CN111009592B - 一种SiO2及掺杂多晶硅叠层钝化薄膜的制备方法 - Google Patents

一种SiO2及掺杂多晶硅叠层钝化薄膜的制备方法 Download PDF

Info

Publication number
CN111009592B
CN111009592B CN201911066621.9A CN201911066621A CN111009592B CN 111009592 B CN111009592 B CN 111009592B CN 201911066621 A CN201911066621 A CN 201911066621A CN 111009592 B CN111009592 B CN 111009592B
Authority
CN
China
Prior art keywords
cavity
silicon
sio
film
chain type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911066621.9A
Other languages
English (en)
Other versions
CN111009592A (zh
Inventor
上官泉元
闫路
刘宁杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Jietai Photoelectric Technology Co ltd
Original Assignee
Jiangsu Jietai Photoelectric Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Jietai Photoelectric Technology Co ltd filed Critical Jiangsu Jietai Photoelectric Technology Co ltd
Priority to CN201911066621.9A priority Critical patent/CN111009592B/zh
Publication of CN111009592A publication Critical patent/CN111009592A/zh
Application granted granted Critical
Publication of CN111009592B publication Critical patent/CN111009592B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种SiO2及掺杂多晶硅叠层钝化薄膜的制备方法,包括如下步骤:链式连续传输体系,硅片在自动装料台装载到载板上,带硅片的载板经过装载腔抽真空并加热;通过输送机构输送至PECVD工艺腔内用SiH4和含氧气体(O2/N2O)生成Si02薄膜;然后经过过渡腔送到PVD工艺腔内用离子溅射方法镀掺杂的非晶硅薄膜;再经过卸载腔进入大气后在卸载台卸载;空载板在大气中回传到装载台继续下一个循环。该发明利用链式传输,结合了PECVD生长SiO2和PVD生长掺杂多晶硅的二合一镀膜方案,连续运行生产具有产能高、生产工序少、工艺间无交叉污染和环境污染、设备投入成本低及生产能耗低的优点。

