CN103890230A - 制造ZnMgO膜的方法 - Google Patents

制造ZnMgO膜的方法 Download PDF

Info

Publication number
CN103890230A
CN103890230A CN201280053151.2A CN201280053151A CN103890230A CN 103890230 A CN103890230 A CN 103890230A CN 201280053151 A CN201280053151 A CN 201280053151A CN 103890230 A CN103890230 A CN 103890230A
Authority
CN
China
Prior art keywords
line
temperature
magnesium
ammonia soln
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280053151.2A
Other languages
English (en)
Inventor
前川谅介
粟野宏基
松永朋也
武田雄一郎
酒井武信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN103890230A publication Critical patent/CN103890230A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1832Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising ternary compounds, e.g. Hg Cd Te
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Photovoltaic Devices (AREA)

Abstract

制造ZnMgO膜的方法,该方法依次包括以下步骤:将锌材料和镁材料溶解在氨水溶液中,所述氨水溶液具有这样的温度:在该温度时,在纵轴表示锌离子浓度和镁离子浓度、横轴表示pH值的水溶液状态图中,由产生Zn(OH)2沉淀的区域和ZnO2 2-能够存在的区域所界定的线α位于比由镁离子能够存在的区域和产生Mg(OH)2沉淀的区域所界定的线β更低的pH值侧,以及,调节所述氨水溶液的pH值以及所述氨水溶液内的锌离子浓度和镁离子浓度,以获得位于线α和线β之间的区域内的状态;使所述氨水溶液的温度升高至一温度,在该温度时产生Zn(OH)2和Mg(OH)2沉淀;以及灼烧沉淀物。

Description

制造ZnMgO膜的方法
技术领域
本发明涉及ZnMgO膜和制造该膜的方法。
背景技术
太阳能电池发电时的碳排放量小,且不需要燃料来发电。因此,太阳能电池有望成为有助于遏止全球变暖的一种能源。如今实用中的太阳能电池主要是单结太阳能电池,其使用单晶硅或多晶硅,并具有一对pn结。然而,这样的单结太阳能电池的光吸收率低,理论光电转换效率也低。因此,正积极研究能够改善这些特性的太阳能电池。
一种这样的太阳能电池是化合物薄膜太阳能电池。化合物薄膜太阳能电池保护自然资源,易于大规模生产,并有可能极大地提高转换效率。最近,ZnMgO作为化合物薄膜太阳能电池中的缓冲层以及作为发光元件材料,已引起了人们的注意。迄今,已使用溅射技术等,利用汽相成膜工艺生产了ZnMgO。还在持续努力,以通过增加镁的添加量来增大带隙。然而,出于一些原因,包括汽相成膜工艺中使用的设备的高成本,以及要完全覆盖具有因单一方向上的起始材料流导致的不平坦表面的下方材料的困难,理想的是通过液相成膜工艺来制造ZnMgO。
例如,在《材料科学》(德国),41,第4号,1269-1271 (2006)中公开了一种利用液相成膜工艺来制造ZnMgO的技术。
当ZnMgO用在化合物薄膜太阳能电池中时,例如使用铜、铟、硒和镓化合物的铜铟镓二硒化物(CIGS)太阳能电池,为在pn结界面形成的时刻获得其中电子能迁移至p层侧的这样一种形式,以及其中通过光吸收所产生的电子能迁移至电极的这样一种形式,理想的是,相对于锌,加入的镁的量被设定为至少是30 mol%。然而,在常规液相成膜方法中,例如《材料科学》中公开的,相对于锌,加入的镁的量的上限是约10 mol%。
发明内容
因此,本发明的一个目的是,提供一种制造ZnMgO薄膜的方法,其中,相对于锌,加入的镁的量被设定为至少是30 mol%。本发明的另一目的是提供ZnMgO薄膜,其中,相对于锌,加入的镁的量为至少30 mol%。
根据本发明第一方面的制造ZnMgO薄膜的方法,该方法包括以下步骤:将锌材料和镁材料溶解在氨水溶液中,所述氨水溶液具有这样的温度:在该温度时,在纵轴表示锌离子浓度和镁离子浓度、横轴表示pH值的水溶液状态图中,由产生Zn(OH)2沉淀的区域和ZnO2 2-能够存在的区域所界定的线α位于比由镁离子能够存在的区域和产生Mg(OH)2沉淀的区域所界定的线β更低的pH值侧,以及,调节所述氨水溶液的pH值以及所述氨水溶液内的锌离子浓度和镁离子浓度,以获得位于线α和线β之间的区域内的状态;在调节了所述pH值和所述离子浓度后,使所述氨水溶液的温度升高至一温度,在该温度时产生Zn(OH)2和Mg(OH)2沉淀;以及在所述氨水溶液的温度升高后,灼烧沉淀物。
在本发明的第一方面,通过将适量的锌材料和镁材料溶解在氨水溶液中,该所述氨水溶液具有这样的pH值,以使得在线α位于比线β更低的pH值侧的温度环境中时,调节pH值使其落在线α和线β之间的区域内,可使ZnO2 2-和Mg2+存在于氨水溶液中。在将溶液置于这些离子都存在的状态中时,氨水溶液温度的升高使线β移至低的pH值侧,以能够诱使产生Zn(OH)2沉淀。另外,氨水溶液温度的升高使导致氨挥发,以能够降低氨水溶液的pH值。由于氨水溶液可以设定在位于线α的低pH值侧的状态,因此,有可能诱使产生Zn(OH)2沉淀。这样,通过使原本以离子状态存在的Zn和Mg在相似时间分别产生Zn(OH)2和Mg(OH)2沉淀,锌很容易地被镁取代,以有可能将镁相对于锌的添加量设定为至少30 mol%。一旦Zn(OH)2和Mg(OH)2已被诱使析出,则有可能通过对沉淀物进行灼烧和诱使脱水反应而产生ZnMgO薄膜。
在本发明的第一方面,线α位于比线β更低的pH值侧时的温度优选地是至多25°C。通过将温度与pH调节步骤中氨水溶液的温度设定在最多25°C,有可能使位于线α和线β之间的区域变宽。因此,使ZnO2 2-和Mg2+都存在于氨水溶液中变得更容易了,而这使制造镁添加量相对于锌为至少30mol%的ZnMgO薄膜变得更容易。
根据本发明第二方面的ZnMgO薄膜,其(100)X射线衍射强度与(002)X射线衍射强度之比至少为1/2,且其(101)X射线衍射强度与(002)X射线衍射强度之比至少为1/2。
利用根据本发明第一方面的制造方法生产的、且其中镁相对于锌的添加量为至少30 mol%的ZnMgO薄膜,其(100)X射线衍射强度与(002)X射线衍射强度之比至少为1/2,且其(101)X射线衍射强度与(002)X射线衍射强度之比至少为1/2。因此,通过满足这样的X射线衍射强度比条件,有可能获得相对于锌、镁的添加量被设定为至少30 mol%的ZnMgO薄膜。
根据本发明的第一方面,提供了一种ZnMgO薄膜的制造方法,其能够将其中镁相对于锌的添加量设定为至少30 mol%。
根据本发明的第二方面,提供了一种镁相对于锌的添加量至少为30 mol%的ZnMgO薄膜。
附图说明
结合附图,以下将描述本发明的示例性实施例的特征、优点以及技术和工业意义,附图中相似的数字指代相似部件,且其中:
图1是含有锌离子和镁离子的水溶液的状态图;
图2是含有锌离子和镁离子的水溶液的另一状态图;
图3是含有锌离子和镁离子的水溶液的再一状态图;
图4是含有锌离子和镁离子的水溶液的进一步的状态图;
图5是表明本发明的制造ZnMgO薄膜的方法的流程图;
图6是展示X射线衍射强度结果的图;
图7是展示ZnMgO薄膜上的摩尔分数Mg/(Zn+Mg)与X射线衍射测量时确认(002)峰所在的衍射角2θ之间的关系的图;
图8是示出用溅射法制得的ZnMgO薄膜上的X射线衍射测量结果的图表;
图9是展示光能量和光吸收系数的平方之间的关系的曲线图;
图10是展示ZnMgO薄膜上的摩尔分数Mg/(Zn+Mg)与带隙之间的关系的曲线图。
具体实施方式
图1是25°C时含有锌离子和镁离子的水溶液的状态图。图1的纵轴表示锌离子浓度和镁离子浓度(mol/L),横轴表示pH值。图1示出了由能存在镁离子的区域和溶液中产生Mg(OH)2的区域所界定的线β(以下简称为“线β”),以及由能存在锌离子的区域和溶液中产生Mg(OH)2沉淀的区域所界定的线γ(以下简称为“线γ”)。图1展示了锌离子能存在于线γ的低pH值侧,在线γ的高pH值侧产生Zn(OH)2沉淀,镁离子能存在于线β的低pH值侧,在线β的高pH值侧产生Zn(OH)2沉淀。
当利用常规液相成膜法制备ZnMgO薄膜时,通常经以下步骤制得ZnMgO薄膜,例如:将氯化锌和氯化镁溶解在盐酸水溶液中,然后向其中加入氨水,以使锌和镁共沉淀。结合图1描述该方法。ZnMgO薄膜是经过这样一个步骤制得的,在该步骤中,例如通过增大pH值,处于由图1中的X标示的状态的溶液穿过线γ,转化为产生Zn(OH)2沉淀的状态。因此,在常规液相成膜法工艺中,通过从低pH状态改变至高pH状态,穿过了线γ,且诱使产生了Zn(OH)2沉淀。然而,如图1所示,即使当pH值增大、且诱使产生Zn(OH)2沉淀时,镁能以离子状态存在于线β的低pH侧。为诱使Mg (OH)2从溶液中析出,溶液的pH值必须进一步增大至线β的高pH值侧。由于常规工艺难以诱使以离子状态存在的锌和镁在相似时刻生成沉淀,因此,在产生Zn(OH)2沉淀时,仅少量镁生成了镁沉淀。这大概是为什么相对于锌、镁的添加量的上限一直只有约10 mol%。即使是在基于电解析出的工艺中,出于类似原因,镁相对于锌的添加量的上限也被限制为约7.7 mol%。
当pH值从Zn沉淀为Zn(OH)2的区域进一步增大时,锌能够以ZnO2 2-的状态存在。图2展示了通过向图1的水溶液状态图中添加线α而得到的水溶液状态图,所述线α由溶液中产生Zn(OH)2的区域和能够存在ZnO2 2-的区域所界定(以下简称为“线α”)。图2展示了锌离子能存在于线γ的低pH值侧,在线γ的高pH值侧和线α的低pH值侧从溶液中产生Zn(OH)2沉淀, ZnO2 2-能存在于线α的高pH值侧,镁离子能存在于线β的低pH值侧,且在线β的高pH值侧溶液中产生Mg (OH)2沉淀。
如图2所示,在线α的高pH值侧和线β的低pH值侧上(位于线α和线β之间的区域),ZnO2 2-和镁离子都能存在。因此,在控制了水溶液的温度、pH值、锌离子浓度和镁离子浓度,以满足位于线α和线β之间的区域的条件后,如果能诱使在相似的时刻产生Zn(OH)2和Mg(OH)2沉淀,则将镁相对于锌的添加量增大至多于先前可能的量,这应当是有可能的。
作为深入研究的结果,本发明人发现了含有锌离子和镁离子的水溶液在60°C下的状态图,如图3所示。图3示出了对应于线α的线α',对应于线β的线β',和对应于线γ的线γ',每条线在水溶液中的温度下都移向低pH侧并抬升。图3展示了锌离子能存在于线γ'的低pH值侧,在线γ'的高pH值侧和线α'的低pH值侧溶液中产生Zn(OH)2沉淀,ZnO2 2-能存在于线α'的高pH值侧,镁离子能存在于线β'的低pH值侧,且在线β'的高pH值侧溶液中产生Mg (OH)2沉淀。
图4展示了通过向图2中添加线α'、线β'和线γ'得到的水溶液状态图。在图4中,位于线α和线β之间的区域是阴影部分。从图2到图4,当水溶液的温度是25°C时,线α位于线β的低pH值侧,而线α'位于线β'的高pH值侧。因此,尽管线α和线β都移向低pH值侧,同时温度升高,然而发现,线β比线α向低pH值侧偏移的程度更大。从这些结果可知,通过提高水溶液的温度,能够使线β显著地移向低pH值侧。
因此,似乎有可能将镁离子能存在的状态改变为溶液中产生Mg(OH)2沉淀的状态。此外,通过使用氨水溶液作为含有锌离子和镁离子的水溶液,随着水溶液温度的升高,氨越来越易于挥发,从而使氨水溶液的pH值随着氨的挥发而逐渐降低。因此,人们认为,提高氨水溶液的温度会导致氨水溶液从位于线α的高pH值侧的状态(ZnO2 2-能存在的状态)改变至位于线α'的低pH值侧的状态(产生Mg(OH)2沉淀的状态)。
也就是说,在使ZnO2 2-和镁离子都存在于溶液中之后,通过使氨水溶液的温度升高、以诱使在相似的时刻产生Zn(OH)2和Mg(OH)2沉淀,似乎有可能制备这样的ZnMgO薄膜,其中相对于锌、镁的添加量已增加到至少30 mol%。本发明正是在这一发现的基础上最终得以完成。
结合图示描述本发明的实施例。应当注意,尽管以下展示的实施例是本发明的例子,然而本发明并不限于这些实施例。
图5是展示根据本发明一个实施例的ZnMgO薄膜制造方法的流程图(在下文中,其方法有时被称为“本实施例的制造方法”)。如图5所示,本实施例的ZnMgO薄膜的制造方法具有调节步骤(S1)、衬底添加步骤(S2)、温度升高步骤(S3)、干燥步骤(S4)以及灼烧步骤(S5)。
调节步骤(以下有时称为“S1”)是将锌材料和镁材料溶解在氨水溶液中,所述氨水溶液具有这样的温度:在该温度时,在纵轴表示锌离子浓度和镁离子浓度、横轴表示pH值的水溶液状态图中,线α位于比线β的低pH值侧,以及,调节所述氨水溶液的pH值以及所述氨水溶液内的所述锌离子浓度和镁离子浓度,以实现位于线α和线β之间的区域内的水溶液状态。即,当氨水溶液的温度是25°C时,S1是将锌材料和镁材料溶解在氨水溶液中,并调节pH值、锌离子浓度和镁离子浓度,以使溶液状态落入位于图2中的线α和线β之间的区域内的步骤。
衬底添加步骤(以下有时称为“S2”)是在S1之后将ZnMgO形成所在的衬底放置在含有氨水溶液的容器内的步骤。
温度升高步骤(以下有时称为“S3”)是在S2之后使氨水溶液的温度升高至溶液中产生Zn(OH)2和Mg(OH)2沉淀的温度。如上所述,通过提高氨水溶液的温度,能够使氨挥发,并降低氨水溶液的pH值。因此,使设定为ZnO2 2-能存在的状态的氨水溶液改变至溶液中产生Zn(OH)2沉淀的状态,这是有可能的。同样,如上所述,由于可通过升高氨水溶液的温度而使线β移向低pH值侧,因此,使设定为镁离子能存在的状态的氨水溶液改变至产生Mg(OH)2沉淀的状态,这是有可能的。即,S3是诱使ZnO2 2-生成Zn(OH)2沉淀、并诱使镁离子生成Mg(OH)2沉淀的步骤。
干燥步骤(以下有时称为“S4”)是对在S3时被诱使从溶液中析出的沉淀物(Zn(OH)2和Mg(OH)2的混合物)进行干燥的步骤。
灼烧步骤(以下有时称为“S5”)是在S4之后灼烧已干燥的沉淀物的步骤。经过S5后,诱使进行了脱水反应,从而能够制备ZnMgO薄膜。S5中的灼烧温度应当是产生脱水反应、并由于产生沉淀而造成重量损失时的温度。例如,灼烧温度可设定为至少200°C、至多350°C。对S5中的灼烧温度不作特别限制,可将其设定为约等于常规液相成膜工艺中的温度。
经S1到S5,使Zn(OH)2和Mg(OH)2在相似时刻从溶液中析出是有可能的,因此,制备其中镁相对于锌的添加量增加到至少30 mol%的ZnMgO膜变得可能。
在本实施例中,氯化物、硝酸盐、硫酸盐、乙酸盐等锌和镁的类似物可适当地用作锌材料和镁材料。
在本实施例中,对S1的形式不作特别限制,只要其是这样的步骤即可:将锌材料和镁材料溶解在氨水溶液中,所述氨水溶液具有这样的温度:在该温度时,线α位于线β的低pH值侧,以及,调节氨水溶液的pH值以及所述氨水溶液内的锌离子浓度和镁离子浓度,以实现位于线α和线β之间的区域内的状态。然而,从例如使该步骤采用一种能促进锌起始材料和镁起始材料的溶解、从而缩短S1所需时间的形式的角度来看,S1优选地采用将锌材料和镁材料溶解在正在搅拌的氨水溶液中的形式。
在S1中,对锌材料和镁材料溶解在具有使线α位于线β的低pH值侧的温度的氨水溶液中的方式没有特别限制。S1可以采用在锌材料和镁材料已经溶解在氨水溶液中之后再改变温度(例如,降低温度)的形式。替代性地,S1可以采用这样的形式:其中将氨水溶液的温度设定为使线α位于线β的低pH值侧的温度,随后将锌材料和镁材料溶解在氨水溶液中。
此外,在S1中,使线α位于线β的低pH值侧的温度可以设定为例如低于30°C。如上所述,由于在升高温度后线β比线α移向低pH值侧的程度更大,因此认为,在降低氨水溶液的温度后,线β比线α移向高pH值侧的程度也更大。
氨水溶液的温度设定得越低,则可使线α与线β之间的区域变得更宽。由此,氨水溶液变得更易于在线α与线β之间的区域内进行调节。因此,从例如采用能协助在线α与线β之间的范围进行调节、并使ZnMgO薄膜更易于制备的角度来看,S1中优选的是将线α位于线β的低pH值侧时的温度设定为至多25°C。该温度更优选地是至多5°C。
替代性地,在本实施例中,对可用在S2中的衬底不作特别限制,只要其能承受住S5中的灼烧温度,并在衬底表面上能形成ZnMgO薄膜。能构成衬底的这种材料的例子包括石英玻璃、不锈钢衬底和钠钙玻璃衬底。
此外,在本实施例中,对S2中氨水溶液能升至的温度不作特别限制,只要是能使Zn(OH)2和Mg(OH)2从溶液中析出的温度即可。
为诱使产生Zn(OH)2和Mg(OH)2沉淀,优选地将氨水溶液的温度设定为例如至少30°C。从例如防止离子浓度产生大的波动以及对水溶液进行干燥的角度而言,优选的是将氨水溶液的温度设定为至多80°C。氨水溶液的温度更优选地是至少40°C、至多60°C。
对S2采用的形式不作特别限制,只要在诱使ZnO2 2-产生Zn(OH)2沉淀时能诱使镁离子生成Mg(OH)2沉淀。然而,从例如S2采用使Zn(OH)2和Mg(OH)2容易沉淀的形式的角度来看,优选的是S2采用能提高被搅拌的氨水溶液的温度的形式,从而诱使产生Zn(OH)2和Mg(OH)2沉淀。
在将180毫升水和5到30毫升的10%的氨水倒入烧杯中后,将烧杯浸没在冰水中,冷却直到氨水溶液的温度达到5°C。在单独的操作中,对锌材料(醋酸锌)和镁材料(醋酸镁)进行称量,其中醋酸锌和醋酸镁的摩尔比为6:4、7:3、8:2、9:1和1:0,然后加入到烧杯中。接着,将转子置于烧杯中,用搅拌器对将烧杯中的内容物进行充分搅拌,从而使醋酸锌和醋酸镁溶解。除未使用醋酸镁的例子(情形)之外,在醋酸锌和醋酸镁溶解后,调节氨水溶液调节使其落入线α与线β之间的区域的状态。当醋酸锌和醋酸镁溶解后,将石英玻璃衬底放置在烧杯中。随后,在搅拌氨水溶液的同时,将烧杯浸没在加热至60°C的水浴中并在其中保持30分钟。接着取出石英玻璃衬底并对其进行干燥,随后在开放空气中在500°C下灼烧1小时。经过以上步骤,制得了filni (在未使用醋酸镁时制得的ZnO薄膜,和在使用醋酸镁时制得的ZnMgO薄膜;下同)。
使用X射线衍射仪进行X射线衍射分析(Smart-Lab,来自Rigaku公司)。图6和图7以及表1示出了结果。在图6中,纵轴表示计数,单位是原子单位(a.u.),横轴表示衍射角2θ,单位是度(°)。图7是摩尔分数Mg/(Zn+Mg) (mol%)与在X射线衍射分析时确认(002)峰所在的衍射角2θ之间的关系图。在图7中,纵轴表示确认(002)峰所在的衍射角2θ,横轴表示摩尔分数Mg/(Zn+Mg) (mol%)。另外,通过使用紫外-可见分光光度计(V-570,来自JASCO公司)来测量光吸收系数,以确定制备的薄膜的带隙。带隙结果示出在表1和图9、图10中。在图9s中,纵轴表示光吸收系数的平方,单位是原子单元(a.u.),横轴表示能量,单位是电子伏特(eV)。
带隙是从由频谱外推得到的线而确定的。在图10中,纵轴表示带隙(eV),横轴表示摩尔分数Mg/(Zn+Mg) (mol%)。在表1中,固溶体中的镁的量(mol%)由下式(1)确定。
固溶体中的镁的量(mol%) = (带隙-3.2)/0.02    公式 (1)
Figure 655418DEST_PATH_IMAGE001
如图6和图7所示,镁材料比重的增加伴随着(002)衍射峰向高角度侧的位移。这大概是因为离子半径为0.65 A的镁在锌(离子半径为0.74 A)位点被取代了,导致晶体在C轴方向上收缩。从这些X射线衍射测量结果,确定在条件1到条件4下获得的薄膜为ZnMgO薄膜。
图8示出了用溅射方法制备的ZnMgO薄膜的X射线衍射的测量结果。在图8中,纵轴表示强度(a.u.),横轴表示衍射角2θ(°)。在图8中,仅观测了(002)峰,表明薄膜是取向于(002)晶面的。另一方面,如图6所示,用本实施方式的制造方法制备的薄膜未取向于(002)晶面,其(100)X射线衍射强度与(002)X射线衍射强度之比至少为1/2,且其(101)X射线衍射强度与(002)X射线衍射强度之比至少为1/2。
如图9和图10所示,镁材料比例的增大是伴随着带隙尺寸的增大的。可利用上述公式(1)从带隙计算出晶体中固溶体中的镁材料的量。
由于在条件1下带隙是3.85 eV,因此,用公式(1)计算的薄膜中的固溶体中的镁材料的量是32.5 mol%。因此,本实施例能提供这样的ZnMgO薄膜制造方法,其能将固溶体中的镁的量相对于锌设定为至少30 mol%,并能提供一种ZnMgO薄膜,其中,所添加的镁的量相对于锌是至少30 mol%。

Claims (6)

1.制造ZnMgO薄膜的方法,该方法包括以下步骤:
将锌材料和镁材料溶解在氨水溶液中,所述氨水溶液具有这样的温度:在该温度时,在纵轴表示锌离子浓度和镁离子浓度、横轴表示pH值的水溶液状态图中,由产生Zn(OH)2沉淀的区域和ZnO2 2-能够存在的区域所界定的线α位于比由镁离子能够存在的区域和产生Mg(OH)2沉淀的区域所界定的线β更低的pH值侧,以及,调节所述氨水溶液的pH值以及所述氨水溶液内的锌离子浓度和镁离子浓度,以获得位于线α和线β之间的区域内的状态;
在调节了所述pH值和所述离子浓度后,使所述氨水溶液的温度升高至一温度,在该温度时产生Zn(OH)2和Mg(OH)2沉淀;以及
在所述氨水溶液的温度升高后,灼烧沉淀物。
2.根据权利要求1所述的ZnMgO薄膜的制造方法,其中,所述线α位于比所述线β更低的pH值侧时的温度是至多25°C。
3.根据权利要求1或2所述的ZnMgO薄膜的制造方法,其中,产生Zn(OH)2和Mg(OH)2沉淀时的温度是至少25°C、至多80°C。
4.ZnMgO薄膜,其(100)X射线衍射强度与(002)X射线衍射强度之比至少为1/2,且其(101)X射线衍射强度与(002)X射线衍射强度之比至少为1/2。
5.ZnMgO薄膜,其由如权利要求1到3中任一项所述的制造方法制造。
6.根据权利要求5所述的ZnMgO薄膜,其中,所述薄膜的(100)X射线衍射强度与(002)X射线衍射强度之比至少为1/2,且其(101)X射线衍射强度与(002)X射线衍射强度之比至少为1/2。
CN201280053151.2A 2011-10-27 2012-10-25 制造ZnMgO膜的方法 Pending CN103890230A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011235630A JP5660004B2 (ja) 2011-10-27 2011-10-27 ZnMgO膜の製造方法
JP2011-235630 2011-10-27
PCT/IB2012/002138 WO2013061134A2 (en) 2011-10-27 2012-10-25 Znmgo film and method of manufacturing znmgo film

Publications (1)

Publication Number Publication Date
CN103890230A true CN103890230A (zh) 2014-06-25

Family

ID=47356225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280053151.2A Pending CN103890230A (zh) 2011-10-27 2012-10-25 制造ZnMgO膜的方法

Country Status (5)

Country Link
US (1) US20140311564A1 (zh)
EP (1) EP2771498A2 (zh)
JP (1) JP5660004B2 (zh)
CN (1) CN103890230A (zh)
WO (1) WO2013061134A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110970529A (zh) * 2019-12-06 2020-04-07 中国科学院长春光学精密机械与物理研究所 一种高性能混相ZnMgO薄膜的制备方法及ZnMgO薄膜

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265362B2 (ja) * 2012-02-27 2018-01-24 日東電工株式会社 Cigs系化合物太陽電池
JP2014011310A (ja) * 2012-06-29 2014-01-20 Toyota Motor Corp 半導体膜の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1740366A (zh) * 2005-09-09 2006-03-01 浙江大学 立方相纳米ZnMgO线材料及其制备方法
CN101235537A (zh) * 2007-11-12 2008-08-06 中国科学院长春光学精密机械与物理研究所 制备ZnMgO合金薄膜的方法
US20110027940A1 (en) * 2009-07-30 2011-02-03 Oladeji Isaiah O Method for fabricating copper-containing ternary and quaternary chalcogenide thin films

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423983B1 (en) * 2000-10-13 2002-07-23 North Carolina State University Optoelectronic and microelectronic devices including cubic ZnMgO and/or CdMgO alloys

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1740366A (zh) * 2005-09-09 2006-03-01 浙江大学 立方相纳米ZnMgO线材料及其制备方法
CN101235537A (zh) * 2007-11-12 2008-08-06 中国科学院长春光学精密机械与物理研究所 制备ZnMgO合金薄膜的方法
US20110027940A1 (en) * 2009-07-30 2011-02-03 Oladeji Isaiah O Method for fabricating copper-containing ternary and quaternary chalcogenide thin films

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
E.DILER ET AL: ""Stability of ZnMgO oxide in a weak alkaline solution"", 《THIN SOLID FILMS》 *
QIXIN GUO ET AL: ""Structural and Optical Properties of ZnMgO Films Grown by Metal Organic Decomposition"", 《JAPANESE JOURNAL OF APPLIED PHYSICS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110970529A (zh) * 2019-12-06 2020-04-07 中国科学院长春光学精密机械与物理研究所 一种高性能混相ZnMgO薄膜的制备方法及ZnMgO薄膜

Also Published As

Publication number Publication date
WO2013061134A3 (en) 2013-08-22
JP5660004B2 (ja) 2015-01-28
WO2013061134A2 (en) 2013-05-02
JP2013093484A (ja) 2013-05-16
US20140311564A1 (en) 2014-10-23
EP2771498A2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
Liu et al. A rapid and robust light-and-solution-triggered in situ crafting of organic passivating membrane over metal halide perovskites for markedly improved stability and photocatalysis
Parra et al. Evolution of ZnO nanostructures as hexagonal disk: Implementation as photoanode material and efficiency enhancement in Al: ZnO based dye sensitized solar cells
Khan et al. Controlled synthesis of Sb2 (S1–x Se x) 3 (0≤ x≤ 1) solid solution and the effect of composition variation on electrocatalytic energy conversion and storage
JP4782880B2 (ja) バッファ層とその製造方法、反応液、光電変換素子及び太陽電池
CN100590893C (zh) 一种用于光伏电池的ⅱ-ⅵ族半导体薄膜的制备方法
CN103594561B (zh) 氧化物薄膜硫化硒化法制备铜锌锡硫硒太阳电池吸收层的方法
Jing et al. Chemical bath deposition of SnS nanosheet thin films for FTO/SnS/CdS/Pt photocathode
Guan et al. Aging precursor solution in high humidity remarkably promoted grain growth in Cu2ZnSnS4 films
Gertman et al. Chemical bath deposited PbS thin films on ZnO nanowires for photovoltaic applications
CN103890230A (zh) 制造ZnMgO膜的方法
EP2869335A1 (en) Semiconductor film manufacturing method
Boudaira et al. Optimization of sulphurization temperature for the production of single-phase CZTS kesterite layers synthesized by electrodeposition
CN106430284A (zh) 一种硫掺杂氧化锌纳米材料的制备方法
Shinagawa et al. Morphological evolution of ZnO nanorod arrays induced by a pH-buffering effect during electrochemical deposition
CN112694125A (zh) 一种黑色三氧化钼纳米片、其制备方法和应用
Haque et al. Effects of growth temperatures on the structural and optoelectronic properties of sputtered zinc sulfide thin films for solar cell applications
CN105236472A (zh) 一种SnO2纳米线阵列的制备方法
CN110707220B (zh) 一种通过黑磷提高钙钛矿电池稳定性的方法
CN104313686B (zh) 一种硫化镉气相合成方法
CN108408788B (zh) 黄铁矿纳米片定向附着生长的类八面体聚形晶的制备方法
Pinheiro et al. Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaics
CN104409214A (zh) 一种量子点修饰太阳电池光阳极的制备方法
CN104064626B (zh) 一种循环浸渍制备Cu2ZnSn(S1‑x,Sex)4纳米晶薄膜的方法
JP2009033071A (ja) CIGSSe太陽電池及びその作製方法
CN103601157B (zh) 一种乙二胺辅助多元醇基溶液合成铜铟铝硒纳米晶的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140625