CN110970529A - 一种高性能混相ZnMgO薄膜的制备方法及ZnMgO薄膜 - Google Patents

一种高性能混相ZnMgO薄膜的制备方法及ZnMgO薄膜 Download PDF

Info

Publication number
CN110970529A
CN110970529A CN201911241727.8A CN201911241727A CN110970529A CN 110970529 A CN110970529 A CN 110970529A CN 201911241727 A CN201911241727 A CN 201911241727A CN 110970529 A CN110970529 A CN 110970529A
Authority
CN
China
Prior art keywords
znmgo
substrate
znmgo film
growth
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911241727.8A
Other languages
English (en)
Inventor
刘可为
侯其超
申德振
陈星�
张振中
李炳辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN201911241727.8A priority Critical patent/CN110970529A/zh
Publication of CN110970529A publication Critical patent/CN110970529A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1832Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising ternary compounds, e.g. Hg Cd Te
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02966Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe including ternary compounds, e.g. HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明提供的高性能混相ZnMgO薄膜的制备方法,将衬底放入生长腔内,以有机锌化合物作为锌源,有机镁化合物作为镁源,以高纯氧气为氧源,于高温条件下生长ZnMgO薄膜,通过生长温度、锌源、镁源和氧气流量的精确控制,实现了高质量ZnMgO薄膜的生长,为制备相应的高性能紫外光电器件打下了良好的材料基础。