Description

一种SiO2及掺杂多晶硅叠层钝化薄膜的制备方法
技术领域
本发明涉及高效太阳能电池制备技术领域,特别涉及一种掺杂非晶硅氧化硅叠层钝化电池的制备方法,尤其是电池中SiO2及掺杂多晶硅叠层钝化薄膜的制备方法。
背景技术
目前,电池技术发展迅速,尤其是掺杂非晶硅氧化硅叠层钝化(POLO) 的高效电池克服了目前PERC电池电接触的缺点,是今后提升电池转换效率的下一代量产技术,市场前景巨大。典型的代表有Topcon,它是N-型硅片的背面掺磷多晶硅和氧化硅做钝化的电池。Topcon技术的核心是制取极薄的SiO2薄层和制备掺杂的多晶硅层,目前的行业现状是先通过高温氧化获得SiO2再用LPCVD(高温热分解法)制取a-Si,然后通过离子注入方式实现掺杂层,需要3台设备分别单独完成上述3道工序,最后通过退火形成掺杂后的多晶硅膜层。因为离子注入工艺引入的污染,在退火前硅片还必须清洗一下。所以完成掺杂非晶硅氧化硅叠层钝化需要5道工序、4套设备完成。虽然高温氧化和LPCVD可以在同一个管式炉里实现,但由于工艺温度不一致,需要花费更长的升温、降温等待时间,导致产能偏低。
现有技术方案的步骤如下:
1)SiO2制备:采用管式设备通过热氧化方式实现,加热到570℃左右高温,需要30-60min才能生长2nm左右厚度的SiO2薄膜,其具有温度高能耗大、工艺时间长等缺点;
2)多晶硅制备:采用管式LPCVD设备通过镀膜实现,加热到600℃左右高温,需要60min左右才能生长130nm左右厚度的多晶硅,其具有温度高能耗大、工艺时间长等缺点;
3)掺杂:使用离子注入设备实现多晶硅掺杂层的制备,设备成本高、工序繁琐、不经济。
发明内容
为解决上述技术问题,本发明提供了一种SiO2及掺杂多晶硅叠层钝化薄膜的制备方法,包括如下步骤:
1)首先提供一组依次包括装载腔、加热腔、链式PECVD工艺腔、链式 PVD工艺腔、冷却腔及卸载腔的线性连续传输的镀膜设备;
2)在装载腔完成硅片的装载并置于载板上并通过输送机构输送至可抽真空的加热腔进行加热,然后进入到链式PECVD工艺腔;
3)在链式PECVD工艺腔内,通过等离子激发生成Si02薄膜;
4)输送机构将表面生成Si02薄膜的硅片输送至链式PVD工艺腔内,预设的靶材经离子溅射在硅片上形成掺杂的a-Si薄膜,镀膜工艺完成,从卸载腔出腔体;
5)镀膜后的硅片经高温退火后转换成掺杂多晶硅和氧化硅的叠层。
其中,在镀膜设备工艺腔体内,一个或多个离子源平排放置用于等离子的生成。
其中,PECVD镀膜用SiH4和O2作为特气,等离子的产生采用交流射频电源,用于在硅表面生成氧化硅;或者,PECVD镀膜用SiH4和N2O作为特气,等离子的产生采用交流射频电源,用于在硅表面生成氧化硅。
其中,PVD工艺腔内的靶材是硅和掺杂元素的混合材料靶,掺杂元素为磷或硼,掺杂元素和硅的比例为1/1000-2/100。
其中,PVD工艺腔内通氩气的同时,还通入适量氧气以调节多晶硅薄膜的透光性。
其中,链式PECVD工艺腔与链式PVD工艺腔之间还设置有隔离腔,以防止链式PECVD工艺腔与链式PVD工艺腔的反应气氛相互污染。
其中,载板线性连续传输并经过镀膜设备的各腔体时,各腔体内均设置有加热装置以控制载板上硅片的温度在200-400℃。
本发明还提供了一种基于SiO2及掺杂多晶硅叠层钝化薄膜的制备方法制备而成的太阳能电池,太阳能电池为Topcon、POLO、IBC、PERC电池中的任一种。
通过上述技术方案,本发明利用链式传输,结合了PECVD生长SiO2和 PVD生长掺杂多晶硅的二合一镀膜方案,PECVD为线性离子源使用RF激发等离子体放电,且生长SiO2采用分离进气方式并只使用SiH4和O2/N2O两种特气作为反应气体,而PVD为不同掺杂靶材组合用于制备不同浓度的掺杂层或者梯度掺杂层,且镀膜设备连续运行生产具有产能高、生产工序少、工艺间无交叉污染和环境污染、设备投入成本低及生产能耗低的优点。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1为本发明实施例所公开的链式PECVD生长SiO2和链式PVD生长不同掺杂浓度多晶硅二合一镀膜方案的镀膜设备结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例1(PECVD镀膜用SiH4和O2作为特气):
本发明提供了一种SiO2及掺杂多晶硅叠层钝化薄膜的制备方法,包括如下步骤:
1)首先提供一组依次包括装载腔、加热腔、链式PECVD工艺腔、链式 PVD工艺腔、冷却腔及卸载腔的线性连续传输的镀膜设备,如图1所示;
2)在装载腔完成硅片的装载并置于载板上并通过输送机构输送至可抽真空的加热腔进行加热,然后进入到链式PECVD工艺腔;
3)在链式PECVD工艺腔内,PECVD镀膜用SiH4和O2作为特气,等离子的产生采用交流射频电源,通过等离子激发在硅表面生成Si02薄膜;
4)输送机构将表面生成Si02薄膜的硅片输送至链式PVD工艺腔内,预设的靶材经离子溅射在硅片上形成掺杂的a-Si薄膜,镀膜工艺完成,从卸载腔出腔体;其中,PVD工艺腔内的靶材是硅和掺杂元素的混合材料靶,掺杂元素为磷或硼(其中磷掺杂用于在反面形成N膜,硼掺杂用于在正面形成P膜),掺杂元素和硅的比例为1/1000-2/100;其中,PVD工艺腔内通氩气的同时,还通入适量氧气以调节多晶硅薄膜的透光性;
5)镀膜后的硅片经高温退火后转换成掺杂多晶硅和氧化硅的叠层。
实施例2(PECVD镀膜用SiH4和N2O作为特气):
本发明提供了一种SiO2及掺杂多晶硅叠层钝化薄膜的制备方法,包括如下步骤:
1)首先提供一组依次包括装载腔、加热腔、链式PECVD工艺腔、链式 PVD工艺腔、冷却腔及卸载腔的线性连续传输的镀膜设备,如图1所示;
2)在装载腔完成硅片的装载并置于载板上并通过输送机构输送至可抽真空的加热腔进行加热,然后进入到链式PECVD工艺腔;
3)在链式PECVD工艺腔内,PECVD镀膜用SiH4和N2O作为特气,等离子的产生采用交流射频电源,通过等离子激发在硅表面生成Si02薄膜;
4)输送机构将表面生成Si02薄膜的硅片输送至链式PVD工艺腔内,预设的靶材经离子溅射在硅片上形成掺杂的a-Si薄膜,镀膜工艺完成,从卸载腔出腔体;其中,PVD工艺腔内的靶材是硅和掺杂元素的混合材料靶,掺杂元素为磷或硼(其中磷掺杂用于在反面形成N膜,硼掺杂用于在正面形成P膜),掺杂元素和硅的比例为1/1000-2/100;其中,PVD工艺腔内通氩气的同时,还通入适量氧气以调节多晶硅薄膜的透光性;
5)镀膜后的硅片经高温退火后转换成掺杂多晶硅和氧化硅的叠层。
上述实施例1或2中,在镀膜设备工艺腔体内,一个或多个离子源平排放置用于等离子的生成;链式PECVD工艺腔与链式PVD工艺腔之间还设置有隔离腔,以防止链式PECVD工艺腔与链式PVD工艺腔的反应气氛相互污染;载板线性连续传输并经过镀膜设备的各腔体时,各腔体内均设置有加热装置以控制载板上硅片的温度在200-400℃。
本发明利用链式传输,结合了PECVD生长SiO2和PVD生长掺杂多晶硅的二合一镀膜方案,PECVD为线性离子源使用RF激发等离子体放电,且生长SiO2采用分离进气方式并只使用SiH4和O2/N2O两种特气作为反应气体,而PVD为不同掺杂靶材组合用于制备不同浓度的掺杂层或者梯度掺杂层,且镀膜设备连续运行生产具有产能高、生产工序少、工艺间无交叉污染和环境污染、设备投入成本低及生产能耗低的优点。
此外,本发明还基于上述实施例1或2所述的一种SiO2及掺杂多晶硅叠层钝化薄膜的制备方法进行制备Topcon、POLO、IBC、PERC电池中的任一种太阳能电池,从而大幅度提高Topcon、POLO、IBC、PERC等电池的电池转换效率。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对上述实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

1.一种SiO2及掺杂多晶硅叠层钝化薄膜的制备方法,其特征在于,包括如下步骤:
1)首先提供一组依次包括装载腔、加热腔、链式PECVD工艺腔、链式PVD工艺腔、冷却腔及卸载腔的线性连续传输的镀膜设备;
2)在装载腔完成硅片的装载并置于载板上并通过输送机构输送至可抽真空的加热腔进行加热,然后进入到链式PECVD工艺腔;
3)在链式PECVD工艺腔内,采用线性离子源并采用交流射频电源产生等离子,用SiH4与O2或者SiH4与N2O作为特气,通过等离子激发生成SiO 2薄膜;
4)输送机构将表面生成SiO 2薄膜的硅片输送至链式PVD工艺腔内,预设不同掺杂浓度的靶材组合经离子溅射在硅片上形成不同掺杂浓度或梯度掺杂的a-Si薄膜,镀膜工艺完成,从卸载腔出腔体;
5)镀膜后的硅片经高温退火后转换成掺杂多晶硅和氧化硅的叠层。
2.根据权利要求1所述的一种SiO2及掺杂多晶硅叠层钝化薄膜的制备方法,其特征在于,PVD工艺腔内的靶材是硅和掺杂元素的混合材料靶,掺杂元素为磷或硼,掺杂元素和硅的比例为1/1000-2/100。
3.根据权利要求1所述的一种SiO2及掺杂多晶硅叠层钝化薄膜的制备方法,其特征在于,PVD工艺腔内通氩气的同时,还通入适量氧气以调节多晶硅薄膜的透光性。
4.根据权利要求1所述的一种SiO2及掺杂多晶硅叠层钝化薄膜的制备方法,其特征在于,链式PECVD工艺腔与链式PVD工艺腔之间还设置有隔离腔,以防止链式PECVD工艺腔与链式PVD工艺腔的反应气氛相互污染。
5.根据权利要求1所述的一种SiO2及掺杂多晶硅叠层钝化薄膜的制备方法,其特征在于,载板线性连续传输并经过镀膜设备的各腔体时,各腔体内均设置有加热装置以控制载板上硅片的温度在200-400℃。
6.一种太阳能电池,其特征在于,基于权利要求1-5任一项所述的一种SiO2及掺杂多晶硅叠层钝化薄膜的制备方法制备而成。
7.根据权利要求6所述的一种太阳能电池,其特征在于,为Topcon、POLO、IBC、PERC电池中的任一种。
CN201911066621.9A 2019-11-04 2019-11-04 一种SiO2及掺杂多晶硅叠层钝化薄膜的制备方法 Active CN111009592B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911066621.9A CN111009592B (zh) 2019-11-04 2019-11-04 一种SiO2及掺杂多晶硅叠层钝化薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911066621.9A CN111009592B (zh) 2019-11-04 2019-11-04 一种SiO2及掺杂多晶硅叠层钝化薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN111009592A CN111009592A (zh) 2020-04-14
CN111009592B true CN111009592B (zh) 2021-09-07

Family

ID=70111393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911066621.9A Active CN111009592B (zh) 2019-11-04 2019-11-04 一种SiO2及掺杂多晶硅叠层钝化薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN111009592B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111243943A (zh) * 2020-01-19 2020-06-05 江苏杰太光电技术有限公司 一种TOPCon电池的氧化硅和掺杂非晶硅的一体式镀膜方法
CN112038444B (zh) * 2020-08-05 2021-11-19 英利能源(中国)有限公司 一种n型晶体硅太阳能电池的制作方法及其背面钝化接触结构的制作方法
CN114078987A (zh) * 2020-08-18 2022-02-22 泰州中来光电科技有限公司 钝化接触电池及制备方法和钝化接触结构制备方法及装置
CN113035997A (zh) * 2021-02-04 2021-06-25 江苏杰太光电技术有限公司 一种太阳能电池制造工艺及链式镀膜设备
CN113122827A (zh) * 2021-03-19 2021-07-16 苏州晟成光伏设备有限公司 一种制备背钝化太阳能电池的设备及其工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141030A (ja) * 2008-12-10 2010-06-24 Tama Tlo Ltd 多結晶シリコン膜の形成方法、多結晶シリコン膜の形成装置及び多結晶シリコン膜が形成された基板
CN109860324A (zh) * 2019-02-27 2019-06-07 湖南红太阳光电科技有限公司 背面全钝化接触太阳能电池及其制备方法
CN209056515U (zh) * 2018-10-30 2019-07-02 苏州腾晖光伏技术有限公司 一种晶硅太阳能电池的生产线
CN110199376A (zh) * 2016-12-06 2019-09-03 澳大利亚国立大学 太阳能电池制造

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1732142A1 (en) * 2005-06-09 2006-12-13 Shell Solar GmbH Si solar cell and its manufacturing method
WO2013096951A1 (en) * 2011-12-23 2013-06-27 Solexel, Inc. High productivity spray processing for semiconductor metallization and interconnects
US9673341B2 (en) * 2015-05-08 2017-06-06 Tetrasun, Inc. Photovoltaic devices with fine-line metallization and methods for manufacture
CN110335901B (zh) * 2019-08-12 2024-04-16 无锡松煜科技有限公司 光伏电池表面钝化系统及钝化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141030A (ja) * 2008-12-10 2010-06-24 Tama Tlo Ltd 多結晶シリコン膜の形成方法、多結晶シリコン膜の形成装置及び多結晶シリコン膜が形成された基板
CN110199376A (zh) * 2016-12-06 2019-09-03 澳大利亚国立大学 太阳能电池制造
CN209056515U (zh) * 2018-10-30 2019-07-02 苏州腾晖光伏技术有限公司 一种晶硅太阳能电池的生产线
CN109860324A (zh) * 2019-02-27 2019-06-07 湖南红太阳光电科技有限公司 背面全钝化接触太阳能电池及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
An industrially viable TOPCon structure with both ultra-thin SiOx and n+-poly-Si processed by PECVD for p-type c-Si solar cells;Tian Gao等;《Solar Energy Materials and Solar Cells》;20190915;第200卷;全文 *
隧穿氧化硅/金属钪电子选择收集钝化接触结构在N型晶硅电池中的应用;全成;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20190315(第03期);全文 *

Also Published As

Publication number Publication date
CN111009592A (zh) 2020-04-14

Similar Documents

Publication Publication Date Title
CN111009592B (zh) 一种SiO2及掺杂多晶硅叠层钝化薄膜的制备方法
EP4203081A1 (en) Topcon battery and preparation method therefor, and electrical appliance
CN111172518B (zh) 一种基于硅烷的一体式镀膜方法
KR20090085100A (ko) 태양 전지의 제조 방법 및 태양 전지의 제조 장치
CN111243943A (zh) 一种TOPCon电池的氧化硅和掺杂非晶硅的一体式镀膜方法
US20080199612A1 (en) Method and Apparatus For Hydrogenation of Thin Film Silicon on Glass
CN113675295B (zh) PECVD制备硅片复合膜的方法和TOPCon电池的制备方法
CN110735130B (zh) 制备背面钝化膜的管式pecvd设备及方法
CN112271235A (zh) 一种TOPCon太阳能电池氧化硅层的制备方法和系统
WO2022037289A1 (zh) 钝化接触电池及制备方法和钝化接触结构制备方法及装置
CN105986251A (zh) 一种pecvd系统
US7588957B2 (en) CVD process gas flow, pumping and/or boosting
KR102097758B1 (ko) 태양전지의 제조 방법 및 그 제조 방법에 의해 제조된 태양전지
CN107623052B (zh) 一种太阳能电池片钝化用Al2O3镀膜系统和方法
CN214176054U (zh) 一种制备氧化硅和掺杂多晶硅的一体式设备
CN113903817A (zh) 一种晶硅太阳能电池选择性发射极的制备方法
CN104037264B (zh) 一种pecvd沉积低表面复合太阳电池介电层的方法
CN112071953A (zh) 一种板式设备制备钝化接触太阳能电池的方法及装置
CN113066896A (zh) 一种太阳能电池发射结制备方法
CN112271237B (zh) 一种TOPCon太阳能电池原位掺杂钝化层的制备方法和系统
CN113193074A (zh) N-TOPCon太阳能电池、组件、系统及电池中制备双面氧化硅的方法、设备
CN110718604A (zh) P型晶硅太阳能电池的背场及背钝化层制备方法
CN214655235U (zh) N-TOPCon太阳能电池中制备双面氧化硅的设备
CN118291948A (zh) 一种氧化铝和氮化硅钝化薄膜的制备方法
Boumaour et al. Adapting M2 silicon half-wafers processing on industrial-scale equipment dedicated to 4 ″solar technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant