CN110988075A - 一种氨基化多壁碳纳米管电化学传感器及其在检测槲皮素的应用 - Google Patents

一种氨基化多壁碳纳米管电化学传感器及其在检测槲皮素的应用 Download PDF

Info

Publication number
CN110988075A
CN110988075A CN201911331137.4A CN201911331137A CN110988075A CN 110988075 A CN110988075 A CN 110988075A CN 201911331137 A CN201911331137 A CN 201911331137A CN 110988075 A CN110988075 A CN 110988075A
Authority
CN
China
Prior art keywords
carbon nanotube
walled carbon
electrochemical sensor
aminated multi
quercetin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911331137.4A
Other languages
English (en)
Inventor
刘艳清
汪洪武
姚夙
朱培杰
叶银坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhaoqing University
Original Assignee
Zhaoqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhaoqing University filed Critical Zhaoqing University
Priority to CN201911331137.4A priority Critical patent/CN110988075A/zh
Publication of CN110988075A publication Critical patent/CN110988075A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明涉及电化学传感检测技术领域,特别涉及一种氨基化多壁碳纳米管电化学传感器及其在检测槲皮素的应用。本发明公开了一种氨基化多壁碳纳米管电化学传感器及其在检测槲皮素的应用,包括:制备氨基化多壁碳纳米管电化学传感器;使用该电化学传感器对槲皮素进行检测。本发明克服了已有技术在检测槲皮素时存在方法过于繁琐,步骤复杂等诸多缺点,更好地提高了检测的灵敏度,对于槲皮素的检测易于自动化。

Description

一种氨基化多壁碳纳米管电化学传感器及其在检测槲皮素的 应用
技术领域
本发明涉及电化学传感器领域,具体涉及一种氨基化多壁碳纳米管电化学传感器及其在检测槲皮素的应用。
背景技术
槲皮素,又名槲皮黄素、栎精,是一种多羟基黄酮类化合物。广泛存在于植物的花、叶、果实中,具有多种生物学活性。槲皮素不仅具有祛痰、止咳、平喘、抗过敏、抗炎症、抗氧化的作用,还具有降低血压、降低血脂、抗肿瘤、抗血小板凝固、扩张冠状动脉,抑制黄曲霉素产生等作用,有较高的药用价值和较好的药理作用。
电化学传感器是基于电化学反应原理来检测标的物的一类传感器,它以电极作为传感器转换元件,修饰在电极上的材料作为敏感元件,敏感元件与被测物质的离子或分子接触发生化学反应或变化,转换元件将这种反应或变化直接或间接的转化为电信号,建立标的物的浓度、成分等化学量与输出电信号的关系,从而实现标的物的定量检测的装置。碳纳米管具有良好的导电功能、电磁性能以及吸附性能,能够提高原子表面活性,有利于发生物质的交换,可以作为电极修饰材料用于制备电化学传感器。但是,现有的一些电化学传感器,在制备过程中,虽然使用了碳纳米管材料,但是仍然会存在一定的灵敏度低,检测限过高的问题。
发明内容
针对上述问题,本发明的一个目的是提供一种氨基化多壁碳纳米管电化学传感器,该电化学传感器的制备包括以下步骤:
(1)玻碳电极的处理:
将直径为3mm的玻碳电极先用粒径为0.05μm的γ-氧化铝打磨,再用重蒸水超声清洗,室温下晾干,得到玻碳电极前处理物;
(2)氨基化多壁碳纳米管的修饰:
取氨基化多壁碳纳米管分散液滴涂于所述玻碳电极前处理物表面,置于红外灯下照射至干燥,得到氨基化多壁碳纳米管修饰电极前处理物;
(3)氨基化多壁碳纳米管修饰电极的构建:
将所述氨基化多壁碳纳米管修饰电极前处理物置于PBS缓冲溶液中,使用微分脉冲伏安法扫描使其稳定,随后在PBS缓冲溶液中进行恒电位富集,即得到氨基化多壁碳纳米管修饰电极;
其中,微分脉冲伏安法扫描时的电位区间为-0.1~0.7V,两次扫描之间间隔1min;
恒电位富集电位区间为-0.2V~0.4V,富集时间0~30min。
(4)电化学传感器的设置:
以工作电极为氨基化多壁碳纳米管修饰电极,对电极为中空钛棒,参比电极为饱和甘汞电极,即得到电化学传感器。
优选地,所述氨基化多壁碳纳米管分散液的溶剂为N,N-二甲基甲酰胺;所述氨基化多壁碳纳米管分散液的浓度为1mg/mL;所述氨基化多壁碳纳米管分散液用量为5μL。
优选地,所述恒电位富集电位为0V。
优选地,所述恒电位富集时间21min。
优选地,所述步骤(3)中PBS缓冲溶液的浓度为0.2mol/L。
本发明的另一个目的是提供一种氨基化多壁碳纳米管电化学传感器在检测槲皮素的应用,所述的对槲皮素进行检测,具体是:
将所述电化学传感器置于装载有电解液的电解池中,使用微分脉冲伏安法检测待测物中槲皮素的浓度;
其中,所述电解液为PBS缓冲溶液;所述电解池的容积为25mL,每次检测时装载电解液体积为20mL,采用电磁搅拌器进行搅拌;
在对槲皮素进行检测之前,先通入高纯氮气,以除尽所述电解液中的溶解氧。
优选地,所述电解池中PBS缓冲溶液浓度为0.2mol/L。
优选地,所述电解池中的液体PH=4。
本发明的有益效果为:
1.目前市场上用来制备电化学传感器使用的碳纳米管大多是单壁碳纳米管,单壁碳纳米管制作工艺复杂,价格昂贵,而本发明使用的多壁碳纳米管不仅价格较便宜,而且具有较好的吸附性能和较大的比表面积,该多壁碳纳米管表面有含氧基团和表面空穴,而氨基化多壁碳纳米管相比较一般的多壁碳纳米管具有更好的相容性和分散性,因此,将氨基化多壁碳纳米管应用于电化学反应电极上,能够有更多的反应位点,继而有效增强电极在电化学测试中的电催化性能,使检测得到的结果更加地灵敏。
2.本发明利用氨基化和多壁碳纳米管的双放大效应,可高灵敏度地用于检测痕量槲皮素。所述的用于检测痕量槲皮素的电化学传感器克服了已有技术在检测槲皮素时存在方法过于繁琐,步骤复杂等诸多缺点,更好地提高了检测的灵敏度,对于槲皮素的检测易于自动化。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1表示使用不同电极的微分脉冲伏安曲线;
图2是本发明实施例1的电化学传感器标准吸收曲线;
图3是本发明实施例1的电化学传感器的选择性图。
具体实施方式
结合以下实施例对本发明作进一步描述。
实施例1
一种氨基化多壁碳纳米管电化学传感器的制备,包括以下步骤:
(1)玻碳电极的处理:
将直径为3mm的玻碳电极先用粒径为0.05μm的γ-氧化铝打磨,再用重蒸水超声清洗,室温下晾干,得到玻碳电极前处理物;
(2)氨基化多壁碳纳米管的修饰:
取氨基化多壁碳纳米管分散液滴涂于所述玻碳电极前处理物表面,置于红外灯下照射至干燥,得到氨基化多壁碳纳米管修饰电极前处理物;
(3)氨基化多壁碳纳米管修饰电极的构建:
将所述氨基化多壁碳纳米管修饰电极前处理物置于PBS缓冲溶液中,使用微分脉冲伏安法扫描使其稳定,随后在PBS缓冲溶液中进行恒电位富集,即得到氨基化多壁碳纳米管修饰电极;
其中,微分脉冲伏安法扫描时的电位区间为-0.1~0.7V,两次扫描之间间隔1min;
恒电位富集电位区间为-0.2V~0.4V,富集时间0~30min。
(4)电化学传感器的设置:
以工作电极为氨基化多壁碳纳米管修饰电极,对电极为中空钛棒,参比电极为饱和甘汞电极,即得到电化学传感器。
其中,步骤(2)中氨基化多壁碳纳米管分散液的溶剂为N,N-二甲基甲酰胺;氨基化多壁碳纳米管分散液用量为8μL;步骤(3)中PBS缓冲溶液浓度为0.2mol/L。
实施例2
一种氨基化多壁碳纳米管电化学传感器的制备,包括以下步骤:
(1)玻碳电极的处理:
将直径为3mm的玻碳电极先用粒径为0.05μm的γ-氧化铝打磨,再用重蒸水超声清洗,室温下晾干,得到玻碳电极前处理物;
(2)氨基化多壁碳纳米管的修饰:
取浓度为1mg/mL的氨基化多壁碳纳米管分散液滴涂于所述玻碳电极前处理物表面,置于红外灯下照射至干燥,得到氨基化多壁碳纳米管修饰电极前处理物;
(3)氨基化多壁碳纳米管修饰电极的构建:
将所述氨基化多壁碳纳米管修饰电极前处理物置于PBS缓冲溶液中,使用微分脉冲伏安法扫描使其稳定,随后在PBS缓冲溶液中进行恒电位富集,即得到氨基化多壁碳纳米管修饰电极;
其中,微分脉冲伏安法扫描时的电位区间为-0.1~0.7V,两次扫描之间间隔1min;
恒电位富集电位区间为0V,富集时间21min。
(4)电化学传感器的设置:
以工作电极为氨基化多壁碳纳米管修饰电极,对电极为中空钛棒,参比电极为饱和甘汞电极,即得到电化学传感器。
其中,氨基化多壁碳纳米管分散液的溶剂为N,N-二甲基甲酰胺;氨基化多壁碳纳米管分散液用量为8μL;步骤(3)中PBS缓冲溶液浓度为0.2mol/L。
实施例3
电化学传感器在检测槲皮素的应用,具体为:
将所述电化学传感器置于装载有电解液的电解池中,使用微分脉冲伏安法检测待测物中槲皮素的浓度;
其中,电解液为浓度为0.2mol/L的PBS缓冲溶液;所述电解池的容积为25mL,每次检测时装载电解液体积为20mL,采用电磁搅拌器进行搅拌;电解池中的液体PH=4;
在对槲皮素进行检测之前,先通入高纯氮气,以除尽所述电解液中的溶解氧。
实施例4
检测槲皮素的线性方程的建立:
基于本发明实施例1制备的电化学传感器对槲皮素的灵敏度反应程度(如图2所示),建立对槲皮素电化学检测的线性方程。
由图2可知,槲皮素在浓度范围为1~200×10-9mol/L时,电化学信号响应与槲皮素的浓度呈良好的线性关系,峰电流与槲皮素浓度呈现良好的线性关系。
其线性方程为I(μA)=0.23+0.091C;
其中,相关系数R=0.992,检出限为0.25nmol/L;
I表示峰电流,单位为μA;C表示槲皮素的检出浓度,单位为nmol/L。
实施例5
在检测槲皮素时干扰物的影响:
设置槲皮素浓度为100nmol/L,并以槲皮素浓度为基准,分别加入500倍浓度的盐酸、100倍浓度的葡萄糖、100倍浓度的抗坏血酸、100倍浓度的Mg2+(镁离子)、100倍浓度的Ca2+(钙离子)、100倍浓度的Al3+(铝离子)等干扰物,使用本发明实施例1制备的电化学传感器以及实施例3的方法进行检测槲皮素,观察这些干扰物对检测结果的影响,结果如图3所示。其中,图3中:横坐标表示不同的干扰物,即盐酸,葡萄糖,抗坏血酸,Mg2+,Ca2+,Al3+;纵坐标I0表示无干扰物时槲皮素的峰电流,I表示在有干扰物存在下槲皮素的峰电流。
由图3可知,500倍浓度的盐酸、100倍浓度的葡萄糖、100倍浓度的抗坏血酸、100倍浓度的Mg2+(镁离子)、100倍浓度的Ca2+(钙离子)、100倍浓度的Al3+(铝离子)对槲皮素的峰电流与无干扰物时槲皮素的峰电流比值(I/I0)在100%附近,进而证明了使用本发明实施例1制备的电化学传感器与实施例2的方法检测,即使有上述这些干扰物存在,也几乎不会对本发明检测槲皮素的灵敏度造成影响。
对比例1
制备方法如实施例1,区别是不使用氨基化多壁碳纳米管修饰电极(即省略步骤(2)),即直接以玻碳电极前处理物为工作电极制备电化学传感器。
对比例2
制备方法如实施例1,区别是将步骤(2)中氨基化多壁碳纳米管替换为多壁碳纳米管修饰电极,以制备得到的多壁碳纳米管修饰电极为工作电极制备电化学传感器。
为了更加清晰的说明本发明的内容,针对本发明实施例1、对比例1和对比例2所制备的电化学传感器进行下述实验:
1.不同电化学传感器对槲皮素的灵敏度检测:
设置槲皮素乙醇溶液的浓度为1.0×10-6mol/L时,将本发明实施例1、对比例1和对比例2所制备的电化学传感器使用本发明实施例3的检测方法对槲皮素进行检测,检测结果如图1所示,图1中:1-对比例1;2-对比例2;3-实施例1。
由图1可知,在槲皮素浓度为1.0×10-6mol/L时,对比例1中显示的峰电流为6.65μA,对比例2显示的峰电流为16.76μA,实施例1显示的峰电流为31.43μA。
其中,图1中实施例1显示的槲皮素的峰电流是对比例1的5倍,表明本发明实施例1制备的电化学传感器对电极反应具有良好的电催化性能,槲皮素在本发明实施例1制备的电化学传感器上能产生灵敏的电化学响应,非常适合用于槲皮素地灵敏检测。
2.实际样品的检测:
将玉米样品经过加标处理后(即采用标准加入法加入对槲皮素),取其提取液,使用本发明实施例1制备的电化学传感器和实施例3的方法进行电化学测定,每组数据平行五次取平均值,测定结果见表1。
表1玉米样品加标检测结果
加标浓度(nmol/L) 回收率(%) 相对标准偏差RSD(%)
2 93.7~98.5 2.15
20 96.5~103.6 4.03
100 97.4~105.1 5.26
由表1可知,上述检测结果显示回收率为93.7%~105.1%,相对标准偏差为2.15-5.26%,证明本发明所制备的氨基化多壁碳纳米管电化学传感器用于检测槲皮素的方法是可行的。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (9)

1.一种氨基化多壁碳纳米管电化学传感器,其特征在于,该电化学传感器的制备包括以下步骤:
(1)玻碳电极的处理:
将直径为3mm的玻碳电极先用粒径为0.05μm的γ-氧化铝打磨,再用重蒸水超声清洗,室温下晾干,得到玻碳电极前处理物;
(2)氨基化多壁碳纳米管的修饰:
取氨基化多壁碳纳米管分散液滴涂于所述玻碳电极前处理物表面,置于红外灯下照射至干燥,得到氨基化多壁碳纳米管修饰电极前处理物;
(3)氨基化多壁碳纳米管修饰电极的构建:
将所述氨基化多壁碳纳米管修饰电极前处理物置于PBS缓冲溶液中,使用微分脉冲伏安法扫描使其稳定,随后在PBS缓冲溶液中进行恒电位富集,即得到氨基化多壁碳纳米管修饰电极;
其中,微分脉冲伏安法扫描时的电位区间为-0.1~0.7V,两次扫描之间间隔1min;
恒电位富集电位区间为-0.2V~0.4V,富集时间0~30min;
(4)电化学传感器的设置:
以工作电极为氨基化多壁碳纳米管修饰电极,对电极为中空钛棒,参比电极为饱和甘汞电极,即得到电化学传感器。
2.根据权利要求1所述的一种氨基化多壁碳纳米管电化学传感器,其特征在于,所述氨基化多壁碳纳米管分散液的溶剂为N,N-二甲基甲酰胺;所述氨基化多壁碳纳米管分散液的浓度为1mg/mL;所述氨基化多壁碳纳米管分散液用量为5μL。
3.根据权利要求1所述的一种氨基化多壁碳纳米管电化学传感器,其特征在于,所述恒电位富集电位为0V。
4.根据权利要求1所述的一种氨基化多壁碳纳米管电化学传感器,其特征在于,所述恒电位富集时间为21min。
5.根据权利要求1所述的一种氨基化多壁碳纳米管电化学传感器,其特征在于,所述步骤(3)中PBS缓冲溶液的浓度为0.2mol/L。
6.一种氨基化多壁碳纳米管电化学传感器在检测槲皮素的应用,其特征在于,利用如权利要求1~5任一所述的电化学传感器对槲皮素进行检测。
7.根据权利要求6所述的一种氨基化多壁碳纳米管电化学传感器在检测槲皮素的应用,其特征在于,所述的对槲皮素进行检测,具体是:
将所述电化学传感器置于装载有电解液的电解池中,使用微分脉冲伏安法检测待测物中槲皮素的浓度;
其中,所述电解液为PBS缓冲溶液;所述电解池的容积为25mL,每次检测时装载电解液体积为20mL,采用电磁搅拌器进行搅拌;
所述电解液使用前先通入高纯氮气,以除尽所述电解液中的溶解氧。
8.根据权利要求7所述的一种氨基化多壁碳纳米管电化学传感器在检测槲皮素的应用,其特征在于,所述电解池中PBS缓冲溶液的浓度为0.2mol/L。
9.根据权利要求7所述的一种氨基化多壁碳纳米管电化学传感器在检测槲皮素的应用,其特征在于,所述电解液的pH=4。
CN201911331137.4A 2019-12-20 2019-12-20 一种氨基化多壁碳纳米管电化学传感器及其在检测槲皮素的应用 Pending CN110988075A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911331137.4A CN110988075A (zh) 2019-12-20 2019-12-20 一种氨基化多壁碳纳米管电化学传感器及其在检测槲皮素的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911331137.4A CN110988075A (zh) 2019-12-20 2019-12-20 一种氨基化多壁碳纳米管电化学传感器及其在检测槲皮素的应用

Publications (1)

Publication Number Publication Date
CN110988075A true CN110988075A (zh) 2020-04-10

Family

ID=70074554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911331137.4A Pending CN110988075A (zh) 2019-12-20 2019-12-20 一种氨基化多壁碳纳米管电化学传感器及其在检测槲皮素的应用

Country Status (1)

Country Link
CN (1) CN110988075A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166908A (zh) * 2021-12-13 2022-03-11 中北大学 茶多酚及其组分分析电化学传感器的制备方法和检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288669A (zh) * 2011-05-04 2011-12-21 青岛大学 一种基于石墨烯修饰电极同时测定芦丁和槲皮素的电化学方法
CN106290488A (zh) * 2016-09-18 2017-01-04 江南大学 一种氨基功能化碳纳米管电阻型甲醛气体传感器及其制备方法
CN106501239A (zh) * 2016-10-17 2017-03-15 济南大学 一种基于聚多巴胺纳米微球的电致化学发光传感器的制备方法及应用
CN106680343A (zh) * 2017-01-10 2017-05-17 信阳师范学院 一种快速测定槲皮素的电化学传感器、制备方法及在测定槲皮素中的应用
CN109374707A (zh) * 2018-11-16 2019-02-22 肇庆学院 一种用羧基化碳纳米片@羧基化石墨烯复合膜电化学传感器测定痕量氟虫腈的方法
CN109374708A (zh) * 2018-11-16 2019-02-22 肇庆学院 用羟基化多壁碳纳米管@立方介孔碳复合膜电化学传感器测定痕量喹乙醇和卡巴氧的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288669A (zh) * 2011-05-04 2011-12-21 青岛大学 一种基于石墨烯修饰电极同时测定芦丁和槲皮素的电化学方法
CN106290488A (zh) * 2016-09-18 2017-01-04 江南大学 一种氨基功能化碳纳米管电阻型甲醛气体传感器及其制备方法
CN106501239A (zh) * 2016-10-17 2017-03-15 济南大学 一种基于聚多巴胺纳米微球的电致化学发光传感器的制备方法及应用
CN106680343A (zh) * 2017-01-10 2017-05-17 信阳师范学院 一种快速测定槲皮素的电化学传感器、制备方法及在测定槲皮素中的应用
CN109374707A (zh) * 2018-11-16 2019-02-22 肇庆学院 一种用羧基化碳纳米片@羧基化石墨烯复合膜电化学传感器测定痕量氟虫腈的方法
CN109374708A (zh) * 2018-11-16 2019-02-22 肇庆学院 用羟基化多壁碳纳米管@立方介孔碳复合膜电化学传感器测定痕量喹乙醇和卡巴氧的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
宋晶晶: "氨基功能化碳纳米管敏感界面的构筑及其对生物分子的电化学检测", 《中国优秀博硕士学位论文全文数据库(硕士) 医药卫生科技辑》 *
李玲 等: "氨基化的水溶性多壁碳纳米管的合成及表征", 《太原理工大学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166908A (zh) * 2021-12-13 2022-03-11 中北大学 茶多酚及其组分分析电化学传感器的制备方法和检测方法
CN114166908B (zh) * 2021-12-13 2024-04-02 中北大学 茶多酚及其组分分析电化学传感器的制备方法和检测方法

Similar Documents

Publication Publication Date Title
Wang et al. A novel ratiometric electrochemical biosensor for sensitive detection of ascorbic acid
Mekassa et al. Simultaneous determination of caffeine and theophylline using square wave voltammetry at poly (L-aspartic acid)/functionalized multi-walled carbon nanotubes composite modified electrode
Liu et al. Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes
Vishnu et al. Pencil graphite as an elegant electrochemical sensor for separation-free and simultaneous sensing of hypoxanthine, xanthine and uric acid in fish samples
Erady et al. A novel and sensitive hexadecyltrimethylammoniumbromide functionalized Fe decorated MWCNTs modified carbon paste electrode for the selective determination of Quercetin
Hu et al. A highly selective amperometric sensor for ascorbic acid based on mesopore-rich active carbon-modified pyrolytic graphite electrode
Huang et al. Electrochemical behavior and voltammetric determination of norfloxacin at glassy carbon electrode modified with multi walled carbon nanotubes/Nafion
Kilele et al. Ultra-sensitive electrochemical sensor for fenitrothion pesticide residues in fruit samples using IL@ CoFe2O4NPs@ MWCNTs nanocomposite
Chauhan et al. Immobilization of lysine oxidase on a gold–platinum nanoparticles modified Au electrode for detection of lysine
Babaei et al. A sensor for simultaneous determination of dopamine and morphine in biological samples using a multi-walled carbon nanotube/chitosan composite modified glassy carbon electrode
CN109444238B (zh) 一种碳纳米材料修饰的电化学传感器的制备方法及应用
Li et al. Poly (basic red 9) doped functionalized multi-walled carbon nanotubes as composite films for neurotransmitters biosensors
CN108279262A (zh) 一种用于同时灵敏检测多巴胺和尿酸的电化学传感器及制备方法
Casella et al. A multi-walled carbon nanotubes/cellulose acetate composite electrode (MWCNT/CA) as sensing probe for the amperometric determination of some catecholamines
Wan et al. Electrochemistry and voltammetric determination of tannic acid on a single-wall carbon nanotube-coated glassy carbon electrode
CN110346426A (zh) 基于MoS2-AuNPs和离子液体的CPO生物传感器及其检测NO2-的应用
Zhang et al. Hydrogen peroxide biosensor based on microperoxidase-11 immobilized on flexible MWCNTs-BC nanocomposite film
Babaei et al. A Sensitive Simultaneous Determination of Adrenalin and Paracetamol on a Glassy Carbon Electrode Coated with a Film of Chitosan/Room Temperature Ionic Liquid/Single‐Walled Carbon Nanotubes Nanocomposite
CN110988075A (zh) 一种氨基化多壁碳纳米管电化学传感器及其在检测槲皮素的应用
Zhang et al. Self-assembly of gold nanoparticles on three-dimensional eggshell biological carbon fiber membranes: Non-enzymatic detection of rutin
Zhuang et al. Electrocatalytical properties of bergenin on a multi-wall carbon nanotubes modified carbon paste electrode and its determination in tablets
Wang et al. The construction of well-aligned MWCNTs-PANI Langmuir–Blodgett film modified glassy carbon electrode and its analytical application
Manjunatha et al. Cetyltrimethylammonium bromide-gold nanoparticles composite modified pencil graphite electrode for the electrochemical investigation of cefixime present in pharmaceutical formulations and biology
CN105572189A (zh) 聚谷氨酸修饰电极及其在检测药物对乙酰氨基酚含量中的应用
CN104698053B (zh) 一种二氧化钛‑碳棒微电极、制备方法及其检测血液中对乙酰氨基酚浓度的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination