CN110975874A - 一种磁性Bi25FeO40纳米材料的制备方法及催化应用 - Google Patents

一种磁性Bi25FeO40纳米材料的制备方法及催化应用 Download PDF

Info

Publication number
CN110975874A
CN110975874A CN201911281642.2A CN201911281642A CN110975874A CN 110975874 A CN110975874 A CN 110975874A CN 201911281642 A CN201911281642 A CN 201911281642A CN 110975874 A CN110975874 A CN 110975874A
Authority
CN
China
Prior art keywords
solution
feo
stirring
reaction
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911281642.2A
Other languages
English (en)
Inventor
邢洪杰
张景基
吴璐璐
杜汇伟
朱泽洁
王疆瑛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinchang China Metrology University Enterprise Innovation Research Institute Co Ltd
Original Assignee
Xinchang China Metrology University Enterprise Innovation Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinchang China Metrology University Enterprise Innovation Research Institute Co Ltd filed Critical Xinchang China Metrology University Enterprise Innovation Research Institute Co Ltd
Priority to CN201911281642.2A priority Critical patent/CN110975874A/zh
Publication of CN110975874A publication Critical patent/CN110975874A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8437Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0081Mixed oxides or hydroxides containing iron in unusual valence state [IV, V, VI]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Nanotechnology (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明公开了一种磁性Bi25FeO40纳米材料的制备方法及催化应用,制备过程如下:将适量硝酸铋、硝酸铁溶于一定量的去离子水中,搅拌、超声制得硝酸盐溶液;将适量表面活性剂P123溶于一定量乙醇中,并将其逐滴加入到硝酸盐溶液中搅拌混合,然后加入适量KOH溶液搅拌、超声、搅拌混合,制得前驱体溶液;将前驱体溶液移至带有四氟乙烯内衬的反应釜中,150–240℃水热反应2–24h;反应完成后,经洗涤、离心、干燥,得到磁性Bi25FeO40纳米粉体。其特征在于:未添加任何酸,在比较温和条件下制得磁性Bi25FeO40纳米材料,配合适量过硫酸氢钾能快速降解盐酸四环素,在污水治理方面具有潜在的应用。本发明制备方法简单、反应条件易控,条件较温和、绿色无污染;同时,可见光‑芬顿反应能快速降解抗菌素,解决抗菌素难以生物降解的问题,避免因抗菌素的生物活性而对环境造成污染。

Description

一种磁性Bi25FeO40纳米材料的制备方法及催化应用
技术领域
本发明涉及无机非金属功能材料技术领域,更具体的说是涉及一种磁性Bi25FeO40纳米材料的制备方法及催化应用。
背景技术
过去几十年,工业化和城市化进程消耗了庞大的石化资源,造成了严重的资源匮乏和环境污染,这是当今世界各国亟待解决的两大主题。许多有毒有害的有机污染物具有致癌、致畸、致突变性,如四环素抗菌素由于其生物活性能产生抗药性细菌和诱导许多类生物体的不理想的生物反应,被认为是潜在的微污染物。这些抗菌素广泛用于人类和牲畜的疾病控制,排泄物或处理的过期药物最终沉入水和土壤中,然而通过传统的生物降解难以去除。高级氧化技术以产生具有强化能力的活性自由基为特点,在高温高压、电、声、光辐照、催化剂等反应条件下,使其降解成低毒或者五毒的小分子物质,在有机污染物处理方面显示出其独特的优势。Bi25FeO40具有窄的带隙~2.8eV、可变价的Fe2+/Fe3+离子及铁磁特性,其纳米材料显示出较高的可见光-芬顿催化活性,且外加磁场可实现分离和回收,引起科研人员的广泛关注。
发明内容
有鉴于此,本发明针对有毒有害的有机污染物难以去除的问题及环境保护的迫切需求,提出了一种方法简单、反应条件易控,条件较温和、绿色无污染的制备方法;同时,利用其窄的带隙~2.8eV、可变价的Fe2+/Fe3+离子,可见光-芬顿反应降解抗菌素。
为了达到上述目的,本发明采用如下技术方案:
一种磁性Bi25FeO40纳米材料的制备方法及催化应用,制备过程如下:
(1)将0.01–0.05mol硝酸铋、硝酸铁溶于80ml去离子水中,经搅拌、超声制得A溶液;
(2)将0.01–0.05mol表面活性剂P123溶于30ml乙醇中,经搅拌制得B溶液;
(3)将A溶液逐滴加入到B溶液中,经搅拌制得A+B混合溶液;
(4)将40ml浓度为0.1-0.75M的KOH溶液逐滴加入A+B混合溶液,经搅拌、超声制得前驱体溶液;
(5)将前驱体移至带有聚四氟乙烯内衬的反应釜中,150–240℃水热反应2-24h;
(6)反应完成后,洗涤、离心直至无泡沫为止,经干燥得到磁性Bi25FeO40纳米粉体。
此外,本发明还要求保护上述一种磁性Bi25FeO40纳米材料在可见光-芬顿反应解盐酸四环素方面的应用,其特征在于:所述Bi25FeO40纳米粉体和过硫酸氢钾在20min氙灯可见光照射下对盐酸四环素的降解率达到85%左右。
本发明具有以下有益效果:
本发明制备方法简单、反应条件易控,条件较温和、绿色无污染;同时,可见光-芬顿反应能快速降解抗菌素,解决抗菌素难以生物降解的问题,避免因抗菌素的生物活性而对环境造成污染。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1 200℃水热反应6h制得Bi25FeO40粉体的XRD图谱。
图2 200℃水热反应6h制得Bi25FeO40粉体的TEM照片。
图3 200℃水热反应6h制得Bi25FeO40粉体的Fe 2p和O1s的XPS光谱。
图4(a)Bi25FeO40粉体可见光-芬顿反应催化降解盐酸四环素的吸收光谱和(b)比较Bi25FeO40、PMS(过硫酸氢钠)及Bi25FeO40/PMS可见光催化盐酸四环素的降解率。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
原料来源:硝酸铋(99.0%,国药集团上海化学试剂有限公司)、硝酸铁(98.5%,国药集团上海化学试剂有限公司)、KOH(85.0%,国药集团上海化学试剂有限公司)、乙醇(95.0%,国药集团上海化学试剂有限公司)和P123(M~5800,30%PEG,西格玛奥德里奇有限公司)。
实施例1
(1)将0.01mol硝酸铋、硝酸铁溶于80ml去离子水中,先搅拌30min,再用40Hz、300W超声制得A溶液;
(2)将0.01mol表面活性剂P123溶于30ml乙醇中,搅拌30min,制得B溶液;
(3)将A溶液逐滴加入到B溶液中,经搅拌制得A+B混合溶液;
(4)将40ml浓度为0.1-0.75M的KOH溶液逐滴加入A+B混合溶液,先搅拌30min,再用40Hz、300W超声制得前驱体溶液;
(5)将前驱体移至200ml反应釜中,200℃水热反应6h;
(6)反应完成后,洗涤、离心直至无泡沫为止,经干燥得到磁性Bi25FeO40纳米粉体。
图1为200℃水热反应6h制得Bi25FeO40粉体的XRD图谱,结果显示合成样品具有Bi25FeO40主晶相和BiFeO3二次相。
图2为200℃水热反应6h制得Bi25FeO40粉体的TEM照片,结果显示合成样品具有纳米晶粒自组装的棒状微结构。
图3为200℃水热反应6h制得Bi25FeO40粉体的Fe 2p和O1s的XPS光谱,结果显示合成样品具有Fe2+、Fe3+价态,并具有较高浓度的化学吸附氧。
实施例2
将0.1g Bi25FeO40纳米粉体放入浓度为20mg/L的100ml盐酸四环素溶液中,在搅拌下先暗反应60min,然后将1g过硫酸氢钠加入到盐酸四环素溶液中在可见光(λ>420nm)下照射,每隔2min取一次盐酸四环素测其紫外-可见吸收光谱。
图4(a)为Bi25FeO40粉体可见光-芬顿反应催化降解盐酸四环素的吸收光谱,结果发现60min暗反应后,盐酸四环素的吸收峰无明显变化;加入PMS可见光照射2min后,356nm处的吸收峰显著降低,而低于300nm处的吸收峰显著增强。图4(b)比较Bi25FeO40、PMS(过硫酸氢钠)及Bi25FeO40/PMS可见光催化盐酸四环素的降解率,结果显示Bi25FeO40/PMS可见光催化盐酸四环素的降解率显著高于Bi25FeO40、PMS可见光催化降解率,20min可见光催化降解率达~85%。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (3)

1.一种磁性Bi25FeO40纳米材料的制备方法,制备过程如下:
(1)将0.01–0.05mol硝酸铋、硝酸铁溶于80ml去离子水中,经搅拌、超声制得A溶液;
(2)将0.01–0.05mol表面活性剂P123溶于30ml乙醇中,经搅拌制得B溶液;
(3)将A溶液逐滴加入到B溶液中,经搅拌制得A+B混合溶液;
(4)将40ml浓度为0.1-0.75M的KOH溶液逐滴加入A+B混合溶液,经搅拌、超声制得前驱体溶液;
(5)将前驱体移至带有聚四氟乙烯内衬的反应釜中,150–240℃水热反应2-24h;
(6)反应完成后,洗涤、离心直至无泡沫为止,经干燥得到磁性Bi25FeO40纳米粉体。
2.一种磁性Bi25FeO40纳米材料在可见光-芬顿反应解盐酸四环素方面的应用。
3.根据权利要求2所述的一种磁性Bi25FeO40纳米材料在可见光-芬顿反应解盐酸四环素方面的应用,其特征在于:所述Bi25FeO40纳米粉体和过硫酸氢钾在20min氙灯可见光照射下对盐酸四环素的降解率达到~85%,是一种高效、易回收的催化材料。
CN201911281642.2A 2019-12-13 2019-12-13 一种磁性Bi25FeO40纳米材料的制备方法及催化应用 Pending CN110975874A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911281642.2A CN110975874A (zh) 2019-12-13 2019-12-13 一种磁性Bi25FeO40纳米材料的制备方法及催化应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911281642.2A CN110975874A (zh) 2019-12-13 2019-12-13 一种磁性Bi25FeO40纳米材料的制备方法及催化应用

Publications (1)

Publication Number Publication Date
CN110975874A true CN110975874A (zh) 2020-04-10

Family

ID=70093195

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911281642.2A Pending CN110975874A (zh) 2019-12-13 2019-12-13 一种磁性Bi25FeO40纳米材料的制备方法及催化应用

Country Status (1)

Country Link
CN (1) CN110975874A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115650308A (zh) * 2022-11-14 2023-01-31 江苏大学 一种用于四环素类抗生素芬顿降解的铁酸铋材料的球磨制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101723467A (zh) * 2009-12-22 2010-06-09 上海大学 水热法合成软铋矿相Bi25FeO40的方法
CN101890354A (zh) * 2010-07-27 2010-11-24 北京师范大学 一种铁酸铋光催化剂的制备方法
CN104743633A (zh) * 2015-04-16 2015-07-01 安徽工业大学 一种光助铁酸铋活化过硫酸氢钾降解有机废水的方法
CN107459065A (zh) * 2017-09-04 2017-12-12 江苏大学 一种Bi2Fe4O9纳米棒或纳米饼状材料的制备方法
CN107879378A (zh) * 2017-12-13 2018-04-06 山东理工大学 一种超小、纯相Bi25FeO40纳米颗粒的制备方法
KR20190069906A (ko) * 2017-12-12 2019-06-20 울산대학교 산학협력단 바륨이 도핑된 비스무스 산화철 함유 광촉매 및 이를 이용한 수처리 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101723467A (zh) * 2009-12-22 2010-06-09 上海大学 水热法合成软铋矿相Bi25FeO40的方法
CN101890354A (zh) * 2010-07-27 2010-11-24 北京师范大学 一种铁酸铋光催化剂的制备方法
CN104743633A (zh) * 2015-04-16 2015-07-01 安徽工业大学 一种光助铁酸铋活化过硫酸氢钾降解有机废水的方法
CN107459065A (zh) * 2017-09-04 2017-12-12 江苏大学 一种Bi2Fe4O9纳米棒或纳米饼状材料的制备方法
KR20190069906A (ko) * 2017-12-12 2019-06-20 울산대학교 산학협력단 바륨이 도핑된 비스무스 산화철 함유 광촉매 및 이를 이용한 수처리 방법
CN107879378A (zh) * 2017-12-13 2018-04-06 山东理工大学 一种超小、纯相Bi25FeO40纳米颗粒的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
YANG LIU ET AL.: "Heterogeneous activation of peroxymonosulfate by sillenite Bi25FeO40:Singlet oxygen generation and degradation for aquatic levofloxacin", 《CHEMICAL ENGINEERING JOURNAL》 *
ZHEHUA XUE ET AL.: "Degradation of Tetracycline with BiFeO3 Prepared by a Simple Hydrothermal Method", 《MATERIALS》 *
程晓丽著: "《微纳米氧化物基多级结构材料的制备与气敏性能研究》", 31 December 2013, 黑龙江大学出版社 *
童彤: "铋-铁-氧复合氧化物微晶的水热合成、表征及性能研究", 《中国优秀博硕士学位论文全文数据库(博士) 工程科技Ⅰ辑》 *
邹建新等著: "《钒钛功能材料》", 31 March 2019, 冶金工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115650308A (zh) * 2022-11-14 2023-01-31 江苏大学 一种用于四环素类抗生素芬顿降解的铁酸铋材料的球磨制备方法

Similar Documents

Publication Publication Date Title
Jiang et al. Efficient photoactivation of peroxymonosulfate by Z-scheme nitrogen-defect-rich NiCo2O4/g-C3N4 for rapid emerging pollutants degradation
CN108675430B (zh) 产生硫酸根自由基和活性氧物种的催化方法及难生物降解有机污染物的高级氧化方法
CN106807376B (zh) 一种磁性纳米复合催化剂及其制备方法与应用
CN110075922B (zh) 一种基于mof-74的钴铁双金属催化材料及其制备方法与应用
Shangguan et al. Zeolite-based Fenton-like catalysis for pollutant removal and reclamation from wastewater
Ye et al. Confinement of ultrafine Co3O4 nanoparticles in nitrogen-doped graphene-supported macroscopic microspheres for ultrafast catalytic oxidation: Role of oxygen vacancy and ultrasmall size effect
CN105478121B (zh) 一种三氧化二铁改性的二氧化钛高效可见光催化剂的制备方法
CN113083369B (zh) 一种基于铁基金属有机骨架衍生的电芬顿催化剂及其制备方法和应用
Wang et al. Bifunctionalized Fe7S8@ MoS2–O core-shell with efficient photocatalytic activity based on internal electric field
CN114100638B (zh) 一种铁碳插层二硫化钼催化剂的制备方法及其应用
CN111298821A (zh) 利用印染废水絮凝污泥制备新型铁-氮-碳催化剂的方法
CN104258885A (zh) 一种片状羟基磷酸铜纳米材料的制备方法
CN103341358A (zh) 一种处理含氯有机废水的催化剂及其制备方法
CN108079993B (zh) 氧化亚铁/氧化亚铜纳米复合材料的制备方法
CN102049253B (zh) 一种用于臭氧氧化处理废水专用催化剂的制备方法
Jiang et al. A novel oxygen vacancies enriched CoNi LDO catalyst activated peroxymonosulfate for the efficient degradation of tetracycline
CN112844386B (zh) 一种痕量硼掺杂的羟基氧化钴的制备方法及其应用
CN105536773B (zh) 陶基质催化剂及其制备方法
Wang et al. Prussian blue analogue nanospheres immobilized on self-floating biochar for micropollutant degradation via photo-Fenton process
CN110975874A (zh) 一种磁性Bi25FeO40纳米材料的制备方法及催化应用
Miao et al. Norfloxacin degradation in synthetic human urine using nickel converter slag-laterite heterogeneous Electro-Fenton process
CN107159175B (zh) 一种以亚氧化钛为催化剂的催化臭氧化水处理方法
Xu et al. Efficient degradation of thiocyanate by persulfate activation of a novel SA@ Fe-Ni-C composite: Properties, mechanisms and DFT calculations
CN112517046A (zh) 一种基于双致孔剂合成的多级孔氮掺杂碳氧还原催化剂的普适性制备方法
CN109574193B (zh) 钌酸镧系钙钛矿催化剂及其非均相活化过一硫酸盐降解卡马西平的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200410

RJ01 Rejection of invention patent application after publication