Description

一种高性能混相ZnMgO薄膜的制备方法及ZnMgO薄膜
技术领域
本发明涉及半导体材料生产技术领域,特别涉及一种高性能混相ZnMgO薄膜的制备方法及ZnMgO薄膜。
背景技术
ZnMgO薄膜材料带隙可调范围较宽(3.37-7.8eV),在原理上可以应用于370-160nm范围内的紫外光电器件等领域。而且ZnMgO材料具有抗辐射能力强、原材料资源丰富、外延生长温度低等一系列优点,被相关研究人员所深入研究并寄予厚望。ZnMgO材料具有两种稳定结构,一种是六角纤锌矿结构,另一种是立方闪锌矿结构,这两种结构的ZnMgO材料各有优劣,例如,六角相的ZnMgO响应度高,但是暗电流也大;立方相的ZnMgO暗电流低,但响应度也不高。研究发现,混相(六角相和立方相混合)ZnMgO材料同时能满足高响应度和低暗电流,从而实现相应高性能紫外光电探测器件的研制。
目前来说,制备ZnMgO薄膜的手段主要有PLD(脉冲激光沉积)技术、磁控溅射、MBE(分子束外延)、MOCVD(金属有机物化学气相沉积)等方法。由于ZnMgO薄膜材料存在严重的分相问题,随着Mg组分的增加,相应的ZnMgO薄膜在制备过程中逐渐由六角结构向立方结构过渡,如何保证薄膜具有一定的结晶质量,同时实现薄膜性能的提升,这时候合适的衬底就显得尤为重要。
发明内容
有鉴如此,有必要针对现有技术存在的缺陷,提供一种MgZnO薄膜结晶质量高且材料电学性质易调控的高性能混相ZnMgO薄膜的制备方法。
为实现上述目的,本发明采用下述技术方案:
一种高性能混相ZnMgO薄膜的制备方法,包括下述步骤:
将衬底放入生长腔内,以有机锌化合物作为锌源,有机镁化合物作为镁源,以高纯氧气为氧源,于高温条件下生长ZnMgO薄膜。
在一些较佳的实施例中,所述衬底为蓝宝石衬底。
在一些较佳的实施例中,所述有机锌化合物为二乙基锌和/或二甲基锌,有机镁化合物为对甲基二茂镁。
在一些较佳的实施例中,所述有机锌化合物以高纯氮气为载气,所述载气流速为5-20sccm;所述有机镁化合物以高纯氮气为载气,所述载气流速为10-40sccm;所述。
在一些较佳的实施例中,所述高温条件为500-800℃。
在一些较佳的实施例中,所述生长的时间为1h-3h;所述生长的真空度为2x102-1x104Pa。
在一些较佳的实施例中,将所述衬底放入腔体中之前还包括对所述衬底进行清洗的步骤。
在一些较佳的实施例中,将所述衬底放入腔体中之后对所述衬底高温处理之前,还包括对生长腔抽真空处理的步骤。
在一些较佳的实施例中,利用金属有机物化学气相沉积设备生长ZnMgO薄膜,生长结束后,降低所述衬底温度到室温,得到ZnMgO薄膜;所述降温的速率为0.2-0.8℃/s。
另外,本发明还提供了一种高性能混相ZnMgO薄膜,由所述的ZnMgO薄膜制备方法制备得到。
本发明采用上述技术方案的优点是:
本发明提供的高性能混相ZnMgO薄膜的制备方法,将衬底放入生长腔内,以有机锌化合物作为锌源,有机镁化合物作为镁源,以高纯氧气为氧源,于高温条件下生长ZnMgO薄膜,通过生长温度、锌源、镁源和氧气流量的精确控制,实现了高质量ZnMgO薄膜的生长,为制备相应的高性能紫外光电器件打下了良好的材料基础。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例1中得到的ZnMgO薄膜的紫外-可见光吸收光谱图;
图2为本发明实施例1中得到的ZnMgO薄膜的X射线能谱分析谱图;
图3为本发明实施例1中得到的ZnMgO薄膜的扫描电镜(SEM)表面形貌;
图4为本发明实施例1中得到的ZnMgO薄膜的XRD图谱;
图5为本发明实施例1中得到的ZnMgO薄膜的I-V特性曲线;
图6为本发明实施例1中得到的ZnMgO薄膜的光响应曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明提供了一种高性能混相ZnMgO薄膜的制备方法,将衬底放入生长腔内,以有机锌化合物作为锌源,有机镁化合物作为镁源,以高纯氧气为氧源,于高温条件下生长ZnMgO薄膜。
在一些较佳的实施例中,所述衬底为蓝宝石衬底。可以理解,所述衬底并不局限于蓝宝石衬底,还可以为氧化镁或其他的熟知的衬底。
在一些较佳的实施例中,所述衬底经清洗干燥后放置于MOCVD设备生长室内,通过移动衬底的基底高度,使基地与气体喷枪的距离在10-40cm范围内调节。
在一些较佳的实施例中,所述有机锌化合物为二乙基锌和/或二甲基锌,有机镁化合物为对甲基二茂镁。
进一步地,所述有机锌化合物以高纯氮气为载气,所述载气流速为5-20sccm;所述有机镁化合物以高纯氮气为载气,所述载气流速为10-40sccm,所述氧气流速为80-120sccm。
在一些较佳的实施例中,所述高温条件为500-800℃,更优选为550-700℃。
在一些较佳的实施例中,利用金属有机物化学气相沉积设备生长ZnMgO薄膜,所述生长的时间为1h-3h;所述生长的真空度为2x102-1x104Pa,生长结束后,降低所述衬底温度到室温,得到ZnMgO薄膜;所述降温的速率为0.2-0.8℃/s。
本发明提供的高性能混相ZnMgO薄膜的制备方法,将衬底放入生长腔内,以有机锌化合物作为锌源,有机镁化合物作为镁源,以高纯氧气为氧源,于高温条件下生长ZnMgO四元合金薄膜,通过生长温度、锌源、镁源和氧气流量的精确控制,实现了高质量ZnMgO四元合金薄膜的生长,为制备相应的高性能紫外光电器件打下了良好的材料基础。
以下结合具体实施例说明详细技术方案。
实施例
将清洗好的蓝宝石衬底放入到MOCVD生长腔内,开启分子泵,使腔的背底真空度达到1x10-4Pa。将衬底温度升到700℃,预处理0.5h后,将温度降低为生长温度500℃。通入氮气,使生长过程中腔的真空度为5x103Pa。
使用二乙基锌作为锌源,对甲基二茂镁作为镁源,通过调节锌源、镁源的载气比例来实现调节Zn、Mg两者组分比例,锌源的载气流速为10sccm,镁源的载气流速为20sccm,氧气的流速为200sccm。
生长2h,关闭有机源和氧气,以0.5℃/s降低衬底温度到室温,得到ZnMgO薄膜。
对实施例1中得到的ZnMgO薄膜进行紫外-可见光吸收光谱测试,得到其图谱如图1所示,从图1中可以看出,制备的ZnMgO薄膜具有双吸收边,初步表明薄膜具有混相结构。
对实施例1中得到的ZnMgO薄膜进行EDS测试,得到其图谱如图2所示,从图中可以看出,制备的ZnMgO薄膜中锌元素、镁元素同时存在,且两者的比例大约为2:1。
对实施例1中得到的ZnMgO薄膜利用SEM进行表征,得到其表面形貌图如图3所示,从图3中可以看出,制备的ZnMgO薄膜由两种形状不同的颗粒排列组成,一种是六角结构,一种是立方结构,从微观层面上验证了薄膜具有混相结构。
对实施例1中得到的ZnMgO薄膜利用XRD进行表征,得到其表面形貌图如图4所示,从图4中可以看出,六角相ZnMgO和立方相ZnMgO均有衍射峰,表明薄膜具有混相结构。
对实施例1中得到的ZnMgO薄膜利用半导体分析仪进行表征,得到其I-V特性曲线如图5所示,从图5中可以看出,15V偏压下薄膜的暗电流在30pA左右。
对实施例1中得到的ZnMgO薄膜光刻、蒸金制成MSM结构紫外探测器,并利用光谱响应系统进行表征,得到其光响应特性曲线如图6所示,从图中可以看出,器件峰值响应在286nm左右,10V偏压下响应度高达319.5A/W,表现出较高的性能。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
当然本发明的高性能混相ZnMgO薄膜的制备方法正极材料还可具有多种变换及改型,并不局限于上述实施方式的具体结构。总之,本发明的保护范围应包括那些对于本领域普通技术人员来说显而易见的变换或替代以及改型。

Claims (10)

1.一种高性能混相ZnMgO薄膜的制备方法,其特征在于,包括下述步骤:
将衬底放入生长腔内,以有机锌化合物作为锌源,有机镁化合物作为镁源,以高纯氧气为氧源,于高温条件下生长ZnMgO薄膜。
2.如权利要求1所述的高性能混相ZnMgO薄膜的制备方法,其特征在于,所述衬底为蓝宝石衬底。
3.如权利要求1所述的高性能混相ZnMgO薄膜的制备方法,其特征在于,所述有机锌化合物为二乙基锌和/或二甲基锌,有机镁化合物为对甲基二茂镁。
4.如权利要求3所述的高性能混相ZnMgO薄膜的制备方法,其特征在于,所述有机锌化合物以高纯氮气为载气,所述载气流速为5-20sccm;所述有机镁化合物以高纯氮气为载气,所述载气流速为10-40sccm;所述氧气流速为80-120sccm。
5.如权利要求1所述的高性能混相ZnMgO薄膜的制备方法,其特征在于,所述高温条件为500-800℃。
6.如权利要求1所述的高性能混相ZnMgO薄膜的制备方法,其特征在于,所述生长的时间为1h-3h;所述生长的真空度为2x102-1x104Pa。
7.如权利要求1所述的高性能混相ZnMgO薄膜的制备方法,其特征在于,将所述衬底放入腔体中之前还包括对所述衬底进行清洗的步骤。
8.如权利要求7所述的高性能混相ZnMgO薄膜的制备方法,其特征在于,将所述衬底放入腔体中之后对所述衬底高温处理之前,还包括对生长腔抽真空处理的步骤。
9.如权利要求1所述的高性能混相ZnMgO薄膜的制备方法,其特征在于,利用金属有机物化学气相沉积设备生长ZnMgO薄膜,生长结束后,降低所述衬底温度到室温,得到ZnMgO薄膜;所述降温的速率为0.2-0.8℃/s。
10.一种高性能混相ZnMgO薄膜,其特征在于,由所述权利要求1-9任一项所述的ZnMgO薄膜制备方法制备得到。
CN201911241727.8A 2019-12-06 2019-12-06 一种高性能混相ZnMgO薄膜的制备方法及ZnMgO薄膜 Pending CN110970529A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911241727.8A CN110970529A (zh) 2019-12-06 2019-12-06 一种高性能混相ZnMgO薄膜的制备方法及ZnMgO薄膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911241727.8A CN110970529A (zh) 2019-12-06 2019-12-06 一种高性能混相ZnMgO薄膜的制备方法及ZnMgO薄膜

Publications (1)

Publication Number Publication Date
CN110970529A true CN110970529A (zh) 2020-04-07

Family

ID=70033223

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911241727.8A Pending CN110970529A (zh) 2019-12-06 2019-12-06 一种高性能混相ZnMgO薄膜的制备方法及ZnMgO薄膜

Country Status (1)

Country Link
CN (1) CN110970529A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785793A (zh) * 2020-08-11 2020-10-16 中国科学院长春光学精密机械与物理研究所 ZnMgO紫外探测器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101235483A (zh) * 2008-03-04 2008-08-06 浙江大学 利用直流反应磁控溅射制备p-ZnMgO薄膜的方法
CN101527322A (zh) * 2009-04-07 2009-09-09 浙江大学 一种可弯曲全透明ZnMgO薄膜晶体管及其制备方法
CN103890230A (zh) * 2011-10-27 2014-06-25 丰田自动车株式会社 制造ZnMgO膜的方法
CN108962732A (zh) * 2018-07-12 2018-12-07 中国科学院长春光学精密机械与物理研究所 一种ZnMgO薄膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101235483A (zh) * 2008-03-04 2008-08-06 浙江大学 利用直流反应磁控溅射制备p-ZnMgO薄膜的方法
CN101527322A (zh) * 2009-04-07 2009-09-09 浙江大学 一种可弯曲全透明ZnMgO薄膜晶体管及其制备方法
CN103890230A (zh) * 2011-10-27 2014-06-25 丰田自动车株式会社 制造ZnMgO膜的方法
CN108962732A (zh) * 2018-07-12 2018-12-07 中国科学院长春光学精密机械与物理研究所 一种ZnMgO薄膜及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785793A (zh) * 2020-08-11 2020-10-16 中国科学院长春光学精密机械与物理研究所 ZnMgO紫外探测器及其制备方法

Similar Documents

Publication Publication Date Title
Romeo et al. Low substrate temperature CdTe solar cells: A review
CA2539556C (en) Method for the preparation of group ib-iiia-via quaternary or higher alloy semiconductor films
Giri et al. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications
CN108206130B (zh) 生长在铝箔衬底上的氮化铟纳米柱外延片及其制备方法
CN104962858A (zh) 基于GaAs衬底的氧化镓薄膜及其生长方法
CN112086344B (zh) 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用
CN110970528A (zh) 一种ZnMgGaO四元合金薄膜的制备方法及ZnMgGaO四元合金薄膜
CN111020529A (zh) 一种稼酸镁薄膜的制备方法及稼酸镁薄膜
CN111081533A (zh) 一种单一取向锌镓氧薄膜及其制备方法
Park et al. A III-nitride nanowire solar cell fabricated using a hybrid coaxial and uniaxial InGaN/GaN multi quantum well nanostructure
Zhang et al. Growth and characterization of Si-doped Ga2O3 thin films by remote plasma atomic layer deposition: Toward UVC-LED application
CN115101639A (zh) InGaN基光电子器件的复合衬底及其制备方法和应用
CN110284198A (zh) 一种控制GaN纳米线结构与形貌的分子束外延生长方法
CN104195514A (zh) 一种氮化锌锡多晶薄膜的制备方法
CN110970529A (zh) 一种高性能混相ZnMgO薄膜的制备方法及ZnMgO薄膜
CN108231545B (zh) 生长在铜箔衬底上的InN纳米柱外延片及其制备方法
CN105118853A (zh) 基于MgO衬底的氧化镓薄膜及其生长方法
CN108330536B (zh) PA-MBE同质外延高质量GaN单晶薄膜的制备方法
Young et al. Characterization of ZnO metal–semiconductor–metal ultraviolet photodiodes with palladium contact electrodes
CN115101633A (zh) InGaN基光电子器件及其制备方法
CN104451867B (zh) 一种制备高质量ZnMgBeO薄膜的方法
CN104332540A (zh) 一种制备高发光性能p型ZnO薄膜的方法
KR101582121B1 (ko) 이종 적층형 cis계 광활성층 박막의 제조방법, 이로부터 제조된 cis계 광활성층 박막 및 상기 박막을 포함하는 박막 태양전지
KR101540035B1 (ko) 스퍼터링 증착을 이용한 황화카드뮴 박막의 제조방법
KR101521450B1 (ko) CuSe2를 타겟으로 하는 비셀렌화 스퍼터링 공정을 이용한 CIGS 박막 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200407

RJ01 Rejection of invention patent application after publication