CN111007351A - 一种基于高维随机矩阵特征根检测的配网异常检测方法 - Google Patents

一种基于高维随机矩阵特征根检测的配网异常检测方法 Download PDF

Info

Publication number
CN111007351A
CN111007351A CN201911104720.1A CN201911104720A CN111007351A CN 111007351 A CN111007351 A CN 111007351A CN 201911104720 A CN201911104720 A CN 201911104720A CN 111007351 A CN111007351 A CN 111007351A
Authority
CN
China
Prior art keywords
characteristic root
distribution network
matrix
detection
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201911104720.1A
Other languages
English (en)
Inventor
黄锋
黄华
陈冉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Hengnengtai Enterprise Management Co ltd
Electric Power Research Institute of State Grid Shanghai Electric Power Co Ltd
Original Assignee
Shanghai Hengnengtai Enterprise Management Co ltd
Electric Power Research Institute of State Grid Shanghai Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Hengnengtai Enterprise Management Co ltd, Electric Power Research Institute of State Grid Shanghai Electric Power Co Ltd filed Critical Shanghai Hengnengtai Enterprise Management Co ltd
Priority to CN201911104720.1A priority Critical patent/CN111007351A/zh
Publication of CN111007351A publication Critical patent/CN111007351A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

一种基于高维随机矩阵特征根检测的配网异常检测方法,包括如下步骤:在配电网的不同位置均匀放置m个相量测量单元;计算信号矩阵Xn的样本协方差阵Sn;计算样本协方差阵Sn的特征根集合;步骤4.利用特征根分布函数,检测配网是否存在异常。本发明利用PMU的全局采样数据,随机矩阵特征值检测方法可以准确识别谐波信息,实现快速检测,且具有高灵敏度的优点。

Description

一种基于高维随机矩阵特征根检测的配网异常检测方法
技术领域
本发明属于配网线路检测技术领域,具体涉及一种基于高维随机矩阵特征根检测的配网异常检测方法。
背景技术
电力系统在正常运行中,会因受到内部或外部的扰动而出现异常。电力系统的 扰动可根据其影响的范围和程度分为两类,一类是以单相接地故障为代表的扰动, 这种扰动所影响的支路数量较少,而对相关支路电流扰动的程度较大;另一类是以 谐波或低频振荡为代表的扰动,这种扰动对全部支路均有影响,但扰动程度可能较 小。传统的扰动检测技术都是基于在线检测和离线匹配的原则,通过离线设定异常 值范围,实时监控配网的电压、电流。当监控值超越设定值时,或检测到波形异常 超限时,即判定异常发生,再进行定位、识别和处理。这种技术手段有两种缺陷: 其一是一定要在小扰动演变成大扰动,即异常发生确立后才能进行检测,而扰动发 展期间的时间却不能得到利用;其二是若小扰动已然发生,却未超过设定值,则无 法探测到此类异常,这将令配网长期运行于隐患状态。克服传统扰动检测技术的两 种缺陷,提出新的算法和检测手段,将对配网的异常处理产生重要意义。
高位随机矩阵谱理论是大维随机矩阵的一个研究重点,样本协方差阵的谱分布在多元变量的统计推断中具有重要作用,其能反应特征根的分布情况、矩阵元素的 相关性以及最大特征值的极值,因此被广泛应用到主成分分析、因子分析及异常检 测中。
发明内容
本发明针对现有技术的缺陷,提出一种基于最大最小特征值法的配网异常检测方法,通过将电力系统中的扰动类比为无线电领域中的待检测信号,PMU类比为感 知信号中的天线,配网电路参数则是扰动信号到PMU的响应函数。
本发明原理:
通过分布于电网不同位置的多个基于相量测量单元(phasor measurementunits,PMU),采集同一时标下的电压、电流和频率信号。
一段配电网共有m个PMU,采集的总时间为n,则所有PMU收到的信号矩阵为 Xn=(xij)m×n
(1)当配电网中没有异常信号时,则xi(n)仅为独立同分布的噪声信号,为: xi(n)=ηi(n),n=0,1,…,ηi(n)是白噪声,表示在第n个时间采集到的信号时白噪声。
(2)当配电网中有异常信号时,则xi(n)不再符合独立同分布。
本发明的技术解决方案如下:
一种基于高维随机矩阵特征根检测的配网异常检测方法,包括如下步骤:
步骤1.在配电网的不同位置均匀放置m个相量测量单元(以下简称PMU),用 于采集同一时标下的电压、电流和频率信号;设采集总时间为n,则所有PMU收到 的信号矩阵为Xn=(xij)m×n,其中,xij表示矩阵的第i行第j列的取值,即第i个PMU 在第j个采集时间所采集的信号;
步骤2.计算信号矩阵Xn的样本协方差阵Sn,公式如下:
Figure BDA0002270942900000021
步骤3.计算样本协方差阵Sn的特征根集合,并令
Figure BDA0002270942900000022
为特征根集合中的最 大特征根和最小特征根;
步骤4.利用特征根分布函数fMP(λ),检测配网是否存在异常,其中,
Figure BDA0002270942900000023
Figure BDA0002270942900000024
c=m/n,σ表示ηi(n)的方差,a表示特征根集合中特 征根取值的上确界,b表示特征根集合中特征根取值的下确界,c表示矩阵的长宽 比;
当(
Figure BDA0002270942900000031
Figure BDA0002270942900000032
Figure BDA0002270942900000033
)且(
Figure BDA0002270942900000034
Figure BDA0002270942900000035
不符合fMP(λ)分布)时,则配网 存在异常,否则无异常。
与现有技术相比,本发明的技术效果是利用PMU的全局采样数据,随机矩阵特 征值检测方法可以准确识别谐波信息,实现快速检测,且具有高灵敏度的优点。
附图说明
图1是实施例1谐波情况的探测结果和波形图。
图2是实施例2谐波情况的探测结果和波形图。
图3是本发明基于随机矩阵特征根检验的配网异常检测方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施 例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述 的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都 属于本发明保护的范围。
实施例1:T-line14注入3次谐波,电流大小为30A,谐波畸变率(THD)为5.625%。探测结果波形如图1。
实施例2:T-line14注入3次谐波。电流大小为15A,THD为1.375%,小于4%, 在电流质量指标允许范围内[15]。探测结果和波形如图2。
图1-图2展示了利用基于高维随机矩阵特征根法对两个谐波扰动案例的检测结果。同样地,可以看到在谐波异常刚刚出现时,MME即越限,通过红线可确立检测 到异常时刻对应信号时点。谐波异常案例仿真检测数值结果汇总如表1所示。可以 看到实施例4和实施例5中仅在谐波注入时刻后0.001s时便能检测到谐波信号,图 中这一时刻远远小于电路的暂态变化过程,且不存在误检情况。需要特别说明的是, 实施例5的THD仅为1.375%,在我国电能质量指标中尚不属于异常范围。而利用本 文方法仍能很好地检测出扰动信号。以上证明了在谐波信号检测的快速性和灵敏性。
表1谐波异常检测结果
Figure BDA0002270942900000036
Figure BDA0002270942900000041
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制; 尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征 进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实 施例技术方案的精神和范围。

Claims (1)

1.一种基于高维随机矩阵特征根检测的配网异常检测方法,其特征在于,包括如下步骤:
步骤1.在配电网的不同位置均匀放置m个相量测量单元(以下简称PMU),用于采集同一时标下的电压、电流和频率信号;设采集总时间为n,则所有PMU收到的信号矩阵为Xn=(xij)m×n,其中,xij表示矩阵的第i行第j列的取值,即第i个PMU在第j个采集时间所采集的信号;
步骤2.计算信号矩阵Xn的样本协方差阵Sn,公式如下:
Figure FDA0002270942890000011
步骤3.计算样本协方差阵Sn的特征根集合,并令
Figure FDA0002270942890000012
为特征根集合中的最大特征根和最小特征根;
步骤4.利用特征根分布函数fMP(λ),检测配网是否存在异常,其中,
Figure FDA0002270942890000013
Figure FDA0002270942890000014
c=m/n,σ表示ηi(n)的方差,a表示特征根集合中特征根取值的上确界,b表示特征根集合中特征根取值的下确界,c表示矩阵的长宽比;
当(
Figure FDA0002270942890000015
Figure FDA0002270942890000016
Figure FDA0002270942890000017
)且(
Figure FDA0002270942890000018
Figure FDA0002270942890000019
不符合fMP(λ)分布)时,则配网存在异常,否则无异常。
CN201911104720.1A 2019-11-13 2019-11-13 一种基于高维随机矩阵特征根检测的配网异常检测方法 Withdrawn CN111007351A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911104720.1A CN111007351A (zh) 2019-11-13 2019-11-13 一种基于高维随机矩阵特征根检测的配网异常检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911104720.1A CN111007351A (zh) 2019-11-13 2019-11-13 一种基于高维随机矩阵特征根检测的配网异常检测方法

Publications (1)

Publication Number Publication Date
CN111007351A true CN111007351A (zh) 2020-04-14

Family

ID=70113014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911104720.1A Withdrawn CN111007351A (zh) 2019-11-13 2019-11-13 一种基于高维随机矩阵特征根检测的配网异常检测方法

Country Status (1)

Country Link
CN (1) CN111007351A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474510A (zh) * 2020-04-25 2020-07-31 华中科技大学 一种非平稳输出的电压互感器的误差评估方法及系统
CN112260989A (zh) * 2020-09-16 2021-01-22 湖南大学 电力系统及网络恶意数据攻击检测方法、系统及存储介质
CN113406439A (zh) * 2021-06-23 2021-09-17 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种配电网故障定位方法
CN118503666A (zh) * 2024-07-16 2024-08-16 国网甘肃省电力公司酒泉供电公司 一种配电网的谐波检测方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106932686A (zh) * 2017-03-21 2017-07-07 国网上海市电力公司 基于最大最小特征值法的电网异常快速检测方法
CN107132454A (zh) * 2017-05-04 2017-09-05 国网上海市电力公司 基于随机矩阵谱半径法的电网异常快速检测方法
CN108196165A (zh) * 2018-01-09 2018-06-22 贵州大学 基于样本协方差矩阵最大特征值的电网异常状态检测方法
US20190056436A1 (en) * 2016-05-13 2019-02-21 Hitachi, Ltd. Similarity detection of abnormal waveforms using pmu measurement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190056436A1 (en) * 2016-05-13 2019-02-21 Hitachi, Ltd. Similarity detection of abnormal waveforms using pmu measurement
CN106932686A (zh) * 2017-03-21 2017-07-07 国网上海市电力公司 基于最大最小特征值法的电网异常快速检测方法
CN107132454A (zh) * 2017-05-04 2017-09-05 国网上海市电力公司 基于随机矩阵谱半径法的电网异常快速检测方法
CN108196165A (zh) * 2018-01-09 2018-06-22 贵州大学 基于样本协方差矩阵最大特征值的电网异常状态检测方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474510A (zh) * 2020-04-25 2020-07-31 华中科技大学 一种非平稳输出的电压互感器的误差评估方法及系统
CN112260989A (zh) * 2020-09-16 2021-01-22 湖南大学 电力系统及网络恶意数据攻击检测方法、系统及存储介质
CN112260989B (zh) * 2020-09-16 2021-07-30 湖南大学 电力系统及网络恶意数据攻击检测方法、系统及存储介质
CN113406439A (zh) * 2021-06-23 2021-09-17 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种配电网故障定位方法
CN118503666A (zh) * 2024-07-16 2024-08-16 国网甘肃省电力公司酒泉供电公司 一种配电网的谐波检测方法及系统

Similar Documents

Publication Publication Date Title
CN111007351A (zh) 一种基于高维随机矩阵特征根检测的配网异常检测方法
CN107025365B (zh) 一种用于用户侧的非侵入负荷辨识方法
Bhui et al. Application of recurrence quantification analysis to power system dynamic studies
CN116256602B (zh) 一种低压配电网状态异常的识别方法和系统
CN110208647B (zh) 一种基于随机矩阵的配电网单相接地故障区段定位方法
Iturrino-García et al. An innovative single shot power quality disturbance detector algorithm
CN109902735B (zh) 一种实现变电站内三相电压互感器运行误差评估的方法
CN110244185A (zh) 一种多源谐波责任划分方法、终端设备及存储介质
CN117668471B (zh) 一种基于故障行波电流特征的树线放电故障识别方法
CN110988587A (zh) 一种基于最大最小特征值法的配网异常检测方法
CN114184870A (zh) 非侵入式负荷识别方法及设备
CN115166625A (zh) 智能电表误差估计方法及装置
CN109635430B (zh) 电网输电线路暂态信号监测方法和系统
CN114037010A (zh) 一种电量数据异常的识别方法及装置
CN118050598A (zh) 配电网的故障选线方法、系统以及可读存储介质
WO2024104037A1 (zh) 基于数学形态学和模式识别的直流电弧检测方法
Liu et al. Identification of major power quality disturbance sources in regional grid based on monitoring data correlation analysis
CN109522657B (zh) 一种基于相关性网络和svdd的燃气轮机异常检测方法
Wu et al. Research on a location method for complex voltage sag sources based on random matrix theory
Sarquis Filho et al. Practical recommendations for the design of automatic fault detection algorithms based on experiments with field monitoring data
Deng et al. A fractional hilbert transform order optimization algorithm based DE for bearing health monitoring
CN115032502A (zh) 一种最大特征向量电网异常定位方法
Liao et al. Quickest line outage detection with low false alarm rate and no prior outage knowledge
Cai et al. Data-Driven Load Data Cleaning and Its Impacts on Forecasting Performance
Zhang et al. Monitoring the ratio error drift of CVTs connected to the same phase along with KDE-PCA

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20200414

WW01 Invention patent application withdrawn after publication