CN111017863A - 一种硅基网状石墨烯mems传感器及其制备方法 - Google Patents

一种硅基网状石墨烯mems传感器及其制备方法 Download PDF

Info

Publication number
CN111017863A
CN111017863A CN201911265551.XA CN201911265551A CN111017863A CN 111017863 A CN111017863 A CN 111017863A CN 201911265551 A CN201911265551 A CN 201911265551A CN 111017863 A CN111017863 A CN 111017863A
Authority
CN
China
Prior art keywords
graphene
reticular
silicon
graphene film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911265551.XA
Other languages
English (en)
Other versions
CN111017863B (zh
Inventor
秦亚飞
王冬
杨友朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201911265551.XA priority Critical patent/CN111017863B/zh
Publication of CN111017863A publication Critical patent/CN111017863A/zh
Application granted granted Critical
Publication of CN111017863B publication Critical patent/CN111017863B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0067Mechanical properties
    • B81B3/0072For controlling internal stress or strain in moving or flexible elements, e.g. stress compensating layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0009Structural features, others than packages, for protecting a device against environmental influences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00642Manufacture or treatment of devices or systems in or on a substrate for improving the physical properties of a device
    • B81C1/0065Mechanical properties
    • B81C1/00666Treatments for controlling internal stress or strain in MEMS structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • G01L1/2293Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges of the semi-conductor type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/04Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种硅基网状石墨烯MEMS传感器及其制备方法,本发明采用石墨烯作为敏感材料,选择石墨烯材料并采用成熟的MEMS工艺研制具有高灵敏度、宽频带和响应速度快的传感器力学敏感单元,该敏感芯片尺寸小、质量轻、集成度高和便于安装;既解决了传感器灵敏度和刚度之间的矛盾,又满足了应力直接测量的需求,同时符合兼容性和互换性要求;同时以硅作为基底,采用微纳制造与集成封装技术研制了硅基网状石墨烯MEMS传感器芯片,能极大地提高传感器的灵敏系数,实现了更加直接和准确测量应力应变的目的。

Description

一种硅基网状石墨烯MEMS传感器及其制备方法
技术领域
本发明涉及一种硅基网状石墨烯MEMS传感器及其制备方法,属于MEMS传感器领域。
背景技术
石墨烯作为一种由单层碳原子以SP2杂化方式形成的蜂窝状二维晶体材料,具有优异的电学、热学和机械性能,突出在比表面积大、电导率高等优点。在太阳能电池、可触摸屏幕、可穿戴设备甚至工业机器人等方面前景大,因此,被期待可用来发展出导电速度更快、更薄的新一代电子元件。
MEMS传感器是采用微机械加工技术制造的新型传感器,是 MEMS器件的一个重要分支。随着MEMS技术产业的日益成熟,MEMS传感器种类来越多,性能也越来越强大,产品已广泛应用于汽车、医疗、军事等领域。
现有的制备出的石墨烯应力传感器,采用氧化还原石墨烯法,先将石墨烯分散在溶液中,再涂于PDMS柔性基底,然后采用激光技术对氧化石墨烯进一步还原,PDMS提供支撑与锁住石墨烯碎片的作用。由于石墨烯薄膜是由大量石墨烯碎片堆砌而成,并不能广泛应用。
发明内容
本发明提供了一种硅基网状石墨烯MEMS传感器及其制备方法,采用石墨烯作为敏感材料,以硅基材料作为基底,采用微纳制造与集成封装技术研制了硅基网状石墨烯MEMS传感器芯片。
本发明的技术方案是:一种硅基网状石墨烯MEMS传感器,包括Si基板1、SiC薄膜层6、网状石墨烯薄膜2、PDMS保护层5、金属电极3以及金属引线4;
Si基板1的上表面为SiC薄膜层6,SiC薄膜层6的上表面为网状石墨烯薄膜2及位于网状石墨烯薄膜2两侧的金属电极3,网状石墨烯薄膜2的上表面为PDMS保护层5,通过金属电极3引出金属引线4。
一种硅基网状石墨烯MEMS传感器的制备方法,包括如下步骤:
步骤1、在Si基底1上进行热氧化工艺,生长出厚度为100nm~300nm的SiC薄膜层6,作为介质层,用于制作石墨烯薄膜的掩膜层;
步骤2、以SiC薄膜层6为衬底,首先利用氢气在1600~1800℃的高温下对衬底表面进行平整化处理;然后,在真空的环境下,将SiC薄膜层6表面加热到1400℃以上,使衬底表面的Si、C键发生断裂,Si原子会先于C原子升华而从表面脱附,而表面富集C原子发生重构从而形成SiC为衬底的石墨烯薄膜样品;
步骤3、将石墨烯薄膜样品固定,利用匀胶机在石墨烯薄膜上旋涂光刻胶;
步骤4、将矩形形状的金属掩膜版置于石墨烯薄膜样品两侧,且两者对齐,使用光刻机光刻并溅射获得金属电极3;
步骤5、将带有网状图案的金属掩膜版置于石墨烯薄膜样品上表面,且两者对齐,再次使用光刻机光刻获得网状石墨烯薄膜样品;接着采用汞灯曝光网状石墨烯薄膜样品;然后,使用NICP刻蚀机用氧等离子进行刻蚀网状石墨烯薄膜样品,从而获得网状石墨烯薄膜2;最后,将丙酮涂在网状石墨烯薄膜2表面,溶解残留的光刻胶,待光刻胶完全溶解后,取出,晾干;
步骤6、将获得的网状石墨烯薄膜2暴露在空气中,在网状石墨烯薄膜2表面涂抹常温下液体PDMS,形成PDMS保护层5,真空除气泡,120℃加热固化;最终获得硅基网状石墨烯MEMS传感器。
所述金属掩膜版为铬金属掩膜版。
本发明的有益效果是:本发明采用石墨烯作为敏感材料,选择石墨烯材料并采用成熟的MEMS工艺研制具有高灵敏度、宽频带和响应速度快的传感器力学敏感单元,该敏感芯片尺寸小、质量轻、集成度高和便于安装;既解决了传感器灵敏度和刚度之间的矛盾,又满足了应力直接测量的需求,同时符合兼容性和互换性要求;同时以硅作为基底,采用微纳制造与集成封装技术研制了硅基网状石墨烯MEMS传感器芯片,能极大地提高传感器的灵敏系数,实现了更加直接和准确测量应力应变的目的。
附图说明
图1为本发明的平面结构示意图;
图2为本发明的整体结构示意图;
图3为本发明的剖视图;
图4为石墨烯条带45°角拉伸图;
图5为石墨烯条带0°角拉伸图;
图中各标号为:1-Si基板,2-网状石墨烯薄膜,3-金属电极,4-金属引线,5-PDMS保护层,6-SiC薄膜层。
具体实施方式
实施例1:如图1-5所示,一种硅基网状石墨烯MEMS传感器,包括Si基板1、SiC薄膜层6、网状石墨烯薄膜2、PDMS保护层5、金属电极3以及金属引线4;
Si基板1的上表面为SiC薄膜层6,SiC薄膜层6的上表面为网状石墨烯薄膜2及位于网状石墨烯薄膜2两侧的金属电极3,网状石墨烯薄膜2的上表面为PDMS保护层5,通过金属电极3引出金属引线4。
一种硅基网状石墨烯MEMS传感器的制备方法,包括如下步骤:
步骤1、在Si基底1上进行热氧化工艺,生长出厚度为100nm~300nm的SiC薄膜层6,作为介质层,用于制作石墨烯薄膜的掩膜层;
步骤2、以SiC薄膜层6为衬底,首先利用氢气在1600~1800℃的高温下对衬底表面进行平整化处理,使之形成具有原子级平整度的台阶阵列形貌的表面;然后,在真空的环境下,将SiC薄膜层6表面加热到1400℃以上,使衬底表面的Si、C键发生断裂,Si原子会先于C原子升华而从表面脱附,而表面富集C原子发生重构从而形成SiC为衬底的石墨烯薄膜样品;
步骤3、将石墨烯薄膜样品固定,利用匀胶机在石墨烯薄膜上旋涂光刻胶;
步骤4、将矩形形状的金属掩膜版置于石墨烯薄膜样品两侧,且两者对齐,使用光刻机光刻并溅射获得铜质金属电极3;
步骤5、将带有网状图案的金属掩膜版置于石墨烯薄膜样品上表面,且两者对齐,再次使用光刻机光刻获得网状石墨烯薄膜样品;接着采用汞灯曝光网状石墨烯薄膜样品;然后,使用NICP刻蚀机用氧等离子进行刻蚀网状石墨烯薄膜样品,从而获得网状石墨烯薄膜2;最后,将丙酮涂在网状石墨烯薄膜2表面,溶解残留的光刻胶,待光刻胶完全溶解后,取出,晾干;
步骤6、将获得的网状石墨烯薄膜2暴露在空气中,在网状石墨烯薄膜2表面涂抹常温下液体PDMS,形成PDMS保护层5,真空除气泡,120℃加热固化;最终获得硅基网状石墨烯MEMS传感器。
进一步地,可以设置所述金属掩膜版为铬金属掩膜版。
本发明的工作原理为:
当传感器受到外界力作用时,所述网状石墨烯薄膜产生拉伸形变,网状石墨烯薄膜中的矩形石墨烯条带交合处即薄弱段处会产生裂纹,使得网状石墨烯薄膜中电阻值发生变化,导致回路电流发生改变,从而产生电流模拟信号,控制电路模块通过对接收到的模拟信号进行预处理,分离处于不同频段的信号,抑制噪音信号,保留有用的模拟信号,数模转换器接着将传感器接口电路预处理过的模拟信号转化成适合计算机处理的数字信号,并输入到计算机中,进而计算机可以实时显示工作状态中力的具体变化情况。当硅基网状石墨烯MEMS传感器受力拉伸时,不同的方向拉伸会产生不同的敏感系数,如图4所示,定义拉伸方向平行于石墨烯条带为45°拉伸,如图5所示,拉伸方向倾斜于石墨烯条带0°时为0°拉伸。在铣削等机床加工测量时,将传感器通过刀柄与机床主轴连接,保证传感器与机床主轴的同步旋转;可将传感器网状石墨烯薄膜条带按如图4(45°拉伸)和如图5(0°拉伸)方式布置,即通过与刀具主轴的轴向、垂直轴向,以及正负45度轴向进行组合封装,达到同时对轴向力和主轴力矩作用下的应力应变进行测量的目的。
所述网状石墨烯薄膜的厚度也会影响到传感器的测量灵敏度,一方面,随着厚度的增加,石墨烯表面会出现屈曲结构,并且,石墨烯薄膜厚度越厚,屈曲结构越容易产生。因此,在小变形的情况下,拉伸过程中,屈曲结构会首先展平以释放应变能,厚层石墨烯薄膜导电通路变化相对较小,从而导致传感器的灵敏度降低。另一方面,对于厚层石墨烯薄膜,其内部包含更多的石墨烯晶片,内部晶片间堆叠更加紧密,需要更大的拉伸变形才能使石墨烯断裂,从而说明灵敏度降低。本发明采用单层石墨烯薄膜,可以达到对应力应变更加准确的测量。
所述金属电极3设置在网状石墨烯薄膜2左右两端边缘处;用于连接金属引线4的一端,金属引线4的另一端用于连接外部控制电路模块。
上面结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (3)

1.一种硅基网状石墨烯MEMS传感器,其特征在于:包括Si基板(1)、SiC薄膜层(6)、网状石墨烯薄膜(2)、PDMS保护层(5)、金属电极(3)以及金属引线(4);
Si基板(1)的上表面为SiC薄膜层(6),SiC薄膜层(6)的上表面为网状石墨烯薄膜(2)及位于网状石墨烯薄膜(2)两侧的金属电极(3),网状石墨烯薄膜(2)的上表面为PDMS保护层(5),通过金属电极(3)引出金属引线(4)。
2.一种硅基网状石墨烯MEMS传感器的制备方法,其特征在于:包括如下步骤:
步骤1、在Si基底(1)上进行热氧化工艺,生长出厚度为100nm~300nm的SiC薄膜层(6),作为介质层,用于制作石墨烯薄膜的掩膜层;
步骤2、以SiC薄膜层(6)为衬底,首先利用氢气在1600~1800℃的高温下对衬底表面进行平整化处理;然后,在真空的环境下,将SiC薄膜层(6)表面加热到1400℃以上,使衬底表面的Si、C键发生断裂,Si原子会先于C原子升华而从表面脱附,而表面富集C原子发生重构从而形成SiC为衬底的石墨烯薄膜样品;
步骤3、将石墨烯薄膜样品固定,利用匀胶机在石墨烯薄膜上旋涂光刻胶;
步骤4、将矩形形状的金属掩膜版置于石墨烯薄膜样品两侧,且两者对齐,使用光刻机光刻并溅射获得金属电极(3);
步骤5、将带有网状图案的金属掩膜版置于石墨烯薄膜样品上表面,且两者对齐,再次使用光刻机光刻获得网状石墨烯薄膜样品;接着采用汞灯曝光网状石墨烯薄膜样品;然后,使用NICP刻蚀机用氧等离子进行刻蚀网状石墨烯薄膜样品,从而获得网状石墨烯薄膜(2);最后,将丙酮涂在网状石墨烯薄膜(2)表面,溶解残留的光刻胶,待光刻胶完全溶解后,取出,晾干;
步骤6、将获得的网状石墨烯薄膜(2)暴露在空气中,在网状石墨烯薄膜(2)表面涂抹常温下液体PDMS,形成PDMS保护层(5),真空除气泡,120℃加热固化;最终获得硅基网状石墨烯MEMS传感器。
3.根据权利要求2所述的硅基网状石墨烯MEMS传感器的制备方法,其特征在于:所述金属掩膜版为铬金属掩膜版。
CN201911265551.XA 2019-12-11 2019-12-11 一种硅基网状石墨烯mems传感器及其制备方法 Active CN111017863B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911265551.XA CN111017863B (zh) 2019-12-11 2019-12-11 一种硅基网状石墨烯mems传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911265551.XA CN111017863B (zh) 2019-12-11 2019-12-11 一种硅基网状石墨烯mems传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN111017863A true CN111017863A (zh) 2020-04-17
CN111017863B CN111017863B (zh) 2023-09-29

Family

ID=70205746

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911265551.XA Active CN111017863B (zh) 2019-12-11 2019-12-11 一种硅基网状石墨烯mems传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN111017863B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112484897A (zh) * 2020-10-10 2021-03-12 宁波大学 可测量水下横流的柔性压力传感器及其制作与测量方法
CN113827401A (zh) * 2021-09-10 2021-12-24 重庆大学 集成化电子纱布系统
WO2022087681A1 (en) * 2020-10-30 2022-05-05 University Of Technology Sydney Graphene based electrode for electrophysiological readings

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060468A1 (ja) * 2010-11-04 2012-05-10 日本電気株式会社 グラフェン基板の製造方法およびグラフェン基板
CN102564657A (zh) * 2012-01-16 2012-07-11 江苏物联网研究发展中心 基于石墨烯的阵列式柔性压力分布传感器及其制备方法
KR20130124822A (ko) * 2012-05-07 2013-11-15 한국표준과학연구원 그래핀을 이용한 멀티터치 힘 또는 압력 감지 투명 터치스크린을 이용한 힘 측정방법
US20150023860A1 (en) * 2013-07-19 2015-01-22 Nanomaterial Innovation Ltd. Graphene-like nanosheet structure network on a substrate and the method for forming the same
CN105092118A (zh) * 2015-09-25 2015-11-25 东南大学 一种具有高灵敏度的柔性压阻式压力传感器及其制备方法
CN105300574A (zh) * 2015-11-13 2016-02-03 常州二维碳素科技股份有限公司 石墨烯压力传感器及其制备方法和用途
CN106032266A (zh) * 2015-03-16 2016-10-19 中国科学院苏州纳米技术与纳米仿生研究所 整体三维结构模板、三维结构材料及其可控制备方法
CN106546362A (zh) * 2016-10-27 2017-03-29 中国科学院重庆绿色智能技术研究院 一种基于石墨烯的电容式压力传感器
CN106872501A (zh) * 2017-03-08 2017-06-20 北京大学 一种直接刻蚀金属基底制备石墨烯基透射电镜载网支撑膜的方法
CN107655397A (zh) * 2017-08-22 2018-02-02 中国科学院上海硅酸盐研究所 一种兼备高电阻应变灵敏系数与高形变能力的多功能石墨烯柔性传感器及其制备方法
CN109632906A (zh) * 2019-01-17 2019-04-16 广西师范大学 基于石墨烯-金属异质结的气体传感器阵列及其制备方法
CN110455445A (zh) * 2019-07-19 2019-11-15 南京邮电大学 柔性应力传感器及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060468A1 (ja) * 2010-11-04 2012-05-10 日本電気株式会社 グラフェン基板の製造方法およびグラフェン基板
CN102564657A (zh) * 2012-01-16 2012-07-11 江苏物联网研究发展中心 基于石墨烯的阵列式柔性压力分布传感器及其制备方法
KR20130124822A (ko) * 2012-05-07 2013-11-15 한국표준과학연구원 그래핀을 이용한 멀티터치 힘 또는 압력 감지 투명 터치스크린을 이용한 힘 측정방법
US20150023860A1 (en) * 2013-07-19 2015-01-22 Nanomaterial Innovation Ltd. Graphene-like nanosheet structure network on a substrate and the method for forming the same
CN106032266A (zh) * 2015-03-16 2016-10-19 中国科学院苏州纳米技术与纳米仿生研究所 整体三维结构模板、三维结构材料及其可控制备方法
CN105092118A (zh) * 2015-09-25 2015-11-25 东南大学 一种具有高灵敏度的柔性压阻式压力传感器及其制备方法
CN105300574A (zh) * 2015-11-13 2016-02-03 常州二维碳素科技股份有限公司 石墨烯压力传感器及其制备方法和用途
CN106546362A (zh) * 2016-10-27 2017-03-29 中国科学院重庆绿色智能技术研究院 一种基于石墨烯的电容式压力传感器
CN106872501A (zh) * 2017-03-08 2017-06-20 北京大学 一种直接刻蚀金属基底制备石墨烯基透射电镜载网支撑膜的方法
CN107655397A (zh) * 2017-08-22 2018-02-02 中国科学院上海硅酸盐研究所 一种兼备高电阻应变灵敏系数与高形变能力的多功能石墨烯柔性传感器及其制备方法
CN109632906A (zh) * 2019-01-17 2019-04-16 广西师范大学 基于石墨烯-金属异质结的气体传感器阵列及其制备方法
CN110455445A (zh) * 2019-07-19 2019-11-15 南京邮电大学 柔性应力传感器及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OWEN J. GUY: "Fabrication of ultrasensitive graphene nanobiosensors", pages 907 - 912 *
王党朝: "SiC基石墨烯材料制备及表征技术研究", no. 3, pages 135 - 69 *
邹志宇;戴博雅;刘忠范;: "石墨烯的化学气相沉积生长与过程工程学研究", 中国科学:化学, no. 01 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112484897A (zh) * 2020-10-10 2021-03-12 宁波大学 可测量水下横流的柔性压力传感器及其制作与测量方法
WO2022087681A1 (en) * 2020-10-30 2022-05-05 University Of Technology Sydney Graphene based electrode for electrophysiological readings
CN113827401A (zh) * 2021-09-10 2021-12-24 重庆大学 集成化电子纱布系统

Also Published As

Publication number Publication date
CN111017863B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
CN111017863A (zh) 一种硅基网状石墨烯mems传感器及其制备方法
CN106197774B (zh) 柔性压阻式触觉传感器阵列及其制备方法
CN106441646B (zh) 一种柔性压力传感器及其制备方法
CN107748025B (zh) 一种石墨烯/六方氮化硼异质结构压力传感器及制备方法
CN103630272B (zh) 利用石墨烯薄膜测量物体应力的装置及制备方法和测试方法
CN105405965B (zh) 一种高灵敏度石墨烯磁场传感器及其制备方法
Wang et al. A highly flexible tactile sensor with an interlocked truncated sawtooth structure based on stretchable graphene/silver/silicone rubber composites
CN106946221A (zh) 基于“v”型槽阵列电极的柔性压力传感器制作方法
WO2015188772A1 (zh) 一种用于多物理量测量的传感器芯片及其制备方法
CN113237580A (zh) 一种MXene的高灵敏度压阻传感器及制备方法
CN107907251B (zh) 压力传感器及其制备方法
WO2019052037A1 (zh) 一种电容式传感器及其制备方法
CN113091811A (zh) 一种柔性温压一体化传感器及其制备方法和应用
CN109827700A (zh) 一种双片式石墨基压阻式柔性压力传感器及其制作工艺
CN109444469B (zh) 一种全碳化硅mems三轴加速度计及其制造方法
CN113514498A (zh) 共片加热阵列式气体检测微芯片及制备方法
CN105244438A (zh) 一种可编织线状有机单晶场效应晶体管及其制备方法与应用
CN105910737A (zh) 一种应力定位传感器及其制作方法、应力定位方法
CN106093461B (zh) 一种基于石墨烯材料的风速测试器及其制备方法
CN112964416B (zh) 一种间接接触式石墨烯压力传感器及其制备方法
WO2017126938A1 (ko) 이황화몰리브덴을 이용한 촉각센서 및 그 제조방법
CN111150368B (zh) 一种用来监测帕金森综合征的柔性振动传感器加工方法
CN111579147B (zh) 谐振式mems差压压力传感器及其制备方法
Zhang et al. Sandwich structure based on back-side etching silicon (100) wafers for flexible electronic technology
CN111551293A (zh) 通孔式石墨烯/pmma异质结构压力传感器及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant