CN111005779A - 从发电系统和方法生产低压液态二氧化碳 - Google Patents

从发电系统和方法生产低压液态二氧化碳 Download PDF

Info

Publication number
CN111005779A
CN111005779A CN201911171405.0A CN201911171405A CN111005779A CN 111005779 A CN111005779 A CN 111005779A CN 201911171405 A CN201911171405 A CN 201911171405A CN 111005779 A CN111005779 A CN 111005779A
Authority
CN
China
Prior art keywords
stream
high pressure
pressure
bar
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911171405.0A
Other languages
English (en)
Inventor
R.J.阿拉姆
B.A.福里斯特
J.E.费维德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
8 Rivers Capital LLC
Original Assignee
8 Rivers Capital LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54249568&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN111005779(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 8 Rivers Capital LLC filed Critical 8 Rivers Capital LLC
Publication of CN111005779A publication Critical patent/CN111005779A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0027Oxides of carbon, e.g. CO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/60Preparation of carbonates or bicarbonates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/103Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/08Semi-closed cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/34Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/15061Deep cooling or freezing of flue gas rich of CO2 to deliver CO2-free emissions, or to deliver liquid CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/80Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/80Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
    • F25J2220/82Separating low boiling, i.e. more volatile components, e.g. He, H2, CO, Air gases, CH4
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/06Adiabatic compressor, i.e. without interstage cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/80Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/70Steam turbine, e.g. used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/80Integration in an installation using carbon dioxide, e.g. for EOR, sequestration, refrigeration etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Colloid Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treating Waste Gases (AREA)

Abstract

本公开涉及提供低压液态CO2流的系统和方法。特别地,本公开提供了以下系统和方法:其中高压CO2流(诸如,来自主要使用CO2作为工作流体的发电过程的再循环CO2流)可被分开以使得其一部分可被膨胀并用作热交换器中的冷却流以冷却高压CO2流的剩余部分,后者随后可被膨胀以形成低压CO2流,所述低压CO2流可为含有CO2蒸汽的混合形式。所述系统和方法可用于提供易于运输的液体形式的来自燃烧的净CO2

Description

从发电系统和方法生产低压液态二氧化碳
本申请是申请日为2015年9月3日、申请号为201580057985.4、发明名称为“从发电系统和方法生产低压液态二氧化碳”的专利申请的分案申请。
技术领域
本文所公开的主题涉及生产液态二氧化碳的系统和方法。具体而言,液态二氧化碳可为由在发电系统和方法(特别是使用二氧化碳作为工作流体的系统和方法)中生产的二氧化碳形成的低压二氧化碳流。
背景技术
碳捕获和封存(CCS)是生产二氧化碳(CO2)的任何系统或方法的关键考虑因素。这与通过燃烧化石燃料或其它含碳氢材料的发电特别相关。已提出若干能够实现CCS的发电方法。具有CCS的高效发电领域中的一篇出版物,Allam等人的第8,596,075号美国专利,提供了利用再循环CO2流在闭环氧-燃料燃烧系统中的理想效率。在这种系统中,CO2在高压下被捕获为相对纯的流。
目前关于CO2处理的建议通常需要在高压管线中作为100巴(10MPa)至250巴(25MPa)压力下的高密度超临界流体来输送。这种管线需要高资本支出。经管道输送的CO2被封存在地下地质层,诸如深层盐水层中,或者可用于经济价值,诸如用于提高采油率(EOR)。
将CO2用于EOR需要其在大面积富油地区上可用。这将需要广泛使用在整个地区延伸的管网。这在许多用途中,特别是在离岸油田中变得非常昂贵。因此,有用的是提供易于递送至离岸采油平台的液体形式的大量CO2(诸如由发电系统和方法所生产的)。如果CO2能够以液化形式提供,则可设想从发电设施收集的CO2的其他有益用途。
发明内容
本公开提供了可用于生产液态CO2的系统和方法。所公开的系统和方法可使用来自任何来源的CO2。然而,当与产生高压CO2流、特别是近环境温度的高压CO2流的系统和方法相关时,所述系统和方法可能是特别有利的。本发明的系统和方法的有利之处还在于可生产非常高纯度的液态CO2,特别是具有低水平的氧气、氮气和稀有气体(例如,氩气)。
在某些实施方式中,可用于生产液态CO2的CO2源可为发电系统(特别是氧燃料(oxyfuel)燃烧系统)和发电方法(更具体而言,使用CO2工作流体的燃烧方法)。可从其获得CO2流的发电系统和方法在以下文献中描述:第8,596,075号美国专利、第8,776,532号美国专利、第8,959,887号美国专利、第8,986,002号美国专利、第9,068,743美国专利、第2010/0300063号美国专利申请公开、第2012/0067054号美国专利申请公开、第2012/0237881号美国专利申请公开和第2013/0213049号美国专利申请公开,这些文件以其全部内容通过引用并入本文。
在一些实施方式中,本公开涉及生产低压液态二氧化碳(CO2)流的方法。该方法可包括提供压力为约60巴(6MPa)或更高、约100巴(10MPa)或更高或者在如本文另外公开的压力范围内的高压CO2流。所述方法还可包括分出(divide out)高压CO2流的一部分并使该部分膨胀以形成可用作制冷剂的冷却流。例如,所述冷却流可处于约-20℃或更低的温度或在本文另外公开的温度范围内。所述方法还可包括通过将高压CO2流与冷却流成热交换关系地通过热交换器来将高压CO2流冷却至约5℃或更低(优选约-10℃或更低)的温度。所述方法还可包括膨胀高压CO2流以形成压力低至约6巴(0.6MPa)的低压CO2流。所述方法还可包括使低压CO2流通过能有效地从其中分离蒸汽流并提供低压液态CO2流的分离器。
在另外的实施方式中,本公开涉及可用于生产低压液态二氧化碳(CO2)流的系统。在一些实施方式中,这样的系统可包括一个或多个适于提供高压CO2流的组件、一个或多个热交换器、一个或多个膨胀器(例如,阀)、一个或多个分离器以及一个或多个蒸馏器。在非限制性实例中,根据本公开的系统可包括:适于高压CO2流通过的管道;适于将高压CO2流分成冷却部分和主体流的分配器;适于膨胀和冷却高压CO2流的冷却部分的膨胀器;适于用经加温膨胀(warming expanded)和冷却的高压CO2流的冷却部分来冷却主体高压CO2流的热交换器;适于膨胀和冷却主体高压CO2流以形成两相低压CO2流的膨胀器;适于从两相低压CO2流中去除蒸汽部分的分离器;以及适于去除至少一部分非CO2组分并提供低压液态CO2流的蒸馏器。
在仍然其它实施方式中,本公开涉及从来自发电过程的高压CO2流生产低压液态二氧化碳(CO2)流的方法。在一些实施方式中,该方法可包括在约100巴(10MPa)或更高的压力和约400℃或更高的温度在氧气和再循环CO2流存在下在燃烧器中燃烧碳质或碳氢燃料,以形成包含CO2的燃烧器出口流。燃烧器出口流特别地可处于约200巴(20MPa)至约400巴(40MPa)的压力。燃烧器出口流特别可处于约800℃至约1,600℃的温度。所述方法还可包括在涡轮机中膨胀燃烧器出口流以发电并形成压力为约50巴(5MPa)或更低的包含CO2的涡轮机出口流。涡轮机出口流特别地可处于约20巴(2MPa)至约40巴(4MPa)的压力。所述方法还可包括在热交换器中冷却涡轮机出口流,热传递到加热再循环CO2流中。冷却可至约80℃或更低的温度,诸如近环境温度。所述方法还可包括用环境冷却装置进一步冷却涡轮机排气流并在分离器中分离冷凝水。所述方法还可包括将CO2从涡轮机出口压力泵压至约100巴(10MPa)或更高的压力以形成高压CO2流。特别地,高压CO2流可处于约100巴(10MPa)至约500巴(50MPa)或者约200巴(20MPa)至约400巴(40MPa)的压力。来自经冷却的涡轮机出口流的CO2可被压缩到第一压力,冷却以提高其密度,然后被泵压到上述范围内的第二较高压力。高压CO2流的一部分可在返回到燃烧器中之前被返回通过热交换器以用冷却涡轮机出口流加热。还可在压缩之后和通入燃烧器之前对所述流施加进一步加热,诸如用来自非涡轮机出口流的来源的进一步加热。高压CO2流的一部分(该部分可包含在燃烧中产生的任何净CO2)可被冷却至约5℃或更低的温度,例如在使用制冷剂的热交换器中。制冷剂可包括高压CO2流的一部分,其可以通过将该部分膨胀至约30巴(3MPa)或更低但高于CO2三相点压力的压力而被用作冷却部分。冷却部分可处于约0℃或更低或者约-20℃或更低的温度。在特定实施方式中,高压CO2流的冷却部分可被冷却至约-55℃至约0℃的温度。在热交换器中用CO2冷却部分冷却的高压CO2流的部分以被膨胀至低至约6巴(0.6MPa)的压力(优选始终保持高于CO2三相点压力的压力),以形成低压液态CO2流。特别地,经冷却的高压CO2流的部分可被膨胀至约30巴(3MPa)或更低但高于CO2三相点压力的压力。
如上所述的方法还可包括其它元件。例如,涡轮机出口流的冷却特别地可达到约70℃或更低或者约60℃或更低的温度。可使用一个热交换器或多个热交换器。例如,可使用节能热交换器,之后是冷水热交换器。在冷却之后,所述方法还可包括将包含CO2的涡轮机出口流通过一个或多个分离器以从其中去除至少水。此外,在所述泵压步骤之前,所述方法可包括将包含CO2的涡轮机出口流压缩至至多约80巴(8MPa)的压力(例如,约60巴(6MPa)至约80巴(8MPa)的压力)。此外,所述方法可包括提高包含CO2的涡轮机出口流的密度,诸如通过在冷水热交换器中冷却所述流。例如,密度可被提高到约600kg/m3或更大,约700kg/m3或更大,或约800kg/m3或更大。涡轮机出口流可在增加流密度之前压缩。
所述方法还可包括,在主体高压CO2流于热交换器中的所述冷却之后并于所述膨胀之前,使主体高压CO2流通过再沸器。再沸器可特别地与蒸馏器(例如,汽提塔)组合。因此,再沸器可向蒸馏器提供加热。
所述方法可包括对主体低压液态CO2流的进一步处理。例如,低压液态CO2流可为包含液相和汽相的两相材料。因此,所述方法可包括使低压液态CO2流通过能从其中有效分离蒸汽流的分离器。在一些实施方式中,蒸汽流可占通过分离器的低压液态CO2流的至多约8wt%(特别是,至多约4wt%或至多约6wt%)。在一些实施方式中,蒸汽流可包含约1wt%至约75wt%的CO2。在一些实施方式中,蒸汽流可包含约25wt%至约99wt%的N2、O2和氩(或其它惰性气体)的组合。所述方法还可包括将剩余的低压液态CO2流(例如,在从其中提取汽相之后)通过蒸馏器,诸如汽提塔(其可包括再沸器,如上所述)。
在蒸馏步骤之后,可将液态CO2提供至泵以将其压力增加到期望值。来自泵的冷排出流可被供应到再沸器上游的热交换器,以补充被膨胀以产生制冷剂的高压CO2的冷却负荷。加温(warmed)的制冷剂CO2和/或来自汽提蒸馏塔的塔顶流可被提供至压缩机,该压缩机以与高压CO2流所来源的系统相容的压力排出流。来自分离器的汽相流也可被提供至实施附加分离过程的系统。或者,汽相流可被排出。
根据本公开提供的低压液态CO2流特别地可仅具有非常低的氧浓度。在一些实施方式中,低压液态CO2流可具有不超过约25ppm的氧含量,特别是不超过约10ppm。低压液态CO2流也可以具有类似低浓度的惰性气体,诸如氮气和氩气。
作为非限制性实例,本公开可以涉及以下实施方式。这样的实施方式旨在说明整个公开内容的更广泛的性质。
在一些实施方式中,本公开可提供生产低压液态CO2流的方法。例如,该方法可包括:在约100巴(100MPa)或更高的压力和约400℃或更高的温度以及在再循环CO2流存在下在燃烧器中用氧气燃烧碳质或碳氢燃料,以形成包含CO2的燃烧器出口流;在涡轮机中膨胀燃烧器出口流以发电并形成压力为约50巴(5MPa)或更低的包含CO2的涡轮机出口流;在第一热交换器中冷却涡轮机出口流以形成经冷却的涡轮机出口流;将来自经冷却的涡轮机出口流的CO2泵压至约100巴(10MPa)或更高的压力以形成高压CO2流;将高压CO2流分为主体部分和冷却部分;膨胀高压CO2流的冷却部分以将其温度降低至约-20℃或更低;通过将高压CO2流的主体部分通过第二热交换器用经膨胀的高压CO2流的冷却部分来将高压CO2流的主体部分冷却至约5℃或更低的温度;并且将经冷却的高压CO2流的主体部分膨胀至约30巴(3MPa)或更低但高于CO2三相点压力的压力,从而形成低压液态CO2流。在另外的实施方式中,该方法可包括以下陈述中的一个或多个,这些陈述可以任何数量和任何组合而组合。此外,该方法可包括本文另外描述的任何其它元件。
燃烧器出口流可处于约200巴(20MPa)至约400巴(40MPa)的压力。
燃烧器出口流可处于约800℃至约1,600℃的温度。
包含CO2的涡轮机出口流可处于约20巴(2MPa)至约40巴(4MPa)的压力。
涡轮机出口流可在热交换器中冷却至约80℃或更低的温度。
所述方法还可包括使经冷却的包含CO2的涡轮机出口流通过一个或多个分离器以从其中去除至少水。
所述方法还可包括在热交换器中用涡轮机出口流加热氧气和再循环CO2流中的一种或两种。
高压CO2流可处于约200巴(20MPa)至约400巴(40MPa)的压力。
高压CO2流的主体部分可被冷却至约-55℃至约0℃的温度。
所述方法还可包括在高压CO2流的主体部分的冷却之后并且在高压CO2流的主体部分的膨胀之前,使高压CO2流的主体部分通过再沸器。
再沸器可在汽提塔中。
所述方法还可包括使低压液态CO2流通过能有效地从其中分离蒸汽流的分离器。
蒸汽流可占通过分离器的低压液态CO2流的至多约8wt%。
蒸汽流可包含约1wt%至约75wt%的CO2和约25wt%至约99wt%N2、O2和氩气中的一种或多种。
所述方法还可包括将剩余的低压液态CO2流通入汽提塔。
离开汽提塔的低压液态CO2流可具有不超过约25ppm的的氧含量。
所述方法可包括将低压液态CO2流泵压至至少约100巴(10MPa)的压力。
所述方法可包括将经泵压的液态CO2流输送到CO2管线。
所述方法还可包括将来自汽提塔的塔顶蒸汽与离开第二热交换器的高压CO2流的冷却部分相混合。
所述方法还可包括将来自汽提塔的塔顶蒸汽和离开第二热交换器的高压CO2流的冷却部分的混合物添加到经冷却的涡轮机出口流中。
在另外的示例性实施方式中,本公开可提供设置用于生产低压液态CO2流的系统。例如,所述系统可包括:分流器,其设置为将高压CO2流分成第一部分和第二部分;第一膨胀器,其被设置用于膨胀和冷却高压CO2流的第一部分;热交换器,其用于将高压CO2流的第二部分用离开膨胀器的经冷却的高压CO2流的第一部分冷却;以及第二膨胀器,其被设置用于膨胀经冷却的高压CO2流的第二部分以形成低压液态CO2流。在另外的实施方式中,这样的系统可包括以下陈述中的一个或多个,这些陈述可以以任何数量和任何组合而组合。此外,这种系统可包括本文另外描述的任何其它元件。
第一膨胀器可被设置用于将高压CO2流的第一部分冷却至约-20℃或更低的温度。
热交换器可被设置用于将高压CO2流的第二部分冷却至约5℃或更低的温度。
第二膨胀器可设置为将经冷却的高压CO2流的第二部分膨胀至约30巴(3MPa)或更低但高于CO2三相点压力的压力。
所述系统还可包括组合的汽提塔和再沸器。
汽提塔可连接在第二膨胀器的下游,并且再沸器可连接在热交换器的下游和第二膨胀器的上游。
所述系统还可包括位于第二膨胀器下游和汽提塔上游的液/汽分离器。
所述系统还可包括压缩机,其被设置用于接收来自热交换器的高压CO2流的第一部分。
所述系统还可包括:燃烧器,其被设置用于在约100巴(10MPa)或更高的压力和约400℃或更高的温度在再循环CO2流的存在下在燃烧器中燃烧碳质或碳氢燃料,以形成包含CO2的燃烧器出口流;涡轮机,其被设置用于膨胀燃烧器出口流以发电并形成包含CO2的涡轮机出口流;另外的热交换器(further heat exchanger),其被设置用于冷却涡轮机出口流;以及泵,其被设置用于从泵压来自经冷却的涡轮机出口流的CO2以形成高压CO2流。
所述发明包括以下实施方式,但不限于此。
实施方式1:生产低压液态二氧化碳(CO2)流的方法,所述方法包括:在约100巴(10MPa)或更高的压力和约400℃或更高的温度以及在再循环CO2流的存在下,在燃烧器中用氧气燃烧碳质或碳氢燃料以形成包含CO2的燃烧器出口流;在涡轮机中膨胀燃烧器出口流以发电并形成压力为约50巴(5MPa)或更低的包含CO2的涡轮机出口流;在第一热交换器中冷却涡轮机出口流以形成经冷却的涡轮机出口流;将来自经冷却的涡轮机出口流的CO2泵压至约100巴(10MPa)或更高的压力以形成高压CO2流;将高压CO2流分成主体部分和冷却部分;膨胀高压CO2流的冷却部分以将其温度降低至约-20℃或更低;通过使高压CO2流的主体部分通过第二热交换器用经膨胀的高压CO2流的冷却部分的第二热交换器将高压CO2流的主体部分冷却至约5℃或更低的温度;并将经冷却的高压CO2流的主体部分膨胀到约30巴(3MPa)或更低但高于CO2三相点压力的压力,以形成低压液态CO2流。
实施方式2:任何前述或后续实施方式的方法,其中燃烧器出口流处于约200巴(20MPa)至约400巴(40MPa)的压力。
实施方式3:任何前述或后续实施方式的方法,其中燃烧器出口流处于约800℃至约1,600℃的温度。
实施方式4:任何前述或后续实施方式的方法,其中包含CO2的涡轮机出口流处于约20巴(2MPa)至约40巴(4MPa)的压力。
实施方式5:任何前述或后续实施方式的方法,其中涡轮机出口流在热交换器中被冷却至约80℃或更低的温度。
实施方式6:任何前述或后续实施方式的方法,还包括使包含CO2的冷却涡轮机出口流通过一个或多个分离器以从其去除至少水。
实施方式7:任何前述或后续实施方式的方法,还包括在热交换器中用涡轮机出口流加热氧气和再循环CO2流中的一种或两种。
实施方式8:任何前述或后续实施方式的方法,其中高压CO2流处于约200巴(20MPa)至约400巴(40MPa)的压力。
实施方式9:任何前述或后续实施方式的方法,其中高压CO2流的主体部分被冷却至约-55℃至约0℃的温度。
实施方式10:任何前述或后续实施方式的方法,还包括在高压CO2流的主体部分的所述冷却之后和在高压CO2流的主体部分的所述膨胀之前,使高压CO2流的主体部分通过再沸器。
实施方式11:任何前述或后续实施方式的方法,其中再沸器在汽提塔中。
实施方式12:任何前述或后续实施方式的方法,还包括使低压液态CO2流通过能有效地从其中分离蒸汽流的分离器。
实施方式13:任何前述或后续实施方式的方法,其中蒸汽流占通过分离器的低压液态CO2流的至多约8wt%。
实施方式14:任何前述或后续实施方案的方法,其中蒸汽流包含约1wt%至约75wt%的CO2和约25wt%至约99wt%的N2、O2和氩气中的一种或多种。
实施方式15:任何前述或后续实施方式的方法,还包括将剩余的低压液态CO2流通入汽提塔。
实施方式16:任何前述或后续实施方式的方法,其中离开汽提塔的低压液态CO2流具有不超过约25ppm的氧含量。
实施方式17:任何前述或后续实施方式的方法,包括将低压液态CO2流泵压至至少约100巴(10MPa)的压力。
实施方式18:任何前述或后续实施方式的方法,包括将经泵压的液态CO2流输送到CO2管线。
实施方式19:任何前述或后续实施方式的方法,还包括将来自汽提塔的塔顶蒸汽与离开第二热交换器的高压CO2流的冷却部分相混合。
实施方式20:任何前述实施方式的方法,还包括将混合物加入到经冷却的涡轮机出口流中。
实施方式21:设置用于生产低压液态二氧化碳(CO2)流的系统,所述系统包括:分流器,其被设置用于将高压CO2流分成第一部分和第二部分;第一膨胀器,其被设置用于膨胀和冷却高压CO2流的第一部分;热交换器,其用于用离开膨胀器的经冷却的高压CO2流的第一部分来冷却高压CO2流的第二部分;以及第二膨胀器,其被设置用于使经冷却的高压CO2流的第二部分膨胀以形成低压液态CO2流。
实施方式22:任何前述或后续实施方式的系统,其中第一膨胀器被设置用于将高压CO2流的第一部分冷却至约-20℃或更低的温度。
实施方式23:任何前述或后续实施方式的系统,其中热交换器设置为将高压CO2流的第二部分冷却至约5℃或更低的温度。
实施方式24:任何前述或后续实施方式的系统,其中第二膨胀器设置为将经冷却的高压CO2流的第二部分膨胀至约30巴(3MPa)或更低但高于CO2三相点压力的压力。
实施方式25:任何前述或后续实施方式的系统,还包括组合的汽提塔和再沸器。
实施方式26:任何前述或后续实施方式的系统,其中汽提塔连接在第二膨胀器下游且其中再沸器连接在热交换器的下游和第二膨胀器的上游。
实施方式27:任何前述或后续实施方式的系统,还包括位于第二膨胀器下游和汽提塔上游的液/汽分离器。
实施方式28:任何前述或后续实施方式的系统,还包括设置为接收来自热交换器的高压CO2流的第一部分的压缩机。
实施方式29:任何前述实施方式的系统,还包括:燃烧器,其被设置用于在约100巴(10MPa)或更高的压力和约400℃或更高的温度以及在再循环CO2流的存在下在燃烧器中用氧气燃烧碳质或碳氢燃料,以形成包含CO2的燃烧器出口流;涡轮机,其被设置用于膨胀燃烧器出口流以发电并形成包含CO2的涡轮机出口流;另外的热交换器,其被设置用于冷却涡轮机出口流;以及泵,其被设置用于泵压来自经冷却的涡轮机出口流的CO2以形成高压CO2流。
通过阅读下面的详细描述以及下面将要简要描述的附图,本发明的这些和其它特征、方面和优点将变得显而易见。本发明包括上述实施方式中的两个、三个、四个或更多个的任何组合,以及本公开中阐述的任何两个、三个、四个或更多个特征或元件的组合,而不管这些特征或元件在本文的具体实施方式的描述中被明确地组合。除非上下文另有明确规定,本公开旨在整体地阅读,使得在其任何方面和实施方式中的任何本公开发明的任何可分离的特征或元件应被视为旨在可组合。
附图说明
现在将参考附图,其不一定按比例绘制,并且其中:
图1示出了根据本公开的实施方式的用于形成低压液态CO2流的系统的流程图;和
图2示出了根据本公开的实施方式的用于利用从发电过程取得的高压CO2流的一部分形成低压液态CO2流的系统的流程图。
具体实施方式
现在将在下文中参考其示例性实施方式更全面地描述本主题。描述这些示例性实施方式,使得本公开将是彻底和完整的,并且将向本领域技术人员充分传达主题的范围。实际上,主题可以以许多不同的形式实施,并且不应被解释为限于本文所阐述的实施方式;相反,提供这些实施方式使得本公开将满足适用的法律要求。如在说明书和所附权利要求中所使用,单数形式“一/一个/中(a或an)”、“所述/该(the)”包括复数指示物,上下文另有明确规定除外。
本公开涉及适用于生产低压液态二氧化碳(CO2)的系统和方法。所述系统和方法特别可适于引入包含非液态CO2(例如,气态CO2或超临界CO2)的流并将至少一部分非液态CO2转化为液态CO2。引入流可包括液态CO2部分;然而,引入流优选包含不超过约25wt%、不超过约10wt%、不超过约5wt%或不超过约2wt%的液态CO2
根据本公开生产的液态CO2可在低压下生产,因为所生产的液态CO2的压力小于50巴(5MPa)但高于CO2三相点压力,以优选地避免固态CO2的大量形成。在一些实施方式中,所生产的液态CO2的压力可低至约6巴(0.6MPa)、特别是约30巴(3MPa)至约6巴(0.6MPa)、约25巴(2.5MPa)至约6巴(0.6MPa)或约15巴(1.5MPa)至约6巴(0.6MPa)。所产生的液态CO2的温度优选地在给定压力下的饱和温度的范围内。例如,温度可在约5℃至约-55℃、约-5℃至约-55℃或约-15℃至约-55℃的范围内。
根据本公开实施方式的生产液态CO2的方法通常可包括冷却和膨胀来自引入流的CO2。取决于引入流的来源,所述方法可包括一个或多个压缩步骤。在优选实施方式中,引入的CO2可处于约60巴(6MPa)或更高、约100巴(10MPa)或更高或约200巴(20MPa)或更高的压力。在其他实施方式中,引入的CO2的压力可处于约60巴(6MPa)至约400巴(40MPa)的范围内。引入的CO2的温度可高于10℃,或者可在约10℃至约40℃、约12℃至约35℃或约15℃至约30℃的范围内。在一些实施方式中,引入的CO2可处于约环境温度。
图1中示出了根据本公开的用于生产液态CO2的系统和方法的实施方式。如图所示,高压CO2流24可经由通过水冷却器50(根据高压CO2流的实际温度,其可为任选的)来冷却。然后使用分流器68(或设置用于分流的其它合适系统元件)将高压CO2流24分成第一部分和第二部分,以提供可被膨胀的高压CO2侧流57,诸如通过阀58或其他合适装置,以形成冷却CO2流56。剩余的高压CO2流62通过热交换器10,在那里其被冷却CO2流56冷却,后者作为CO2流33离开。离开热交换器10冷端的经冷却的高压CO2流51可处于约5℃或更低的温度、约0℃或更低、约-10℃或更低或者约-20℃或更低(例如,约5℃至约-40℃或约0℃至约-35℃)。经冷却的高压CO2流51可被膨胀以形成液态CO2流。如图1所示,经冷却的高压CO2流51首先通过再沸器52,再沸器52是图1中汽提塔53的一部分,从而为其中的蒸馏提供加热,这在下面进一步描述。因此通过再沸器可以是任选的。离开再沸器52的高压CO2流55被膨胀以形成处于上述范围内的温度和压力下的低压液态CO2流35。在图1中,流55通过阀48膨胀,但是可使用用于膨胀经压缩的CO2流的任何装置。例如,膨胀装置可为诸如涡轮机的工作生产系统,其降低入口和出口之间的CO2的焓,并进一步降低出口温度。
高压CO2流(例如,约60巴(6MPa)至约400巴(40MPa)范围内)膨胀以形成低压CO2流(例如,约30巴(3MPa)或大于CO2三相点压力的压力)可得到由具有与输入到阀(或其它膨胀装置)的CO2流相同的总焓的气和液混合物形成的两相产物流。离开阀(或者根据上文所述的示例性替代实施方式的涡轮机)的两相混合物的温度特别地可处于减压下的液体饱和温度。在图1中,离开阀58的流56和离开阀48的流35都可为两相流。离开阀48的两相低压CO2流35可通过分离器9以提供CO2蒸汽部分流49和CO2液态部分流36。
在其中输入高压CO2流来自氧燃烧发电系统的实施方式中,可从低压液态CO2流中分离的蒸汽部分将包含存在于氧源和燃料源(例如,天然气)中的大部分惰性气体(例如,氮气,过量的O2,和惰性气体,例如氩气)。作为非限制性实例,氧燃烧发电过程可用1%过量的氧气流进入燃烧器来实施,氧气流由近似99.5%的氧气和0.5%的氩气形成。得到的净CO2产物可包括2%浓度的O2和1%浓度的氩。
根据本发明,通过间接冷却装置将来自如上所例示的电力系统的CO2产物冷却至当通过阀膨胀至例如10巴(1MPa)的压力时的温度,这导致近似4%的闪蒸蒸汽(flashvapor)部分。在多个实施方式中,蒸汽部分可为总液态CO2流(例如,图1中的流35)的至多约6wt%、至多约5wt%或至多约4wt%。蒸汽流(例如,图1中的流49)可包含约1wt%至约75wt%的CO2和约25wt%至约99wt%的N2、O2和氩气(或其它惰性气体)的组合。在另外的实施方式中,蒸汽流可包含约60wt%或更多、约65wt%或更多或者约70wt%或更多的N2、O2和氩气(或其它惰性气体)的组合。闪蒸蒸汽部分(例如,图1中离开分离器9的流49)可被排放到大气中或被捕获。闪蒸蒸汽流的生产在其中输入CO2流来源于氧燃烧过程的实施方式中是有益的,因为蒸汽部分的去除将防止惰性氩气和/或氮气的积聚(其可存在于所燃烧的天然气和/或煤衍生燃料气中并且其可存在于源自低温空气分离随机设备的氧气流中)。为形成闪蒸蒸汽部分,有用的可以是在膨胀之前将高压CO2流(例如,图1中的流62)冷却至约-30℃或更低或者约-33℃或更低的温度。在其中输入高压CO2流来源于可能基本或完全不含惰性气体(和任选的氧气)的来源的实施方式中,可无需形成闪蒸蒸汽部分。在于氧-燃料发电生产过程中使用含有大量N2的天然气燃料的实施方案中,有用的可以是调节流51所被冷却到的温度,以确保去除流49中的主要N2以及O2和氩气,同时最少损失流49中的CO2
优选地,来自输入CO2流的O2和氩气(和其它惰性气体)浓度的大部分在闪蒸蒸汽部分中被去除,使得CO2液态部分流(例如,图1中的流36)仅具有少量的N2、O2和氩气浓度-例如,约1wt%或更低、约0.5wt%或更低或者约0.2wt%或更低。可诸如通过使用蒸馏装置(例如,图1中的汽提塔53)从CO2液态部分流中脱除少量的N2、O2和氩气浓度。或者可替代图1所示,脱除部分可被装配在闪蒸分离器的下部。在利用汽提塔的实施方式中,可包括再沸器(如上所述的图1中的部件52)以从部分或全部的高压CO2流(例如,图1中的流51)中提取剩余的可用热。可改变这种加热以提供必要的液汽比,以降低净液态CO2产物(图1中的流54)中的氧浓度。净液态CO2流中的氧浓度可不超过约25ppm,不超过约20ppm,或不超过约10ppm。
在另外的实施方式中,可将产物液态CO2流54泵压到高压并在热交换器10(或在另外的热交换器中或通过另外的装置)中加热,以输送到CO2管线中。产物液态CO2流特别地可被泵压到约100巴(10MPa)至约250巴(25MPa)的压力。
返回到图1所示,离开汽提塔53的顶部产品63在需要时可被进一步降低压力,诸如在阀64中,然后与CO2流33合并。经合并的流可在压缩机34中被压缩以提供返回高压CO2流21,后者可例如与输入高压CO2流24合并或被添加到另外的含CO2流中(参见图2)。
前述用于形成低压液态CO2流的实施方式在经济上是理想的,因为净低压CO2流(例如,图1中的流35)中的约95wt%或更多、约96wt%或更多或约97wt%或更多的CO2可作为低压液态CO2流去除。在上述实施方式中,约1.5wt%至约2.5wt%的净CO2产物可与N2、O2和氩气合并流(例如,图1中的流49)一起排放到大气中,从而提供约97.5%至约98.5%的CO2去除效率。在其中上述方法与使用CO2作为工作流体的闭环电力系统联合执行的实施方式中,流49优选被排放到大气中,因为惰性组分的去除需要保持其分压和浓度尽可能低。任选地,流59在于阀60中减压之后可穿过热交换器10中的通道组,以在流59被排放之前提供用于冷却流62的额外制冷。
输入高压CO2流24的利用提供了向高压CO2流提供间接冷却的独特能力。如上述实施方式所述,间接冷却可通过在近环境温度分出高压CO2流的一部分,然后将该分出的高压CO2流的一部分膨胀至约-20℃或更低、约-30℃或更低或者约-40℃或更低(例如,近似-40℃至约-55℃)的温度。这可通过将高压CO2流24的压力降低至低于约20巴(2MPa)、低于约10巴(1MPa)或低于约8巴(0.8MPa)(例如,约20巴(2MPa)至约5巴(0.5MPa)或约12巴(1.2MPa)至约5巴(0.5MPa),特别是约5.55巴(0.555MPa))来实现。所得到的液加汽流(例如,图1中的流56)随后用于在热交换器中对主体高压CO2流进行间隔冷却。
当与利用CO2工作流体的发电方法结合使用时,本公开的系统和方法是特别有利的,诸如第8,596,075号美国专利,其公开内容通过引用整体并入本文。特别地,这种方法可使用膨胀高压再循环CO2流和由燃料燃烧产生的燃烧产物的混合物的高压/低压比涡轮机。可使用任何化石燃料,特别是碳质燃料。优选地,所述燃料是气体燃料;然而,非气体燃料不必被排除。非限制性实例包括天然气、压缩气体、燃料气体(例如,包括H2、CO、CH4、H2S和NH3中的一种或多种)和类似的可燃气体。还可使用固体燃料-例如煤、褐煤、石油焦炭、沥青等,同时加入必需的系统元件(诸如,使用部分氧化燃烧器或气化器来将固体或重质液态燃料转化为气体形式)。也可使用液态碳氢燃料。纯氧可用作燃烧过程中的氧化剂。热涡轮机排气用于部分预热高压再循环CO2流。再循环CO2流也使用源自CO2压缩机的压缩能的热来加热,如本文进一步所讨论的。所有燃料和燃烧产生的杂质(诸如硫化合物、NO、NO2、CO2、H2O、Hg等)都可被分离弃置而不排放到大气。包括CO2压缩系列(compression train),其包括确保最小增量功耗的高效单元。CO2压缩系列可特别地提供再循环CO2燃料压缩机流,后者可被部分再循环到燃烧器并部分作为输入高压CO2流而被导入液态CO2生产部件。
图2,例如示出了与如本文所述的元件组合的发电系统,以生产源自初级燃料(primary fuel)中的碳的净CO2产物,所述初级燃料为低压液态形式,其中氧含量在如本文所述的最小范围内。下面结合图2的实例描述了这种系统的实施方式。
CO2净产品总流量的大小可根据所用燃料的性质而变化。在利用天然气燃料的实施方式中,CO2净产品总流量可为再循环CO2燃料压缩机总流量的约2.5%至约4.5%(例如,约3.5%)。在利用典型的烟煤(例如,伊利诺斯州6号(Illinois No.6))的实施方式中,CO2净产品总流量可为再循环CO2燃料压缩机总流量的约5%至约7%(例如,约6%)。用于制冷的再循环CO2的量可在净CO2产物流量的约15wt%至约35wt%或约20wt%至约30wt%(例如约25wt%)的范围内。
在一些实施方式中,液化天然气(LNG)可以如第2013/0104525号美国专利公开所述的方式用作制冷源,该公开内容通过引用整体并入本文。在特定的实施方式中,LNG可被加热到接近CO2涡轮机排气冷凝温度的温度(例如,在约20巴(2MPa)至约40巴(4MPa)的压力下)。离开水分离器的涡轮机排气流可在干燥剂干燥器中干燥至低于约-50℃的露点,然后使用源自高压LNG的制冷进行液化,而后者又被加热。液态CO2现在可使用多级离心泵被泵压至约200巴(20MPa)至约400巴(40MPa)的压力。高压天然气的温度将通常在约-23℃(对于以约20巴(2MPa)离开节能热交换器的涡轮机排气)至约0℃(对于以约40巴(4MPa)离开节能热交换器的涡轮机排气)的范围内,使用这些压力下CO2饱和温度的5℃以内。这种冷的高压天然气可在膨胀之前用于预冷却处于约60巴(6MPa)至约400巴(40MPa)的高压CO2,以生产约6巴(0.6MPa)至约30巴(3MPa)的压力范围内的液态CO2。这种制冷可通过源自如上所述的高压CO2的膨胀的附加制冷来补充,以提供经冷却的净CO2产物的温度,该产物在膨胀至所需的液态CO2产物的压力时得到包含约50wt%至约80wt%的(O2+N2+Ar)的气体部分。其效果是显著减少必须再循环用于制冷的额外CO2的量。
实施例
通过以下实施例进一步说明本公开的实施方式,其被阐述以说明本公开的主题,而不应被解释为限制性的。下面描述组合发电系统及方法以及用于生产低压液态CO2的系统及方法的实施方式,如图2所示。
如图2所示,在压缩机44中将约40巴(4MPa)的天然气燃料流42(在本实例中为纯甲烷)压缩至约320巴(32MPa),以提供经压缩的天然气燃料流43,后者又进入燃烧室1,在这里其在经预热的氧化剂流38中燃烧,所述经预热的氧化剂流38包含约23wt%的氧气与约77wt%的稀释剂CO2的混合物。在所示实施方式中,总氧量包含比化学计量燃烧所需者多近似1wt%的氧气。燃烧产物在燃烧器1中用约304巴(30.4MPa)和约707℃的经加热的再循环CO2流37稀释。温度为约1153℃的燃烧器出口流39被通入涡轮机2的入口,所述涡轮机与发电机3和主CO2再循环压缩机4相连。
燃烧器出口流39在涡轮机2中被膨胀以提供约30巴(3MPa)和约747℃的涡轮机出口流45,后者又被通过节能热交换器15并被冷却至约56℃,作为经冷却的涡轮机出口流16离开。经冷却的涡轮机出口流16用冷却水在水冷却器7中进一步冷却到近环境温度(图2中的流17)。将经冷却的涡轮机出口流17通过分离器6,在这里液态水流18与气态CO2塔顶流19中分离,后者自身被分成分开的流(图2中的流22和20)。
气态CO2塔顶主体流22进入CO2再循环压缩机4,后者与中间冷却器5一起工作并将环境温度的气态CO2塔顶主体流22(来自涡轮机出口流45)从约28.2巴(2.82MPa)压缩至约63.5巴(6.35MPa)的压力-即经压缩的CO2流23。
气态CO2塔顶部分流20用于稀释由低温空气分离设备14产生的99.5%O2流28(其处于约28巴(2.8MPa)的压力)。合并的流20和28形成低压氧化剂流26,后者在带有中间冷却器12的压缩机11中被压缩至约320巴(32MPa)(流27)。高压氧化剂流27在节能热交换器中被加热,作为经预热的氧化剂流38(约304巴(30.4MPa)和约707℃)离开。
从加热高压再循环CO2流中提取110℃的第一侧流32,并在侧热交换器13中用热传递流体(作为流30进入侧热交换器并作为流29离开)加热至约154℃(图2中的流31),所述热传递流体从低温空气分离设备14中的空气压缩机去除压缩热。ASU具有大气空气进料40和排出到大气的废氮出口流41。
从加热高压再循环CO2流中提取约400℃的第二侧流61,并将其在涡轮机2中用于内部冷却。
处于约63.5巴(6.35MPa)和约51℃的经压缩的CO2流23在热交换器46中用冷却水冷却,以提供处于约17.5℃且密度约为820kg/m3的流47,所述流47在多级离心泵8中被泵压至约305巴(30.5MPa)的压力。泵排出流分为两部分。
来自泵排出流的高压再循环CO2流25通过节能热交换器15,并且用作从其获取第一测流和第二测流(如上所述)的流的作用。
来自泵排出流的流24包括源自天然气中的碳的净CO2产物流。流24优选可包括用于制冷的另外的CO2含量。另外的CO2含量可为再循环CO2的至多约50wt%、至多约40wt%或至多约30wt%。在一些实施方式中,另外的CO2含量可为再循环CO2的约5wt%至约45wt%,约10wt%至约40wt%或约15wt%至约35wt%。
将高压CO2流24在水冷却器50中冷却至近环境温度并分成两部分。高压CO2部分流57的压力在阀58中降低至约8.2巴(0.82MPa),以形成冷却CO2流56,其在约-45℃的温度是两相混合物。冷却CO2流56通过热交换器10,在那里其蒸发并加热至近环境温度,作为CO2流33离开。
高压净CO2产物流62直接通入热交换器10,在那里将其用冷却CO2流56冷却至约-38℃的温度,作为经冷却的高压净CO2产物流51离开。然后将该流通过在汽提塔53底部的小型再沸器52作为流55离开。该流在阀48中压力被降低至约10巴(1MPa),以形成两相净CO2产物流35,后者随后通过分离器9。
离开分离器9顶部的塔顶蒸汽流49包含两相净CO2产物流35流量的约4wt%,并且由约30wt%的CO2和约70wt%的O2和氩气的组合形成。塔顶蒸汽流49的压力在阀60中减小,然后被排放到大气(图2中的流59)。任选地,流59可在热交换器10中加热到接近环境温度,提供额外的制冷,然后进一步加热至高于环境温度,以使排气流上浮。
离开分离器9的液态CO2流36处于约10巴(1MPa)的压力,其包含两相净CO2产物流35流量的约96wt%。流36被进料到汽提塔53的顶部。
离开汽提塔53底部的是低压液态CO2产物流54,其包括由进料至电力系统的初级燃料中的碳产生的CO2。在所示实施方式中,流54的氧含量低于10ppm。
离开汽提塔53的顶部产物流63的压力在阀64中降低至约8巴(0.8MPa),并被添加到CO2流33中。合并的流33和63在压缩机34中被压缩至约28.5巴(2.85MPa)。在CO2压缩机34中压缩的排出流21与气态塔顶主体流22混合并在CO2压缩机4和泵8中被压缩回约305巴(30.5MPa)。
在上述实施例中,提供了具体值(例如,温度、压力和相对比率)以示出本公开的示例性实施方式的工作条件。这些值并不意味着限制本公开,并且应当理解,这些值可在本文另外公开的范围内变化,以根据本文提供的总体描述来实现进一步的工作实施。
受益于前述描述和相关附图中所呈现的教导,本主题所属领域的技术人员将会想到本公开主题的许多修改和其它实施方式。因此,应当理解,本公开不限于本文所述的具体实施方式,并且修改和其他实施方式旨在被包括在所附权利要求的范围内。尽管本文采用了具体的术语,但它们仅在通用和描述性意义上使用,而不是为了限制的目的。

Claims (26)

1.设置为生产低压二氧化碳(CO2)流的系统,所述系统包括:
分流器,其设置为将高压CO2流分成第一部分和第二部分;
第一膨胀器,其设置为用于膨胀高压CO2流的第一部分并将高压CO2流的第一部分冷却至约-20℃或更低的温度;
热交换器,其用于将高压CO2流的第二部分用离开膨胀器的经冷却的高压CO2流的第一部分冷却;和
第二膨胀器,其设置为用于将经冷却的高压CO2流的第二部分膨胀以形成低压液态CO2流。
2.根据权利要求1所述的系统,其中热交换器设置为将高压CO2流的第二部分冷却至约5℃或更低的温度。
3.根据权利要求1所述的系统,其中第二膨胀器设置为用于将经冷却的高压CO2流的第二部分膨胀到约30巴(3MPa)或更低但高于CO2的三相点的压力。
4.根据权利要求1所述的系统,还包括组合的汽提塔和再沸器。
5.根据权利要求4所述的系统,其中汽提塔连接在第二膨胀器的下游,并且其中再沸器连接在热交换器的下游和第二膨胀器的上游。
6.根据权利要求5所述的系统,还包括位于第二膨胀器下游和汽提塔上游的液/汽分离器。
7.根据权利要求1所述的系统,还包括设置用于接收来自热交换器的高压CO2流的第一部分的压缩机。
8.根据权利要求1所述的系统,还包括:
燃烧器,其设置为在约100巴(10MPa)或更高的压力和约400℃或更高的温度在再循环CO2流存在下在燃烧器中用氧气燃烧碳质或碳氢燃料,以形成包含CO2的燃烧器出口流;
涡轮机,其设置用于膨胀燃烧器出口流以发电并形成包含CO2的涡轮机出口流;
另外的热交换器,其设置用于冷却涡轮机出口流;和
泵,其设置用于泵压来自经冷却的涡轮机出口流的CO2以形成高压CO2流。
9.生产低压二氧化碳(CO2)流的方法,所述方法包括:
提供压力为约60巴(60MPa)或更高的包含高压CO2的流;
将含高压CO2的流分为主体部分和冷却部分;
将含高压CO2的流的冷却部分膨胀以将其温度降低至约0℃或更低;
通过将含高压CO2的流的主体部分通过热交换器以用经膨胀的含高压CO2的流的冷却部分将含高压CO2的流的主体部分冷却至约5℃或更低的温度;和
将经冷却的含高压CO2的流的主体部分冷却至约30巴(3MPa)或更低但高于CO2的三相点压力的压力以形成低压液态CO2流。
10.如权利要求9所述的方法,其中含高压CO2的流处于约60巴(6MPa)至约400巴(40MPa)的压力。
11.如权利要求9所述的方法,其中将含高压CO2的流的冷却部分膨胀以将其温度降低至约-20℃或更低。
12.如权利要求9所述的方法,其中将含高压CO2的流的主体部分冷却至约0℃或更低的温度。
13.如权利要求9所述的方法,其中将含高压CO2的流的主体部分冷却至约-55℃至约0℃的温度。
14.如权利要求9所述的方法,还包括在含高压CO2的流的主体部分的所述冷却之后并且在含高压CO2的流的主体部分的所述膨胀之前,使含高压CO2的流的主体部分通过再沸器。
15.如权利要求14所述的方法,其中再沸器在汽提塔中。
16.如权利要求9所述的方法,还包括将低压液态CO2流通过能从其中有效分离蒸汽流的分离器。
17.如权利要求16所述的方法,其中蒸汽流占通过分离器的低压液态CO2流的至多约8wt%。
18.如权利要求16所述的方法,其中蒸汽流包含约1wt%至约75wt%的CO2和约25wt%至约99wt%的N2、O2和氩中的一种或多种。
19.如权利要求16所述的方法,还包括将剩余的低压液态CO2流通入汽提塔。
20.如权利要求19所述的方法,其中离开汽提塔的低压液态CO2流的氧含量不多于约25ppm。
21.如权利要求19所述的方法,包括将低压液态CO2流泵压至至少约100巴(10MPa)的压力。
22.如权利要求9所述的方法,其中含高压CO2的流为来自发电过程的再循环流。
23.如权利要求22所述的方法,其中含高压CO2的流中的CO2至少部分来源于发电过程中碳质燃料的燃烧。
24.如权利要求23所述的方法,其中碳质燃料包括气体燃料。
25.如权利要求23所述的方法,其中碳质燃料包括固体燃料。
26.如权利要求9所述的方法,还包括在强化采油(EOR)过程中使用低压液态CO2流。
CN201911171405.0A 2014-09-09 2015-09-03 从发电系统和方法生产低压液态二氧化碳 Pending CN111005779A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462047744P 2014-09-09 2014-09-09
US62/047,744 2014-09-09
CN201580057985.4A CN107108233B (zh) 2014-09-09 2015-09-03 从发电系统和方法生产低压液态二氧化碳

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201580057985.4A Division CN107108233B (zh) 2014-09-09 2015-09-03 从发电系统和方法生产低压液态二氧化碳

Publications (1)

Publication Number Publication Date
CN111005779A true CN111005779A (zh) 2020-04-14

Family

ID=54249568

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201911171405.0A Pending CN111005779A (zh) 2014-09-09 2015-09-03 从发电系统和方法生产低压液态二氧化碳
CN201580057985.4A Expired - Fee Related CN107108233B (zh) 2014-09-09 2015-09-03 从发电系统和方法生产低压液态二氧化碳

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201580057985.4A Expired - Fee Related CN107108233B (zh) 2014-09-09 2015-09-03 从发电系统和方法生产低压液态二氧化碳

Country Status (15)

Country Link
US (1) US10047673B2 (zh)
EP (2) EP3438049B1 (zh)
JP (2) JP6629843B2 (zh)
KR (2) KR102625300B1 (zh)
CN (2) CN111005779A (zh)
AU (2) AU2015315557B2 (zh)
BR (1) BR112017004492A2 (zh)
CA (1) CA2960195C (zh)
EA (2) EA033135B1 (zh)
ES (2) ES2688804T3 (zh)
MX (1) MX2017003202A (zh)
MY (1) MY176626A (zh)
PL (2) PL3438049T3 (zh)
WO (1) WO2016040108A1 (zh)
ZA (1) ZA201701662B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114958430A (zh) * 2022-04-27 2022-08-30 广东工业大学 一种副产氢气的二氧化碳自循环式生物质高温气化系统及方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018003913A2 (pt) * 2015-09-01 2018-09-25 8 Rivers Capital Llc sistemas e métodos para produção de energia usando ciclos de co2 embutidos
US10239381B2 (en) * 2017-01-23 2019-03-26 TSI Products, Inc. Vehicle roof fan
CN111094720B (zh) * 2017-08-28 2023-02-03 八河流资产有限责任公司 回热式超临界co2动力循环的低等级热优化
PL3759322T3 (pl) * 2018-03-02 2024-03-18 8 Rivers Capital, Llc Układy i sposoby wytwarzania energii z wykorzystaniem płynu roboczego z dwutlenku węgla
CN109441573B (zh) * 2018-11-02 2021-07-23 中国石油大学(华东) 用于调峰的零碳排放天然气联合发电工艺
US11193421B2 (en) 2019-06-07 2021-12-07 Saudi Arabian Oil Company Cold recycle process for gas turbine inlet air cooling
GB201917011D0 (en) 2019-11-22 2020-01-08 Rolls Royce Plc Power generation system with carbon capture
US11359858B2 (en) * 2019-12-31 2022-06-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for liquefying ammonia
GB2603743A (en) * 2020-12-07 2022-08-17 Lge Ip Man Company Limited Method and apparatus for recovering carbon dioxide from a combustion engine exhaust
RU2759793C1 (ru) * 2021-02-26 2021-11-17 Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН) Установка для выработки тепловой и механической энергии и способ ее работы
WO2024043605A1 (ko) * 2022-08-22 2024-02-29 한양대학교 산학협력단 고농도 이산화탄소 가스 혼합물로부터 이산화탄소를 분리하기 위한 저온 증류 분리막 공정

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1284177C (en) * 1987-02-04 1991-05-14 John T. Crawford Power plant using co _as a working fluid
CN101460801A (zh) * 2006-04-03 2009-06-17 普莱克斯技术有限公司 二氧化碳纯化方法
CN101852490A (zh) * 2010-05-31 2010-10-06 华北电力大学(保定) 一种空气能二氧化碳热泵热水器
US20130104525A1 (en) * 2011-11-02 2013-05-02 8 Rivers Capital, Llc Integrated lng gasification and power production cycle
JP2013124802A (ja) * 2011-12-14 2013-06-24 Panasonic Corp 冷凍サイクル装置
JP2013174402A (ja) * 2012-02-27 2013-09-05 Panasonic Corp 冷凍装置

Family Cites Families (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3376706A (en) 1965-06-28 1968-04-09 Angelino Gianfranco Method for obtaining mechanical energy from a thermal gas cycle with liquid phase compression
US3369361A (en) 1966-03-07 1968-02-20 Gale M. Craig Gas turbine power plant with sub-atmospheric spray-cooled turbine discharge into exhaust compressor
CH476208A (de) 1967-07-27 1969-07-31 Sulzer Ag Gasturbinenanlage mit CO2 als Arbeitsmittel
US3544291A (en) 1968-04-22 1970-12-01 Texaco Inc Coal gasification process
US3736745A (en) 1971-06-09 1973-06-05 H Karig Supercritical thermal power system using combustion gases for working fluid
US3816595A (en) 1971-11-15 1974-06-11 Aqua Chem Inc Method and apparatus for removing nitrogen oxides from a gas stream
US3868817A (en) 1973-12-27 1975-03-04 Texaco Inc Gas turbine process utilizing purified fuel gas
US3971211A (en) 1974-04-02 1976-07-27 Mcdonnell Douglas Corporation Thermodynamic cycles with supercritical CO2 cycle topping
US3976443A (en) 1974-12-18 1976-08-24 Texaco Inc. Synthesis gas from solid carbonaceous fuel
US4132065A (en) 1977-03-28 1979-01-02 Texaco Inc. Production of H2 and co-containing gas stream and power
US4191500A (en) 1977-07-27 1980-03-04 Rockwell International Corporation Dense-phase feeder method
US4154581A (en) 1978-01-12 1979-05-15 Battelle Development Corporation Two-zone fluid bed combustion or gasification process
US4206610A (en) 1978-04-14 1980-06-10 Arthur D. Little, Inc. Method and apparatus for transporting coal as a coal/liquid carbon dioxide slurry
US4193259A (en) 1979-05-24 1980-03-18 Texaco Inc. Process for the generation of power from carbonaceous fuels with minimal atmospheric pollution
US4702747A (en) 1981-03-24 1987-10-27 Carbon Fuels Corporation Coal derived/carbon dioxide fuel slurry and method of manufacture
US4522628A (en) 1981-12-16 1985-06-11 Mobil Oil Corporation Method for removing ash mineral matter of coal with liquid carbon dioxide and water
US4498289A (en) * 1982-12-27 1985-02-12 Ian Osgerby Carbon dioxide power cycle
US4602483A (en) 1985-03-08 1986-07-29 Southwestern Public Service Company Coal slurry system
US4765781A (en) 1985-03-08 1988-08-23 Southwestern Public Service Company Coal slurry system
DE3600432A1 (de) 1985-05-21 1987-02-05 Gutehoffnungshuette Man Verfahren zum vergasen eines kohlenstoffhaltigen brennstoffs, insbesondere kohle
US4721420A (en) 1985-09-03 1988-01-26 Arthur D. Little, Inc. Pipeline transportation of coarse coal-liquid carbon dioxide slurry
US4999995A (en) 1986-08-29 1991-03-19 Enserch International Investments Ltd. Clean electric power generation apparatus
GB2196016B (en) 1986-08-29 1991-05-15 Humphreys & Glasgow Ltd Clean electric power generation process
US4839030A (en) 1988-05-27 1989-06-13 Hri, Inc. Coal liquefaction process utilizing coal/CO2 slurry feedstream
US4957515A (en) 1988-11-03 1990-09-18 Air Products And Chemicals, Inc. Process for sulfur removal and recovery from fuel gas using physical solvent
JP2664984B2 (ja) 1989-02-28 1997-10-22 三菱重工業株式会社 難燃性低発熱量ガスの燃焼装置
US5175995A (en) 1989-10-25 1993-01-05 Pyong-Sik Pak Power generation plant and power generation method without emission of carbon dioxide
US5247791A (en) 1989-10-25 1993-09-28 Pyong S. Pak Power generation plant and power generation method without emission of carbon dioxide
JP2954972B2 (ja) 1990-04-18 1999-09-27 三菱重工業株式会社 ガス化ガス燃焼ガスタービン発電プラント
US5353721A (en) 1991-07-15 1994-10-11 Manufacturing And Technology Conversion International Pulse combusted acoustic agglomeration apparatus and process
US5421166A (en) 1992-02-18 1995-06-06 Air Products And Chemicals, Inc. Integrated air separation plant-integrated gasification combined cycle power generator
US5507141A (en) 1992-05-29 1996-04-16 Kvaerner Pulping Technologies Ab Process for recovering energy from a combustible gas
US5295350A (en) 1992-06-26 1994-03-22 Texaco Inc. Combined power cycle with liquefied natural gas (LNG) and synthesis or fuel gas
NL9201179A (nl) 1992-07-02 1994-02-01 Tno Werkwijze voor het regeneratief verwijderen van kooldioxide uit gasstromen.
SE469668B (sv) 1992-07-13 1993-08-16 Bal Ab Kombinerad foerbraennings- och avgasreningsanlaeggning
US6289666B1 (en) 1992-10-27 2001-09-18 Ginter Vast Corporation High efficiency low pollution hybrid Brayton cycle combustor
US5937652A (en) 1992-11-16 1999-08-17 Abdelmalek; Fawzy T. Process for coal or biomass fuel gasification by carbon dioxide extracted from a boiler flue gas stream
US5415673A (en) 1993-10-15 1995-05-16 Texaco Inc. Energy efficient filtration of syngas cooling and scrubbing water
US5345756A (en) 1993-10-20 1994-09-13 Texaco Inc. Partial oxidation process with production of power
US5417052A (en) 1993-11-05 1995-05-23 Midwest Research Institute Hybrid solar central receiver for combined cycle power plant
DE4407619C1 (de) 1994-03-08 1995-06-08 Entec Recycling Und Industriea Verfahren zur schadstoffarmen Umwandlung fossiler Brennstoffe in technische Arbeit
CA2198252C (en) 1994-08-25 2005-05-10 Rudi Beichel Reduced pollution power generation system and gas generator therefore
GB9425691D0 (en) 1994-12-20 1995-02-22 Boc Group Plc A combustion apparatus
US5595059A (en) 1995-03-02 1997-01-21 Westingthouse Electric Corporation Combined cycle power plant with thermochemical recuperation and flue gas recirculation
US6170264B1 (en) 1997-09-22 2001-01-09 Clean Energy Systems, Inc. Hydrocarbon combustion power generation system with CO2 sequestration
US5724805A (en) 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions
US5906806A (en) 1996-10-16 1999-05-25 Clark; Steve L. Reduced emission combustion process with resource conservation and recovery options "ZEROS" zero-emission energy recycling oxidation system
EP0859136A1 (en) 1997-02-17 1998-08-19 N.V. Kema Gas turbine with energy recovering
NO308400B1 (no) 1997-06-06 2000-09-11 Norsk Hydro As Kraftgenereringsprosess omfattende en forbrenningsprosess
DE59811106D1 (de) 1998-02-25 2004-05-06 Alstom Technology Ltd Baden Kraftwerksanlage und Verfahren zum Betrieb einer Kraftwerksanlage mit einem CO2-Prozess
DE69931548T2 (de) 1998-04-07 2007-05-10 Mitsubishi Heavy Industries, Ltd. Turbinenanlage
DE59810673D1 (de) 1998-04-28 2004-03-04 Asea Brown Boveri Kraftwerksanlage mit einem CO2-Prozess
US6148602A (en) 1998-08-12 2000-11-21 Norther Research & Engineering Corporation Solid-fueled power generation system with carbon dioxide sequestration and method therefor
JP2000120447A (ja) 1998-10-12 2000-04-25 Toshiba Corp 火力発電プラント
US6199364B1 (en) 1999-01-22 2001-03-13 Alzeta Corporation Burner and process for operating gas turbines with minimal NOx emissions
US6209307B1 (en) 1999-05-05 2001-04-03 Fpl Energy, Inc. Thermodynamic process for generating work using absorption and regeneration
US6202574B1 (en) 1999-07-09 2001-03-20 Abb Alstom Power Inc. Combustion method and apparatus for producing a carbon dioxide end product
JP4094185B2 (ja) 1999-08-24 2008-06-04 三井造船株式会社 冷熱利用発電システム
NL1013804C2 (nl) 1999-12-09 2001-06-12 Wouter Willem Van De Waal Milieuvriendelijke werkwijze voor het opwekken van energie uit aardgas.
MY122625A (en) * 1999-12-17 2006-04-29 Exxonmobil Upstream Res Co Process for making pressurized liquefied natural gas from pressured natural gas using expansion cooling
US6196000B1 (en) 2000-01-14 2001-03-06 Thermo Energy Power Systems, Llc Power system with enhanced thermodynamic efficiency and pollution control
DE10016079A1 (de) 2000-03-31 2001-10-04 Alstom Power Nv Verfahren zum Entfernen von Kohlendioxid aus dem Abgas einer Gasturbinenanlage sowie Vorrichtung zur Durchführung des Verfahrens
CA2409700C (en) 2000-05-12 2010-02-09 Clean Energy Systems, Inc. Semi-closed brayton cycle gas turbine power systems
SE518487C2 (sv) 2000-05-31 2002-10-15 Norsk Hydro As Metod att driva en förbränningsanläggning samt en förbränningsanläggning
US6333015B1 (en) 2000-08-08 2001-12-25 Arlin C. Lewis Synthesis gas production and power generation with zero emissions
DE10064270A1 (de) 2000-12-22 2002-07-11 Alstom Switzerland Ltd Verfahren zum Betrieb einer Gasturbinenanlage sowie eine diesbezügliche Gasturbinenanlage
FR2819583B1 (fr) 2001-01-12 2003-03-07 Air Liquide Procede integre de separation d'air et de generation d'energie et installation pour la mise en oeuvre d'un tel procede
FR2819584B1 (fr) 2001-01-12 2003-03-07 Air Liquide Procede integre de separation d'air et de generation d'energie et installation pour la mise en oeuvre d'un tel procede
US6532743B1 (en) 2001-04-30 2003-03-18 Pratt & Whitney Canada Corp. Ultra low NOx emissions combustion system for gas turbine engines
US20030221409A1 (en) 2002-05-29 2003-12-04 Mcgowan Thomas F. Pollution reduction fuel efficient combustion turbine
EP1432889B1 (de) 2001-10-01 2006-07-12 Alstom Technology Ltd Verfahren und vorrichtung zum anfahren von emissionsfreien gasturbinenkraftwerken
AU2002360505A1 (en) 2001-12-03 2003-06-17 Clean Energy Systems, Inc. Coal and syngas fueled power generation systems featuring zero atmospheric emissions
JP3814206B2 (ja) 2002-01-31 2006-08-23 三菱重工業株式会社 二酸化炭素回収プロセスの排熱利用方法
US7284362B2 (en) 2002-02-11 2007-10-23 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Étude et l'Exploitation des Procedes Georges Claude Integrated air separation and oxygen fired power generation system
US6871502B2 (en) 2002-02-15 2005-03-29 America Air Liquide, Inc. Optimized power generation system comprising an oxygen-fired combustor integrated with an air separation unit
US6532745B1 (en) 2002-04-10 2003-03-18 David L. Neary Partially-open gas turbine cycle providing high thermal efficiencies and ultra-low emissions
NO20023050L (no) 2002-06-21 2003-12-22 Fleischer & Co Fremgangsmåte samt anlegg for utf degree relse av fremgangsmåten
US20040011057A1 (en) 2002-07-16 2004-01-22 Siemens Westinghouse Power Corporation Ultra-low emission power plant
US6820689B2 (en) 2002-07-18 2004-11-23 Production Resources, Inc. Method and apparatus for generating pollution free electrical energy from hydrocarbons
US6802178B2 (en) 2002-09-12 2004-10-12 The Boeing Company Fluid injection and injection method
US6775987B2 (en) 2002-09-12 2004-08-17 The Boeing Company Low-emission, staged-combustion power generation
WO2004027220A1 (en) 2002-09-17 2004-04-01 Foster Wheeler Energy Corporation Advanced hybrid coal gasification cycle utilizing a recycled working fluid
US7303597B2 (en) 2002-10-15 2007-12-04 Pratt & Whitney Rocketdyne, Inc. Method and apparatus for continuously feeding and pressurizing a solid material into a high pressure system
EP1561010B1 (en) 2002-11-08 2012-09-05 Alstom Technology Ltd Gas turbine power plant and method of operating the same
US7191587B2 (en) 2002-11-13 2007-03-20 American Air Liquide, Inc. Hybrid oxygen-fired power generation system
WO2004046523A2 (en) 2002-11-15 2004-06-03 Clean Energy Systems, Inc. Low pollution power generation system with ion transfer membrane air separation
US6898936B1 (en) 2002-12-04 2005-05-31 The United States Of America As Represented By The United States Department Of Energy Compression stripping of flue gas with energy recovery
US7007474B1 (en) 2002-12-04 2006-03-07 The United States Of America As Represented By The United States Department Of Energy Energy recovery during expansion of compressed gas using power plant low-quality heat sources
EP1429000A1 (de) 2002-12-09 2004-06-16 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Betrieb einer Gasturbine mit einer fossilbefeuerten Brennkammer
US6993912B2 (en) 2003-01-23 2006-02-07 Pratt & Whitney Canada Corp. Ultra low Nox emissions combustion system for gas turbine engines
WO2004081479A2 (en) 2003-03-10 2004-09-23 Clean Energy Systems, Inc. Reheat heat exchanger power generation systems
US7074033B2 (en) 2003-03-22 2006-07-11 David Lloyd Neary Partially-open fired heater cycle providing high thermal efficiencies and ultra-low emissions
US7007486B2 (en) 2003-03-26 2006-03-07 The Boeing Company Apparatus and method for selecting a flow mixture
GB2401403B (en) 2003-05-08 2006-05-31 Rolls Royce Plc Carbon dioxide recirculation
US7192569B2 (en) 2003-06-30 2007-03-20 Pratt & Whitney Hydrogen generation with efficient byproduct recycle
JP2007507639A (ja) 2003-09-30 2007-03-29 ビーエイチピー ビリトン イノベーション プロプライアタリー リミテッド 発電
US7017329B2 (en) 2003-10-10 2006-03-28 United Technologies Corporation Method and apparatus for mixing substances
US7469544B2 (en) 2003-10-10 2008-12-30 Pratt & Whitney Rocketdyne Method and apparatus for injecting a fuel into a combustor assembly
US7124589B2 (en) 2003-12-22 2006-10-24 David Neary Power cogeneration system and apparatus means for improved high thermal efficiencies and ultra-low emissions
US7111463B2 (en) 2004-01-23 2006-09-26 Pratt & Whitney Rocketdyne Inc. Combustion wave ignition for combustors
FR2867463B1 (fr) 2004-03-15 2007-05-11 Commissariat Energie Atomique Alimentation en solide de granulometrie variable d'un dispositif sous pression
WO2005100754A2 (en) 2004-04-16 2005-10-27 Clean Energy Systems, Inc. Zero emissions closed rankine cycle power system
EP1751467A4 (en) 2004-05-19 2008-01-23 Innovative Energy Inc COMBUSTION METHOD AND APPARATUS
US7547419B2 (en) 2004-06-16 2009-06-16 United Technologies Corporation Two phase injector for fluidized bed reactor
US7360639B2 (en) 2004-06-16 2008-04-22 Pratt & Whitney Rocketdyne, Inc. Hot rotary screw pump
DE102004039164A1 (de) 2004-08-11 2006-03-02 Alstom Technology Ltd Verfahren zur Erzeugung von Energie in einer eine Gasturbine umfassenden Energieerzeugungsanlage sowie Energieerzeugungsanlage zur Durchführung des Verfahrens
US7459131B2 (en) 2004-08-16 2008-12-02 United Technologies Corporation Reduced temperature regernerating/calcining apparatus for hydrogen generation
US7402188B2 (en) 2004-08-31 2008-07-22 Pratt & Whitney Rocketdyne, Inc. Method and apparatus for coal gasifier
JP2006125767A (ja) 2004-10-29 2006-05-18 Tokyo Institute Of Technology 熱交換器
US7736599B2 (en) 2004-11-12 2010-06-15 Applied Materials, Inc. Reactor design to reduce particle deposition during process abatement
EP1657409A1 (en) 2004-11-15 2006-05-17 Elsam A/S A method of and an apparatus for producing electrical power
EP1669572A1 (en) 2004-12-08 2006-06-14 Vrije Universiteit Brussel Process and installation for producing electric power
JP2008522634A (ja) 2004-12-13 2008-07-03 エフ.ホフマン−ラ ロシュ アーゲー 2型糖尿病に関連した単一ヌクレオチド多型(snp)
US7547423B2 (en) 2005-03-16 2009-06-16 Pratt & Whitney Rocketdyne Compact high efficiency gasifier
RU2378519C2 (ru) 2005-04-05 2010-01-10 Саргас Ас Тепловая электростанция с уменьшенным содержанием co2 и способ выработки электроэнергии из угольного топлива
US8196848B2 (en) 2005-04-29 2012-06-12 Pratt & Whitney Rocketdyne, Inc. Gasifier injector
US7717046B2 (en) 2005-04-29 2010-05-18 Pratt & Whitney Rocketdyne, Inc. High pressure dry coal slurry extrusion pump
NO332159B1 (no) 2006-01-13 2012-07-09 Nebb Technology As Fremgangsmate og anlegg for energieffektiv oppfanging og utskillelse av CO2 fra en gassfase
US7950243B2 (en) 2006-01-16 2011-05-31 Gurin Michael H Carbon dioxide as fuel for power generation and sequestration system
US8075646B2 (en) 2006-02-09 2011-12-13 Siemens Energy, Inc. Advanced ASU and HRSG integration for improved integrated gasification combined cycle efficiency
US7665291B2 (en) 2006-04-04 2010-02-23 General Electric Company Method and system for heat recovery from dirty gaseous fuel in gasification power plants
US7827797B2 (en) 2006-09-05 2010-11-09 General Electric Company Injection assembly for a combustor
US7387197B2 (en) 2006-09-13 2008-06-17 Pratt & Whitney Rocketdyne, Inc. Linear tractor dry coal extrusion pump
US7722690B2 (en) 2006-09-29 2010-05-25 Kellogg Brown & Root Llc Methods for producing synthesis gas
US7827778B2 (en) 2006-11-07 2010-11-09 General Electric Company Power plants that utilize gas turbines for power generation and processes for lowering CO2 emissions
US20080115500A1 (en) 2006-11-15 2008-05-22 Scott Macadam Combustion of water borne fuels in an oxy-combustion gas generator
EP2126355A2 (en) 2006-12-16 2009-12-02 Christopher J. Papile Methods and/or systems for removing carbon dioxide and/or generating power
US7740671B2 (en) 2006-12-18 2010-06-22 Pratt & Whitney Rocketdyne, Inc. Dump cooled gasifier
US7934383B2 (en) 2007-01-04 2011-05-03 Siemens Energy, Inc. Power generation system incorporating multiple Rankine cycles
US7553463B2 (en) 2007-01-05 2009-06-30 Bert Zauderer Technical and economic optimization of combustion, nitrogen oxides, sulfur dioxide, mercury, carbon dioxide, coal ash and slag and coal slurry use in coal fired furnaces/boilers
AT504863B1 (de) 2007-01-15 2012-07-15 Siemens Vai Metals Tech Gmbh Verfahren und anlage zur erzeugung von elektrischer energie in einem gas- und dampfturbinen (gud) - kraftwerk
US8088196B2 (en) 2007-01-23 2012-01-03 Air Products And Chemicals, Inc. Purification of carbon dioxide
US7731783B2 (en) 2007-01-24 2010-06-08 Pratt & Whitney Rocketdyne, Inc. Continuous pressure letdown system
US8771604B2 (en) 2007-02-06 2014-07-08 Aerojet Rocketdyne Of De, Inc. Gasifier liner
US20080190214A1 (en) 2007-02-08 2008-08-14 Pratt & Whitney Rocketdyne, Inc. Cut-back flow straightener
US7826054B2 (en) 2007-05-04 2010-11-02 Pratt & Whitney Rocketdyne, Inc. Fuel cell instrumentation system
US7874140B2 (en) 2007-06-08 2011-01-25 Foster Wheeler North America Corp. Method of and power plant for generating power by oxyfuel combustion
US8850789B2 (en) 2007-06-13 2014-10-07 General Electric Company Systems and methods for power generation with exhaust gas recirculation
WO2009038777A1 (en) 2007-09-18 2009-03-26 Vast Power Portfolio, Llc Heavy oil recovery with fluid water and carbon dioxide
US20090260585A1 (en) 2008-04-22 2009-10-22 Foster Wheeler Energy Corporation Oxyfuel Combusting Boiler System and a Method of Generating Power By Using the Boiler System
US20090301054A1 (en) 2008-06-04 2009-12-10 Simpson Stanley F Turbine system having exhaust gas recirculation and reheat
US20100018218A1 (en) 2008-07-25 2010-01-28 Riley Horace E Power plant with emissions recovery
US20100024378A1 (en) 2008-07-30 2010-02-04 John Frederick Ackermann System and method of operating a gas turbine engine with an alternative working fluid
US20100024433A1 (en) 2008-07-30 2010-02-04 John Frederick Ackermann System and method of operating a gas turbine engine with an alternative working fluid
US8806849B2 (en) 2008-07-30 2014-08-19 The University Of Wyoming System and method of operating a power generation system with an alternative working fluid
US20110174014A1 (en) * 2008-10-01 2011-07-21 Carrier Corporation Liquid vapor separation in transcritical refrigerant cycle
EA024852B1 (ru) 2009-02-26 2016-10-31 Палмер Лэбз, Ллк Способ и устройство для сжигания топлива при высокой температуре и высоком давлении и соответствующие система и средства
US9068743B2 (en) 2009-02-26 2015-06-30 8 Rivers Capital, LLC & Palmer Labs, LLC Apparatus for combusting a fuel at high pressure and high temperature, and associated system
US8596075B2 (en) * 2009-02-26 2013-12-03 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US8986002B2 (en) 2009-02-26 2015-03-24 8 Rivers Capital, Llc Apparatus for combusting a fuel at high pressure and high temperature, and associated system
US10018115B2 (en) * 2009-02-26 2018-07-10 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
WO2010143622A1 (ja) 2009-06-09 2010-12-16 三菱重工業株式会社 太陽熱受熱器
JP2010285965A (ja) 2009-06-15 2010-12-24 Mitsubishi Heavy Ind Ltd 太陽熱ガスタービン発電装置
US8685120B2 (en) 2009-08-11 2014-04-01 General Electric Company Method and apparatus to produce synthetic gas
US8327641B2 (en) 2009-12-01 2012-12-11 General Electric Company System for generation of power using solar energy
US20120285195A1 (en) * 2010-01-21 2012-11-15 Stefano Consonni Separation of gases
US8220248B2 (en) 2010-09-13 2012-07-17 Membrane Technology And Research, Inc Power generation process with partial recycle of carbon dioxide
US9410481B2 (en) 2010-09-21 2016-08-09 8 Rivers Capital, Llc System and method for high efficiency power generation using a nitrogen gas working fluid
US20120067054A1 (en) 2010-09-21 2012-03-22 Palmer Labs, Llc High efficiency power production methods, assemblies, and systems
US9546814B2 (en) * 2011-03-16 2017-01-17 8 Rivers Capital, Llc Cryogenic air separation method and system
US10678951B2 (en) * 2011-10-24 2020-06-09 Maxim Integrated Products, Inc. Tamper detection countermeasures to deter physical attack on a security ASIC
US20130118145A1 (en) 2011-11-11 2013-05-16 8 River Capital, LLC Hybrid fossil fuel and solar heated supercritical carbon dioxide power generating system and method
US8776532B2 (en) 2012-02-11 2014-07-15 Palmer Labs, Llc Partial oxidation reaction with closed cycle quench
KR101242949B1 (ko) 2012-05-24 2013-03-12 한국가스공사 이산화탄소 재액화 공정

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1284177C (en) * 1987-02-04 1991-05-14 John T. Crawford Power plant using co _as a working fluid
CN101460801A (zh) * 2006-04-03 2009-06-17 普莱克斯技术有限公司 二氧化碳纯化方法
CN101852490A (zh) * 2010-05-31 2010-10-06 华北电力大学(保定) 一种空气能二氧化碳热泵热水器
US20130104525A1 (en) * 2011-11-02 2013-05-02 8 Rivers Capital, Llc Integrated lng gasification and power production cycle
JP2013124802A (ja) * 2011-12-14 2013-06-24 Panasonic Corp 冷凍サイクル装置
JP2013174402A (ja) * 2012-02-27 2013-09-05 Panasonic Corp 冷凍装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114958430A (zh) * 2022-04-27 2022-08-30 广东工业大学 一种副产氢气的二氧化碳自循环式生物质高温气化系统及方法

Also Published As

Publication number Publication date
CA2960195C (en) 2023-04-25
JP2020073797A (ja) 2020-05-14
KR20170058959A (ko) 2017-05-29
EP3204331B1 (en) 2018-08-15
AU2015315557B2 (en) 2020-01-02
CN107108233A (zh) 2017-08-29
CN107108233B (zh) 2019-12-20
EP3438049B1 (en) 2021-11-03
JP6629843B2 (ja) 2020-01-15
EA201790553A1 (ru) 2017-08-31
ES2688804T3 (es) 2018-11-07
PL3438049T3 (pl) 2022-05-02
ES2904874T3 (es) 2022-04-06
JP6923629B2 (ja) 2021-08-25
JP2017533371A (ja) 2017-11-09
EA035969B1 (ru) 2020-09-08
BR112017004492A2 (pt) 2017-12-05
KR102625300B1 (ko) 2024-01-15
AU2015315557A1 (en) 2017-03-23
US10047673B2 (en) 2018-08-14
EP3438049A1 (en) 2019-02-06
EA201991138A1 (ru) 2019-09-30
KR102445857B1 (ko) 2022-09-22
AU2020202340A1 (en) 2020-04-23
EA033135B1 (ru) 2019-08-30
ZA201701662B (en) 2019-08-28
EP3204331A1 (en) 2017-08-16
PL3204331T3 (pl) 2019-03-29
MX2017003202A (es) 2017-06-06
US20160069262A1 (en) 2016-03-10
MY176626A (en) 2020-08-19
CA2960195A1 (en) 2016-03-17
KR20220132038A (ko) 2022-09-29
WO2016040108A1 (en) 2016-03-17

Similar Documents

Publication Publication Date Title
CN107108233B (zh) 从发电系统和方法生产低压液态二氧化碳
CN109296460B (zh) 用于加热再循环气流的方法及发电方法
CN102959352B (zh) 二氧化碳和氢气的分离
JP2017533371A5 (zh)
US11231224B2 (en) Production of low pressure liquid carbon dioxide from a power production system and method
US11125499B2 (en) Process for optimizing removal of condensable components from a fluid
EP2850375A2 (en) Process and apparatus for the separation of carbon dioxide and hydrogen
JP6357155B2 (ja) 流体からの凝縮性成分除去を最適化するための方法
WO2012114118A1 (en) Process and apparatus for purification of carbon dioxide
WO2012114119A1 (en) Process and apparatus for purification of carbon dioxide
US9995530B2 (en) Method for the capture of carbon dioxide through cryogenically processing gaseous emissions from fossil-fuel power generation
WO2012114120A1 (en) Process and apparatus for purification of carbon dioxide
US20130000352A1 (en) Air separation unit and systems incorporating the same
WO2023242144A1 (en) Method and plant for separation of carbon dioxide (co2)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200414