CN111019941A - 一种dna纳米材料及其制备方法和应用 - Google Patents

一种dna纳米材料及其制备方法和应用 Download PDF

Info

Publication number
CN111019941A
CN111019941A CN202010068347.5A CN202010068347A CN111019941A CN 111019941 A CN111019941 A CN 111019941A CN 202010068347 A CN202010068347 A CN 202010068347A CN 111019941 A CN111019941 A CN 111019941A
Authority
CN
China
Prior art keywords
dna
nano
concentration
nucleotide sequence
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010068347.5A
Other languages
English (en)
Other versions
CN111019941B (zh
Inventor
吴再生
陈畅
张书馨
李应福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202010068347.5A priority Critical patent/CN111019941B/zh
Publication of CN111019941A publication Critical patent/CN111019941A/zh
Application granted granted Critical
Publication of CN111019941B publication Critical patent/CN111019941B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Composite Materials (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提供了一种DNA纳米材料及其制备方法和应用,属于纳米材料技术领域。本发明在DNA折纸理论基础上设计了DNA纳米条纹带,该纳米条纹带由特殊结构的环模板经滚环反应扩增得到的滚环扩增反应产物自组装形成DNA纳米晶格,在DNA纳米晶格上修饰靶向核仁素的AS1411适配体形成DNA纳米材料DNA纳米条晶格带‑AS1411复合物;进一步将DNA纳米条晶格带‑AS1411复合物与纳米金球结合形成DNA纳米材料纳米金‑DNA纳米晶格带复合物。制备所得DNA纳米材料作为靶向药物载体在肿瘤诊疗中的广泛应用价值。

Description

一种DNA纳米材料及其制备方法和应用
技术领域
本发明属于纳米材料技术领域,具体涉及一种DNA纳米材料及其制备方法和应用。
背景技术
众所周知,在当今人类生命健康正面临着癌症等多种重大疑难疾病的威胁,传统意义上的抗癌药物存在着极大的潜在威胁。为了改善传统药物的性能,弥补传统抗癌药物的缺陷,发展适宜的药物递送载体成为当今生物技术与医药领域研究者的关注热点。
传统的药物输送载体如脂质体,高分子聚合物等特异性低,存在较大的非靶细胞毒性;无机纳米粒子则细胞摄取率低,胞内稳定性差;近年来,运用DNA组装而成纳米材料作为药物运送载体可以降低细胞组织毒性,降低药物输送途径的难题,并有望实现协同运输,然而,目前的DNA纳米结构仍然有结构设计复杂,载药量低等诸多缺陷。
基于自组装DNA纳米技术的DNA纳米结构在纳米载体领域表现出了巨大的前景。DNA折纸术是近年来飞速发展,被广泛应用于纳米材料组装的全新DNA自组装的策略,是DNA纳米技术和DNA自组装领域的跨越式的进展。与传统的DNA自组装技术不同的是,DNA折纸术利用一根长的DNA单链(称为手脚架链)与一系列短的DNA单链(称为订书钉链)间的碱基互补配对,使长的DNA单链发生折叠弯曲,最终形成特定结构。该技术能够精准构造出高度复杂的纳米图案和结构,在DNA纳米材料构建领域中具有广泛的潜在应用。为简化DNA折纸术以RCA(rolling circle amplification)产物的长的DNA单链做为手脚架链。
本发明在DNA折纸理论基础上设计了DNA纳米条纹带,该纳米条纹带由特殊结构的环模板经滚环反应扩增得到的RCA(rolling circle amplification)产物自组装形成,将纳米条纹带与纳米金球结合,成功构建出一种能高效载入抗癌药物阿霉素,且能通过AS1411适配体精确靶向MCF-7细胞的纳米级药物输送载体Au-R2A-DOX。
发明内容
本发明的目的在于提供一种DNA纳米材料及其制备方法和应用。
为实现上述目的,本发明采用如下技术方案:
一种介导合成的DNA纳米材料的环状模板的制备方法:将浓度为10 µM的成环链pL1 和pL2各 1µL,浓度为10 µM的封口模板T1和 T2各1µL,2 µL T4 DNA连接酶缓冲液加入到13 µL ddH2O中,充分混合后,将所得溶液在90℃退火5分钟,然后冷却至室温;随后,加入1 µL350 U / µL T4 DNA连接酶,并在16℃下孵育16小时,然后在65°C下加热10分钟使连接酶变性,制得环状模板。
上述成环链pL1 的核苷酸序列为:PL1:5’-AAACGCATGCAAAAAGATCTATAAA TAGCGAAAACTAGAAAAAAAGCATGCGAACCATAT-3’;成环链pL2的核苷酸序列为:PL2:5’-AAAACTTAGGAAAAATTCTAGTAAATAGCGAAAATAGATCAAAAACCTAAGTAAA CATAT-3’;封口模板T1的核苷酸序列为:T1 :5’-GATCTTTTTGCATGCGTTTATATGTTTACT-3’;封口模板T2的核苷酸序列为:T2:5’-AGAATTTTTCCTAAGTTTTATATGGTTCGC-3’。
上述环状模板的核苷酸序列为:5’-AAACGCATGCAAAAAGATCTATAAATAGCGAAAACTAGAAAAAAAGCATGCGAACCATATAAAACTTAGGAAAAATTCTAGTAAATAGCGAAAATAGATCAAAAACCTAAGTAAACATAT-3’
一种环状模板介导合成的DNA纳米材料DNA纳米条晶格带-AS1411复合物(RDL2-AS1411)的制备方法:将2μL浓度为15μM的滚环扩增(RCA)产物组成单元,2μL浓度为10μM的SS1,2μL浓度为10μM的SS1-AS1411核酸适配体,2μL浓度为10μM的SS2和2μL含125mM Mg2+的10×TAE缓冲液依次添加到12μLddH2O中并充分混合,然后将所得混合溶液在90℃下加热5分钟,然后冷却至室温制得DNA纳米材料RDL2-AS1411;
所述滚环扩增(RCA)产物的制备方法为:环状模板20ul,添加4 µL的10x phi29缓冲液,1 µL 10 mM的dNTP和0.5 µL10 U /μL的phi29聚合酶,添加ddH2O至总体积40μL,30℃温育30分钟;接着65℃下加热10分钟使phi29聚合酶失活;最后用苯酚/氯仿/异戊醇(25:24:1)萃取RCA产物,用乙醇沉淀并溶于1xTE缓冲液中;
制备所得滚环扩增(RCA)产物的核苷酸序列为:5’-ATATGTTTACTTAGGTTTTTGATCTATTTTCGCTATTTACTAGAATTTTTCCTAAGTTTTATATGGTTCGCATGCTTTTTTTCTAGTTTTCGCTATTTATAGATCTTTTTGCATGCGTTT-3’。
一种环状模板介导合成的纳米金-DNA纳米晶格带复合物(Au-R2A)DNA纳米材料的制备方法,包括以下步骤:
(1)纳米金接引物(Au-Primer):100ul浓度为10uM的修饰了巯基的引物序列与500uL纳米金均匀混合反应,得到纳米金接引物Au-Primer;
(2)纳米金滚环产物(Au-RP):将步骤(1)修饰了滚环引物的纳米金接引物与环状模板按摩尔比为1:100混合,然后取20ul混合物添加4µL的10x phi29缓冲液,1 µL浓度为10 mM的dNTP和0.5 µL10 U /μL的phi29聚合酶,添加ddH2O至40μL,30℃温育30分钟,接着65℃下加热10分钟使phi29聚合酶失活,得到的纳米金滚环产物Au-RP;
(3)纳米金-DNA纳米晶格带复合物(Au-R2A):120uL步骤(2)制备所得纳米金滚环产物Au-RP与20uL 浓度为10µM SS1-AS1411,20uL 浓度为10µM的SS2混合,90℃退火5min后缓慢降至室温得到纳米金-DNA纳米晶格带复合物(Au-R2A)纳米材料。
上述制备方法中所述SS1-AS1411核酸适配体的核苷酸序列为:5’-TAGCGTAGCGTAGCGTTTTTTGGTGGTGGTGGTTGTGGTGGTGGTGG-3’。;所述SS2的核苷酸序列为:5’-TATACTATACTATAC-3’。
上述制备方法中所述修饰了巯基的引物序列,其核苷酸序列为:5’-SH-AAAAAAAAAACCCCCCCCCCGATCTTTTTGCATGCGTTTATATGTTTACT-3’;
上述方法制备所得的纳米材料DNA纳米条晶格带-AS1411(RDL2-AS1411)及纳米金-DNA纳米晶格带复合物(Au-R2A)作为靶向药物载体的应用。
一种DNA 靶向药物的制备方法:40uL合成的DNA纳米材料DNA纳米条晶格带-AS1411(RDL2-AS1411)或纳米金-DNA纳米晶格带复合物(Au-R2A)加入到160uL浓度为2mM的阿霉素( Doxorubicin)溶液中,37℃孵育24小时离心得到DNA 靶向药物RDL2-AS1411-DOX,Au-R2A-DOX。
上述一种DNA 靶向药物在肿瘤诊疗中的应用。
本发明的优点在于:
本发明提供了一种DNA纳米材料及其制备方法和应用。本发明DNA折纸理论基础上,以环状模板经过滚环扩增(RCA)反应后生成滚环扩增产物的组成单元;滚环扩增产物的组成单元能自组装折叠形成DNA纳米晶格,两条短侧边链SS1 和SS2与DNA纳米晶格外侧的未参与碱基互补配对的单链DNA互补配对形成DNA纳米晶格带RDL2,(如图1所示)。DNA纳米晶格带RDL2携带能够靶向核仁素的AS1411适配体,形成纳米材料RDL2-AS1411。进一步的先将修饰了巯基的引物修饰在Au上,然后与环状模板经过滚环扩增(RCA)反应直接在纳米金的表面形成滚环扩增产物的组成单元,之后经自组装折叠,并增两条短侧边链SS1 和SS2,以及能够靶向核仁素的AS1411适配体形成纳米材料Au-R2A。纳米材料RDL2-AS1411和Au-R2A作为纳米级药物运输载体能够携带药物靶向运输,在医药领域具有广泛的应用价值。
附图说明
图1DNA纳米材料RDL2的结构示意图。
图2DNA纳米材料负载阿霉素结果图。
图3DNA靶向药物递送药物的细胞成像图。图中第一行是细胞核染料hoechst通道图(405nm);第二行是DOX通道图(488nm);第三行是第一,二行的叠加overlay。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是下述的实例仅仅是本发明其中的例子而已,并不代表本发明所限定的权利保护范围,本发明的权利保护范围以权利要求书为准。
实施例1
一种介导合成的DNA纳米材料的环状模板的制备方法:将浓度为10 µM的成环链pL1 和pL2各 1µL,浓度为10 µM的封口模板T1和 T2各1µL,2 µL T4 DNA连接酶缓冲液加入到13 µL ddH2O中,充分混合后,将所得溶液在90℃退火5分钟,然后冷却至室温;随后,加入1 µL350 U / µL T4 DNA连接酶,并在16℃下孵育16小时,然后在65°C下加热10分钟使连接酶变性,制得环状模板。
上述成环链pL1 的核苷酸序列为:PL1:5’-AAACGCATGCAAAAAGATCTATAAATAGCGAAAACTAGAAAAAAAGCATGCGAACCATAT-3’;成环链PL2的核苷酸序列为:PL2:5’-AAAACTTAGGAAAAATTCTAGTAAATAGCGAAAATAGATCAAAAACCTAAGTAAA CATAT-3’;封口模板T1的核苷酸序列为:T1 :5’-GATCTTTTTGCATGCGTTTATATGTTTACT-3’;封口模板T2的核苷酸序列为:T2:5’-AGAATTTTTCCTAAGTTTTATATGGTTCGC-3’。
上述环状模板的核苷酸序列为:5’-AAACGCATGCAAAAAGATCTATAAATAGCGAAAACTAGAAAAAAAGCATGCGAACCATATAAAACTTAGGAAAAATTCTAGTAAATAGCGAAAATAGATCAAAAACCTAAGTAAACATAT-3’。
实施例2
一种环状模板介导合成的DNA纳米条晶格带-AS1411复合物(RDL2-AS1411)DNA纳米材料的制备方法:将2μL浓度为15μM的滚环扩增(RCA)产物,2μL浓度为10μM的SS1,2μL浓度为10μM的SS1-AS1411核酸适配体,2μL浓度为10μM的SS2和2μL含125mM Mg2+的10×TAE缓冲液依次添加到12μLddH2O中并充分混合,然后将所得混合溶液在90℃下加热5分钟,然后冷却至室温制得DNA纳米材料RDL2-AS1411。
上述滚环扩增(RCA)产物的制备方法为:实施例1制备的环状模板20ul,添加4 µL的10x phi29缓冲液,1 µL 10 mM的dNTP和0.5 µL10 U /μL的phi29聚合酶,添加ddH2O至总体积40μL,30℃温育30分钟;接着65℃下加热10分钟使phi29聚合酶失活;最后用苯酚/氯仿/异戊醇(25:24:1)萃取RCA产物,用乙醇沉淀并溶于1xTE缓冲液中。
制备所得滚环扩增(RCA)产物的核苷酸序列为:5’-ATATGTTTACTTAGGTTTTTGATCTATTTTCGCTATTTACTAGAATTTTTCCTAAGTTTTATATGGTTCGCATGCTTTTTTTCTAGTTTTCGCTATTTATAGATCTTTTTGCATGCGTTT-3’。
上述制备方法中所述SS1-AS1411核酸适配体的核苷酸序列为:5’-TAGCGTAGCGTAGCGTTTTTTGGTGGTGGTGGTTGTGGTGGTGGTGG-3’。;所述SS2的核苷酸序列为:5’-TATACTATACTATAC-3’。
实施例3
一种环状模板介导合成的纳米金-DNA纳米晶格带复合物(Au-R2A)DNA纳米材料的制备方法,包括以下步骤:
(1)纳米金接引物(Au-Primer):100ul浓度为10uM的修饰了巯基的引物序列与500uL纳米金均匀混合反应,得到纳米金接引物Au-Primer;
(2)纳米金滚环产物(Au-RP):将步骤(1)修饰了滚环引物的纳米金接引物与实施例1制备的环状模板按摩尔比为1:100混合,然后取20ul混合物添加4µL的10x phi29缓冲液,1 µL浓度为10 mM的dNTP和0.5 µL10 U /μL的phi29聚合酶,添加ddH2O至40μL,30℃温育30分钟,接着65℃下加热10分钟使phi29聚合酶失活,得到的纳米金滚环产物Au-RP;
(3)纳米金-DNA纳米晶格带复合物(Au-R2A):120uL步骤(2)制备所得纳米金滚环产物Au-RP与20uL 浓度为10µM SS1-AS1411,20uL 浓度为10µM的SS2混合,90℃退火5min后缓慢降至室温得到纳米金-DNA纳米晶格带复合物(Au-R2A)纳米材料。
上述步骤(1)中所述修饰了巯基的引物序列,其核苷酸序列为:5’-SH-AAAAAAAAAACCCCCCCCCCGATCTTTTTGCATGCGTTTATATGTTTACT-3’。
上述步骤(3)中,所述所述SS1-AS1411核酸适配体的核苷酸序列为:5’-TAGCGTAGCGTAGCGTTTTTTGGTGGTGGTGGTTGTGGTGGTGGTGG-3’。
实施例4 药物负载实验
将160 µL阿霉素(DOX)溶液(2 mM)分别在40 µL实施例2制备的DNA纳米条晶格带-AS1411(RDL2-AS1411)纳米材料和实施例3制备的纳米金-DNA纳米晶格带复合物(Au-R2A)纳米材料中37 ℃孵育24小时,之后将样品在25°C下离心5分钟(6,000 g),并将深红色沉淀溶于200 µL PBS中,制备DNA 靶向药物RDL2-AS1411-DOX和Au-R2A-DOX(图2)。
同时,为验证靶向药物的靶向性,设置对照实验:
对照纳米材料为:未修饰AS1411适配体的DNA纳米条晶格带RDL2和纳米金-DNA纳米晶格带复合物Au-RDL2。
DNA纳米条晶格带RDL2的制备方法为:将实施例2DNA纳米条晶格带-AS1411(RDL2-AS1411)纳米材料的制备方法中的SS1-AS1411核酸适配体替换为SS1短核苷酸链,SS1的核苷酸序列为:5’-TAGCGTAGCGTAGCG-3’;其余步骤同实施例2。
纳米金-DNA纳米晶格带复合物Au-RDL2的制备方法为:将实施例3 DNA纳米条晶格带-AS1411(RDL2-AS1411)纳米材料的制备方法中的SS1-AS1411核酸适配体替换为SS1短核苷酸链,SS1的核苷酸序列为:5’-TAGCGTAGCGTAGCG-3’;其余步骤同实施例3。
未修饰AS1411适配体的DNA纳米条晶格带RDL2和纳米金-DNA纳米晶格带复合物Au-RDL2负载药物:将160 µL阿霉素(DOX)溶液(2 mM)分别在40 µL未修饰AS1411适配体的DNA纳米条晶格带RDL2和纳米金-DNA纳米晶格带复合物Au-RDL2材料中37 ℃孵育24小时,之后将样品在25°C下离心5分钟(6,000 g),并将深红色沉淀溶于200 µL PBS中,制备DNA靶向药物RDL2-DOX和Au-RDL2-DOX。
实施例5 细胞内原位检测
MCF-7细胞先在24孔板内爬片(培养基成分为10%(v/v)胎牛血清(FBS),100U/mL青霉素(penicillin),100μg/mL链霉素(streptomycin),在37℃,5%的CO2环境下培养),培养24小时后加入实施例4制备的药物(DOX浓度为40µM)(RDL2-AS1411-DOX、RDL2-DOX、Au-R2A-DOX、Au-RDL2-DOX),然后在无胎牛血清与双抗(100U/mL青霉素,100μg/mL链霉素)的DMEM培养基中37℃,5%的CO2环境下培养2小时,之后除去培养基,PBS清洗3次,4%多聚甲醛固定15分钟用PBS清洗3次,Hochest荧光染料染核10分钟,PBS清洗3次,封片后拍摄共聚焦。结果见图3。从图3可以看出,Au-R2A-DOX组在MCF-7细胞中观测到大量红色DOX荧光,RDL2-AS1411-DOX组的荧光亮度次之,RDL2-DOX和Au-RDL2-DOX组荧光亮度很低。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
SEQUENCE LISTING
<110> 福州大学
<120> 一种DNA纳米材料及其制备方法和应用
<130> 10
<160> 10
<170> PatentIn version 3.3
<210> 1
<211> 60
<212> DNA
<213> PL1
<400> 1
aaacgcatgc aaaaagatct ataaatagcg aaaactagaa aaaaagcatg cgaaccatat 60
<210> 2
<211> 60
<212> DNA
<213> PL2
<400> 2
aaaacttagg aaaaattcta gtaaatagcg aaaatagatc aaaaacctaa gtaaacatat 60
<210> 3
<211> 30
<212> DNA
<213> T1
<400> 3
gatctttttg catgcgttta tatgtttact 30
<210> 4
<211> 30
<212> DNA
<213> T2
<400> 4
agaatttttc ctaagtttta tatggttcgc 30
<210> 5
<211> 120
<212> DNA
<213> 环状模板
<400> 5
aaacgcatgc aaaaagatct ataaatagcg aaaactagaa aaaaagcatg cgaaccatat 60
aaaacttagg aaaaattcta gtaaatagcg aaaatagatc aaaaacctaa gtaaacatat 120
<210> 6
<211> 120
<212> DNA
<213> 滚环扩增产物
<400> 6
atatgtttac ttaggttttt gatctatttt cgctatttac tagaattttt cctaagtttt 60
atatggttcg catgcttttt ttctagtttt cgctatttat agatcttttt gcatgcgttt 120
<210> 7
<211> 52
<212> DNA
<213> 修饰了巯基的引物序列
<400> 7
shaaaaaaaa aacccccccc ccgatctttt tgcatgcgtt tatatgttta ct 52
<210> 8
<211> 47
<212> DNA
<213> SS1-AS1411核酸适配体
<400> 8
tagcgtagcg tagcgttttt tggtggtggt ggttgtggtg gtggtgg 47
<210> 9
<211> 15
<212> DNA
<213> SS2
<400> 9
tatactatac tatac 15
<210> 10
<211> 15
<212> DNA
<213> SS1
<400> 10
tagcgtagcg tagcg 15

Claims (10)

1.一种介导合成的DNA纳米材料的环状模板的制备方法,其特征在于:将浓度为10 µM的成环链pL1 和pL2各 1µL,浓度为10 µM的封口模板T1和 T2各1µL,2 µL T4 DNA连接酶缓冲液加入到13 µL ddH2O中,充分混合后,将所得溶液在90℃退火5分钟,然后冷却至室温;随后,加入1 µL 350 U / µL T4 DNA连接酶,并在16℃下孵育16小时,然后在65°C下加热10分钟使连接酶变性,制得环状模板。
2.根据权利要求1所述的一种介导合成的DNA纳米材料的环状模板的制备方法,其特征在于:所述成环链pL1 的核苷酸序列为:PL1:5’-AAACGCATGCAAAAAGATCTATAAATAGCGAAAACTAGAAAAAAAGCATGCGAACCATAT-3’;成环链pL2的核苷酸序列为:PL2:5’-AAAACTTAGGAAAAATTCTAGTAAATAGCGAAAATAGATCAAAAACCTAAGTAAACATAT-3’;封口模板T1的核苷酸序列为:T1 :5’-GATCTTTTTGCATGCGTTTATATGTTTACT-3’;封口模板T2的核苷酸序列为:T2:5’-AGAATTTTTCCTAAGTTTTATATGGTTCGC-3’ 。
3.一种如权利要求1所述方法制备所得环状模板,其特征在于:所制得环状模板的核苷酸序列为:5’-AAACGCATGCAAAAAGATCTATAAATAGCGAAAACTAGAAAAAAAGCATGCGAACCATATAAAACTTAGGAAAAATTCTAGTAAATAGCGAAAATAGATCAAAAACCTAAGTAAACATAT-3’。
4.一种如权利要求3所述的环状模板介导合成DNA纳米条晶格带-AS1411复合物RDL2-AS1411 DNA纳米材料的制备方法,其特征在于:将2μL浓度为15μM的滚环扩增产物,2μL浓度为10μM的SS1,2μL浓度为10μM的SS1-AS1411核酸适配体,2μL浓度为10μM的SS2和2μL含125mM Mg2+的10×TAE缓冲液依次添加到12μLddH2O中并充分混合,然后将所得混合溶液在90℃下加热5分钟,然后冷却至室温制得DNA纳米材料RDL2-AS1411;
所述滚环扩增产物的制备方法为:环状模板20ul,添加4 µL的10x phi29缓冲液,1 µL10 mM的dNTP和0.5 µL10 U/μL的phi29聚合酶,添加ddH2O至总体积40μL,30℃温育30分钟;接着65℃下加热10分钟使phi29聚合酶失活;最后用体积比为25:24:1的苯酚/氯仿/异戊醇萃取滚环扩增产物,用乙醇沉淀并溶于1xTE缓冲液中;
制备所得滚环扩增产物的核苷酸序列为:5’-ATATGTTTACTTAGGTTTTTGATCTATTTTCGCTATTTACTAGAATTTTTCCTAAGTTTTATATGGTTCGCATGCTTTTTTTCTAGTTTTCGCTATTTATAGATCTTTTTGCATGCGTTT-3’。
5.一种如权利要求3所述的环状模板介导合成纳米金-DNA纳米晶格带复合物Au-R2ADNA纳米材料的制备方法,其特征在于,包括以下步骤:
(1)纳米金接引物Au-Primer的制备:100ul浓度为10uM的修饰了巯基的引物序列与500uL纳米金均匀混合,得到纳米金接引物Au-Primer;
(2)纳米金滚环产物Au-RP的制备:将步骤(1)修饰了滚环引物的纳米金接引物与环状模板按摩尔比为1:100混合,然后取20ul混合物添加4µL的10x phi29缓冲液,1 µL浓度为10mM的dNTP和0.5 µL10 U/μL的phi29聚合酶,添加ddH2O至40μL,30℃温育30分钟,接着65℃下加热10分钟使phi29聚合酶失活,得到的纳米金滚环产物Au-RP;
(3)纳米金DNA纳米条带复合物Au-R2A的制备:120uL步骤(2)制备所得纳米金滚环产物Au-RP与20uL 浓度为10µM SS1-AS1411,20uL 浓度为10µM的SS2混合,90℃退火5min后缓慢降至室温得到纳米金-DNA纳米晶格带复合物Au-R2A纳米材料。
6.根据权利要求5所述的制备方法,其特征在于:步骤(1)中所述修饰了巯基的引物序列,其核苷酸序列为:5’-SH-AAAAAAAAAACCCCCCCCCCGATCTTTTTGCATGCGTTTATATGTTTACT-3’。
7.根据权利要求4或5所述的制备方法,其特征在于:所述SS1-AS1411核酸适配体的核苷酸序列为:5’-TAGCGTAGCGTAGCGTTTTTTGGTGGTGGTGGTTGTGGTGGTGGTGG-3’,所述SS2的核苷酸序列为:5’-TATACTATACTATAC-3’。
8.如权利要求4或5所述方法制备所得的DNA纳米材料DNA纳米条晶格带-AS1411复合物RDL2-AS1411或纳米金-DNA纳米晶格带复合物Au-R2A作为靶向药物载体的应用。
9.一种DNA 靶向药物的制备方法,其特征在于:40uL权利要求4制备所得DNA纳米材料DNA纳米条晶格带-AS1411复合物RDL2-AS1411,或实施例5制备所得纳米金-DNA纳米晶格带复合物Au-R2A加入到160uL浓度为2mM的阿霉素溶液中,37℃孵育24小时离心得到DNA 靶向药物RDL2-AS1411-DOX或Au-R2A-DOX。
10.如权利要求9所述的一种DNA 靶向药物在肿瘤诊疗中的应用。
CN202010068347.5A 2020-01-21 2020-01-21 一种dna纳米材料及其制备方法和应用 Active CN111019941B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010068347.5A CN111019941B (zh) 2020-01-21 2020-01-21 一种dna纳米材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010068347.5A CN111019941B (zh) 2020-01-21 2020-01-21 一种dna纳米材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111019941A true CN111019941A (zh) 2020-04-17
CN111019941B CN111019941B (zh) 2023-09-08

Family

ID=70203041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010068347.5A Active CN111019941B (zh) 2020-01-21 2020-01-21 一种dna纳米材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111019941B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113201532A (zh) * 2021-04-30 2021-08-03 南京邮电大学 Dna折纸框架脂质体及其制备方法
CN114053425A (zh) * 2021-11-11 2022-02-18 福州大学 一种具有癌细胞及线粒体双靶向性的核酸纳米器件
US11513076B2 (en) 2016-06-15 2022-11-29 Ludwig-Maximilians-Universität München Single molecule detection or quantification using DNA nanotechnology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586450A (zh) * 2012-03-06 2012-07-18 中国科学院上海微系统与信息技术研究所 基于滚环扩增比色检测靶核酸或蛋白的方法
CN104388563A (zh) * 2014-11-19 2015-03-04 上海纳米技术及应用国家工程研究中心有限公司 纳米粒子表面用dna四面体为支架并引滚环扩增反应的方法
US20180105852A1 (en) * 2016-10-13 2018-04-19 Korea Institute Of Science And Technology Method of packing polynucleotides
CN109675049A (zh) * 2019-02-11 2019-04-26 青岛大学 一种pH诱导的药物缓释DNA纳米结构及其制备方法与应用
CN110551725A (zh) * 2018-06-04 2019-12-10 国家纳米科学中心 一种抗凝血的dna纳米复合结构及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586450A (zh) * 2012-03-06 2012-07-18 中国科学院上海微系统与信息技术研究所 基于滚环扩增比色检测靶核酸或蛋白的方法
CN104388563A (zh) * 2014-11-19 2015-03-04 上海纳米技术及应用国家工程研究中心有限公司 纳米粒子表面用dna四面体为支架并引滚环扩增反应的方法
US20180105852A1 (en) * 2016-10-13 2018-04-19 Korea Institute Of Science And Technology Method of packing polynucleotides
CN110551725A (zh) * 2018-06-04 2019-12-10 国家纳米科学中心 一种抗凝血的dna纳米复合结构及其制备方法和应用
CN109675049A (zh) * 2019-02-11 2019-04-26 青岛大学 一种pH诱导的药物缓释DNA纳米结构及其制备方法与应用

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
JUAN YAN等: "Growth and origami folding of DNA on nanoparticles for high-efficiency molecular transport in cellular imaging and drug delivery", ANGEW CHEM INT ED ENGL, vol. 54, no. 8, pages 2431 - 2435, XP055753697, DOI: 10.1002/anie.201408247 *
LINLIN SONG等: "DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance", NANOSCALE, vol. 9, no. 23, pages 7750 - 7754 *
XIANGYUAN OUYANG等: "Rolling circle amplification-based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs", SMALL, vol. 9, no. 18, pages 3082 - 3087, XP055712524, DOI: 10.1002/smll.201300458 *
YI-SYUN SHIAO等: "Aptamer-functionalized gold nanoparticles as photoresponsive nanoplatform for co-drug delivery", 《APPLIED MATERIALS&INTERFACES》, vol. 6, no. 24, pages 21832 - 21841 *
YOON YOUNGKANGA等: "Implication of multivalent aptamers in DNA and DNA–RNA hybrid structures for efficient drug delivery in vitro and in vivo", 《JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY》, vol. 60, pages 250 - 258 *
倪倩倩: "基于原位滚环复制方法构建的核酸—聚合物自组装纳米颗粒用于肿瘤基因治疗研究", 《中国博士学位论文全文数据库 医药卫生科技辑》, no. 2018, pages 072 - 8 *
岳东芳等: "靶向乳腺癌的核酸适配体应用研究进展", 《大连医科大学学报》, no. 02, pages 181 - 192 *
张鹏伟: "基于脱氧核糖核酸的纳米靶向药物递送载体的制备与应用", 《中国优秀硕士学位论文全文数据库 工程科技I辑》, no. 2018, pages 016 - 139 *
彭程等: "可控释放纳米载体在癌症治疗中的研究进展", 激光生物学报, vol. 28, no. 6, pages 496 - 503 *
李昀泽: "基于滚环扩增的DNA大分子诱导金纳米粒子的可控自组装", 《中国优秀硕士学位论文全文数据库 工程科技I辑》, no. 2019, pages 1 - 2 *
梅蕾: "DNA自组装纳米花的设计制备与载药及成像应用研究", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》, no. 2017, pages 072 - 106 *
白华荣等: "核酸适体-纳米材料复合物用于癌症的诊断与靶向治疗研究进展", 《物理化学学报》, no. 04, pages 348 - 360 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11513076B2 (en) 2016-06-15 2022-11-29 Ludwig-Maximilians-Universität München Single molecule detection or quantification using DNA nanotechnology
CN113201532A (zh) * 2021-04-30 2021-08-03 南京邮电大学 Dna折纸框架脂质体及其制备方法
CN113201532B (zh) * 2021-04-30 2023-10-20 南京邮电大学 Dna折纸框架脂质体及其制备方法
CN114053425A (zh) * 2021-11-11 2022-02-18 福州大学 一种具有癌细胞及线粒体双靶向性的核酸纳米器件
CN114053425B (zh) * 2021-11-11 2023-03-24 福州大学 一种具有癌细胞及线粒体双靶向性的核酸纳米器件

Also Published As

Publication number Publication date
CN111019941B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
CN111019941A (zh) 一种dna纳米材料及其制备方法和应用
Mahmoudpour et al. Aptamer functionalized nanomaterials for biomedical applications: Recent advances and new horizons
Krissanaprasit et al. Self-assembling nucleic acid nanostructures functionalized with aptamers
Liu et al. Organic–inorganic nanoflowers: from design strategy to biomedical applications
Gao et al. Self-protected DNAzyme walker with a circular bulging DNA shield for amplified imaging of miRNAs in living cells and mice
Xiao et al. Supramolecular vesicles based on pillar [n] arenes: design, construction, and applications
Guo et al. Diagnosis–Therapy integrative systems based on magnetic RNA nanoflowers for Co-drug delivery and targeted therapy
Li et al. Aptamer-tagged green-and yellow-emitting fluorescent silver nanoclusters for specific tumor cell imaging
KR101839057B1 (ko) 핵산 나노구조체의 대량생산방법 및 이의 약물전달체로서의 활용
Yang et al. DNA-templated quantum dots and their applications in biosensors, bioimaging, and therapy
CN110478322B (zh) 一种核酸药物复合物及其制备方法和应用
CN106620725B (zh) 一种集光学和光声于一体的双模态分子影像探针及其制备方法和应用
He et al. Recent progress in live cell mRNA/microRNA imaging probes based on smart and versatile nanomaterials
Xu et al. Construction of rolling circle amplification-based DNA nanostructures for biomedical applications
Li et al. Construction of rolling circle amplification products-based pure nucleic acid nanostructures for biomedical applications
CN101806795A (zh) 一种肿瘤靶向性的功能化量子点及其制备方法
Ebrahimi et al. DNA nanotechnology and bioassay development
Ma et al. In situ hand-in-hand DNA tile assembly: a pH-driven and aptamer-targeted DNA nanostructure for TK1 mRNA visualization and synergetic killing of cancer cells
Wang et al. DNA dendrimer-based directed 3D walking nanomachine for the sensitive detection and intracellular imaging of miRNA
Kong et al. DNA nanostructure-based fluorescent probes for cellular sensing
Sun et al. Integration of Manganese Dioxide‐Based Nanomaterials for Biomedical Applications
CN108310391B (zh) 一种核酸蛋白纳米复合物及其制备方法和应用
Lv et al. Hybridization chain reaction-based DNA nanomaterials for biosensing, bioimaging and therapeutics
Hu et al. DNA‐Based Architectures for in situ Target Biomolecule Analysis in Confined Nano‐space
CN112941072A (zh) 一种核酸自组装结构及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant