UO2和氧化钚PuO2的混合粉末,其中(Pu/U+Pu)原子比=10%,该制备完全在手套箱中进行。
将70mL去矿质水(占最终悬浮液总重量的40wt%)加入到250mL的塑料容器中,该塑料容器中装有约250g由氧化锆制成的研磨珠(平均直径为3mm)。分别以相对于氧化物干物质(即UO2和PuO2的总重量)的0.5wt%和2wt%的比例引入分散剂和粘合剂(分别为DARVANC和聚乙二醇300(PEG 300))。
在使这些成分快速混合后,以相对于最终悬浮液的重量的60wt%的比例引入UO2和PuO2粉末的混合物,或者引入105gUO2和PuO2粉末的混合物(包括89g UO2粉末和16g PuO2粉末)。凭借摇摆型(Rock'n'roll)辊式搅拌器以35rpm的转速来旋转所得到的混合物,从而使得粉末能够解聚并更好的分散。搅拌持续至少5小时,直到获得流体悬浮液。
悬浮液的粘度通过ANTON PAAR RHEOLAB QC流变仪在1500s-1下测量,并且对于1500s-1的剪切速率,其值为100mPa.s,该值落在小于300mPa.s的优选范围内,这对于进行悬浮液的低温造粒尤其有利。
低温造粒在包括以下部件的装置中实施:
用于容纳上述悬浮液的烧杯,该烧杯与蠕动泵连接,其中该蠕动泵能够将悬浮液输送到喷嘴,在0.15巴的气压下,该泵的最大流量为2L/h;
填充有液氮的杜瓦瓶型反应器,所述反应器与喷嘴连接,其中所述反应器能够对来自喷嘴的悬浮液液滴进行立即冻结。
从实际的角度来看,将预先获得的悬浮液置于上述烧杯中,然后通过蠕动泵在0.15巴的气压下以33mL/min的流量抽出,并通过喷嘴输送到杜瓦瓶型反应器中。通过反应器中所含的液氮直接冻结所形成的液滴。对于在该实施例中获得的悬浮液的体积,需要少于5分钟的低温造粒。
一旦冷冻,便将获得的颗粒快速放置于冷冻干燥器中,目的是使冷冻并截留在颗粒中的水升华,同时仍保持颗粒的球形形状。该冷冻干燥操作需要至少3小时,以在实验结束时获得10-3毫巴的稳定真空和约-100℃的温度。
当从颗粒中除去所有的水时,这使得颗粒具有呈单峰趋势的粒度分布,其中该单峰趋势集中在200μm值处,这样就可以通过压制形成芯块。
实施例2
该实施例示出了由上述实施例1中获得的粒状粉末来制备UO2/PuO2 MOX燃料芯块。
为此,在用硬脂酸进行外部润滑下,于700MPa下对粉末进行冷单轴压制,从而获得直径为9.5mm且高度为10mm的芯块。然后使所获得的芯块在包含4vol%氢气的氩气气氛下,于1750℃下烧结4小时,其中以3℃/min的升温来达到1750℃的温度。
由此烧结的芯块具有约94%至98%的相对密度,并且芯块中的元素U和Pu具有良好的均匀性(由于这些元素在粉末中具有良好的均匀性)。与粉末冶金制造的MOX芯块相比,这些元素更均匀地分布在MOX芯块中。

Claims (9)

1.一种制备含氧化铀UO2、任选的氧化钚PuO2和任选的氧化镅AmO2和/或其它次锕系元素氧化物MO2的粉末的方法,M为镎或锔,所述方法包括以下步骤:
a)制备水性悬浮液的步骤,包括使下列物质接触:水;任选的氧化铀UO2粉末,氧化钚PuO2粉末和任选的氧化镅AmO2粉末和/或其它次锕系元素氧化物MO2粉末,M为镎或锔;选自抗絮凝剂、有机粘合剂及它们的混合物的至少一种添加剂;其中所述添加剂以使得所述水性悬浮液的动态粘度不超过1000mPa.s的量来加入;
b)对a)中制备的悬浮液进行低温造粒的步骤;
c)对b)中获得的颗粒进行冷冻干燥的步骤,由此获得含氧化铀UO2、氧化钚PuO2和任选的氧化镅AmO2和/或其它次锕系元素氧化物MO2的粉末,M为镎或锔。
2.根据权利要求1所述的方法,其中,所述氧化铀UO2粉末、任选的氧化钚PuO2粉末和任选的氧化镅AmO2粉末和/或其它次锕系元素氧化物MO2粉末相对于所述悬浮液的水体积,以10vol%至50vol%的含量存在,其中,M为镎或锔。
3.根据权利要求1或2所述的方法,其中,所述添加剂是至少一种抗絮凝剂和至少一种有机粘合剂的混合物。
4.根据前述权利要求中任一项所述的方法,其中,所述抗絮凝剂是聚甲基丙烯酸铵或聚羧酸醚。
5.根据前述权利要求中任一项所述的方法,其中,相对于所述悬浮液的干物质总重量,所述抗絮凝剂以0.02wt%至1wt%的量存在,其中所述悬浮液的干物质总重量即为氧化物UO2、任选的PuO2、任选的AmO2、任选的MO2的总重量,M为镎或锔。
6.根据前述权利要求任一项所述的方法,其中,所述有机粘合剂是聚乙烯醇、聚乙二醇、聚(乙烯醇缩丁醛)、丙烯酸胶乳或它们的混合物。
7.根据前述权利要求中任一项所述的方法,其中,相对于所述悬浮液的干物质总重量,所述有机粘合剂以0.1wt%至3wt%的量存在,其中所述悬浮液的干物质总重量即为氧化物UO2、任选的PuO2、任选的AmO2、任选的MO2的总重量,M为镎或锔。
8.根据前述权利要求中任一项所述的方法,其中,所述悬浮液的动态粘度不超过300mPa.s。
9.一种制备核燃料芯块的方法,所述方法依次包括以下步骤:
d)实施根据权利要求1至8中任一项所述的制备粉末的方法的步骤;
e)将d)中获得的粉末压实为芯块的形式的步骤;
f)对e)中获得的芯块进行烧结的步骤。
CN201880054636.0A 2017-08-23 2018-08-17 制备含氧化铀、任选氧化钚和任选氧化镅和/或其它次锕系元素氧化物的粉末的方法 Active CN111032205B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1757829A FR3070278B1 (fr) 2017-08-23 2017-08-23 Procede de preparation d'une poudre comprenant de l'oxyde d'uranium uo2, eventuellement de l'oxyde de plutonium puo2 et eventuellement de l'oxyde d'americium amo2 et/ou un oxyde d'un autre actinide mineur
FR1757829 2017-08-23
PCT/FR2018/052072 WO2019038497A1 (fr) 2017-08-23 2018-08-17 PROCEDE DE PREPARATION D'UNE POUDRE COMPRENANT DE L'OXYDE D'URANIUM UO2, EVENTUELLEMENT DE L'OXYDE DE PLUTONIUM PuO2 ET EVENTUELLEMENT DE L'OXYDE D'AMERICIUM AmO2 ET/OU UN OXYDE D'UN AUTRE ACTINIDE MINEUR

Publications (2)

Publication Number Publication Date
CN111032205A true CN111032205A (zh) 2020-04-17
CN111032205B CN111032205B (zh) 2022-07-05

Family

ID=60182731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880054636.0A Active CN111032205B (zh) 2017-08-23 2018-08-17 制备含氧化铀、任选氧化钚和任选氧化镅和/或其它次锕系元素氧化物的粉末的方法

Country Status (6)

Country Link
JP (1) JP7258853B2 (zh)
CN (1) CN111032205B (zh)
FR (1) FR3070278B1 (zh)
GB (1) GB2579740B (zh)
RU (1) RU2770610C2 (zh)
WO (1) WO2019038497A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218092B (zh) * 2019-05-20 2022-03-18 中国核动力研究设计院 一种添加微量元素的UO2-ZrO2陶瓷材料及其制备方法
CN112892402A (zh) * 2021-01-25 2021-06-04 姚公付 一种化肥造粒刀具
FR3128957A1 (fr) * 2021-11-05 2023-05-12 Université De Limoges Procede de fabrication de pieces en ceramique et utilisation des pieces obtenues par ce procede
FR3131583B1 (fr) * 2021-12-30 2024-01-19 Commissariat Energie Atomique Procédé de préparation d’une poudre d’oxyde(s) d’actinide(s) à partir d’une solution sol-gel colloïdale

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1137597A1 (fr) * 1998-11-26 2001-10-04 Commissariat A L'energie Atomique Preparation par atomisation-sechage d'une poudre coulable de bioxyde d'uranium obtenu par conversion en voie seche de l'uf 6?
CN100999408A (zh) * 2006-12-15 2007-07-18 清华大学 一种制备uo2陶瓷燃料微球的方法
CN203139974U (zh) * 2013-03-12 2013-08-21 河北一然生物科技有限公司 一种制造深冷冻颗粒的设备
CN104446479A (zh) * 2014-11-06 2015-03-25 中国核动力研究设计院 一种制备陶瓷级二氧化铀球的方法
CN105924169A (zh) * 2016-04-28 2016-09-07 中国核动力研究设计院 一种以废旧uo2粉料为原料的高密度uo2芯块制备方法
CN106268503A (zh) * 2015-06-29 2017-01-04 南京邮电大学 一种液氮喷雾冷冻造粒真空干燥装置和工作方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3321560A (en) * 1964-06-30 1967-05-23 Atomic Energy Authority Uk Production of fuel for nuclear reactors
AT267007B (de) * 1965-07-08 1968-12-10 Oesterr Studien Atomenergie Verfahren zur Herstellung sphärischer Teilchen
FR2720645B1 (fr) * 1994-06-03 1996-08-02 Oreal Procédé d'obtention d'une matière première sous forme de granulés, matière première sous forme de granulés et son utilisation dans le domaine cosmétique, capillaire, vétérinaire ou pharmaceutique.
FR2807199B1 (fr) * 2000-04-04 2002-08-23 Franco Belge Combustibles Procede de fabrication de granules de materiau combustible nucleaire
JP2005134319A (ja) * 2003-10-31 2005-05-26 Japan Nuclear Cycle Development Inst States Of Projects Mox燃料ペレットの製造方法
JP2008008644A (ja) * 2006-06-27 2008-01-17 Japan Atomic Energy Agency ペレット製造用顆粒の造粒方法
JP2009235325A (ja) * 2008-03-28 2009-10-15 Konica Minolta Opto Inc 光学用樹脂材料の製造方法、光学用樹脂材料、及び光学素子
FR2949598B1 (fr) * 2009-09-02 2013-03-29 Commissariat Energie Atomique Procede de preparation d'un combustible nucleaire poreux a base d'au moins un actinide mineur
JP6037168B2 (ja) * 2012-03-23 2016-11-30 日立Geニュークリア・エナジー株式会社 使用済燃料の処理方法及び処理システム
FR3042987B1 (fr) * 2015-11-04 2017-12-15 Commissariat Energie Atomique Dispositif de granulation de poudres par atomisation cryogenique

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1137597A1 (fr) * 1998-11-26 2001-10-04 Commissariat A L'energie Atomique Preparation par atomisation-sechage d'une poudre coulable de bioxyde d'uranium obtenu par conversion en voie seche de l'uf 6?
CN100999408A (zh) * 2006-12-15 2007-07-18 清华大学 一种制备uo2陶瓷燃料微球的方法
CN203139974U (zh) * 2013-03-12 2013-08-21 河北一然生物科技有限公司 一种制造深冷冻颗粒的设备
CN104446479A (zh) * 2014-11-06 2015-03-25 中国核动力研究设计院 一种制备陶瓷级二氧化铀球的方法
CN106268503A (zh) * 2015-06-29 2017-01-04 南京邮电大学 一种液氮喷雾冷冻造粒真空干燥装置和工作方法
CN105924169A (zh) * 2016-04-28 2016-09-07 中国核动力研究设计院 一种以废旧uo2粉料为原料的高密度uo2芯块制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
戴遐明著: "《超微陶瓷粉体实用化处理技术》", 30 September 2009, 北京:国防工业出版社 *

Also Published As

Publication number Publication date
GB2579740A8 (en) 2020-08-05
WO2019038497A1 (fr) 2019-02-28
RU2020111125A (ru) 2021-09-24
GB2579740A (en) 2020-07-01
GB202002418D0 (en) 2020-04-08
RU2020111125A3 (zh) 2021-11-22
JP2020531386A (ja) 2020-11-05
RU2770610C2 (ru) 2022-04-19
FR3070278A1 (fr) 2019-03-01
JP7258853B2 (ja) 2023-04-17
CN111032205B (zh) 2022-07-05
FR3070278B1 (fr) 2020-01-24
GB2579740B (en) 2022-06-08

Similar Documents

Publication Publication Date Title
CN111032205B (zh) 制备含氧化铀、任选氧化钚和任选氧化镅和/或其它次锕系元素氧化物的粉末的方法
US8632705B2 (en) Method for preparing a porous nuclear fuel based on at least one minor actinide
CN108780667B (zh) 裂变产物吸气剂
CN103733265B (zh) 用于生产多孔核燃料的方法
US3263004A (en) Process of making a sintered, homogeneous dispersion of nuclear fuel and burnable poison
US9966156B2 (en) Process for manufacturing a pellet of at least one metal oxide
US3806565A (en) Method of preparing relatively low density oxide fuel for a nuclear reactor
KR100717924B1 (ko) 혼합산화물 핵연료 분말 및 혼합산화물 핵연료 소결체의제조 방법
JP2014529738A5 (zh)
US4231976A (en) Process for the production of ceramic plutonium-uranium nuclear fuel in the form of sintered pellets
La Lumia et al. Dense and homogeneous MOX fuel pellets manufactured using the freeze granulation route
Ganguly et al. Sol-Gel microsphere pelletization process for fabrication of high-density ThO2—2% UO2 fuel for advanced pressurized heavy water reactors
Schram et al. The fabrication and irradiation of plutonium-containing inert matrix fuels for the ‘Once Though Then Out’experiment
JP4075116B2 (ja) 核燃料粒子の製造方法及び核燃料ペレットの製造方法
US6783706B1 (en) Method for dry process recycling of mixed (U,Pu)O2 oxide nuclear fuel waste
Balakrishna et al. Uranium dioxide powder preparation, pressing, and sintering for optimum yield
Tiegs et al. Sphere-cal process: fabrication of fuel pellets from gel microspheres
PL219069B1 (pl) Sposób otrzymywania dwutlenku uranu o ziarnach sferycznych i nieregularnych
RU2682666C2 (ru) Способ изготовления мишеней для облучения, предназначенных для получения радиоактивных изотопов, и мишень для облучения
JP2008008644A (ja) ペレット製造用顆粒の造粒方法
CA1169643A (en) Method for producing mixed-oxide nuclear fuel pellets soluble in nitric acid
JPH08166482A (ja) 混合酸化物燃料の製造方法
US3116106A (en) Preparation of high-density thorium oxide spheres
Picart et al. The weak acid resin process: a dustless conversion route for the synthesis of americium bearing-blanket precursors
RU2672256C1 (ru) Таблетка для изготовления тепловыделяющего элемента ядерного реактора на быстрых нейтронах

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant