CN110960698A - 131i标记聚乙烯亚胺/阿霉素络合物及其制备和应用 - Google Patents

131i标记聚乙烯亚胺/阿霉素络合物及其制备和应用 Download PDF

Info

Publication number
CN110960698A
CN110960698A CN201911318070.0A CN201911318070A CN110960698A CN 110960698 A CN110960698 A CN 110960698A CN 201911318070 A CN201911318070 A CN 201911318070A CN 110960698 A CN110960698 A CN 110960698A
Authority
CN
China
Prior art keywords
peg
pei
apas
dox
polyethyleneimine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911318070.0A
Other languages
English (en)
Other versions
CN110960698B (zh
Inventor
朱静怡
赵平平
杨军星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201911318070.0A priority Critical patent/CN110960698B/zh
Publication of CN110960698A publication Critical patent/CN110960698A/zh
Application granted granted Critical
Publication of CN110960698B publication Critical patent/CN110960698B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/06Macromolecular compounds, carriers being organic macromolecular compounds, i.e. organic oligomeric, polymeric, dendrimeric molecules
    • A61K51/065Macromolecular compounds, carriers being organic macromolecular compounds, i.e. organic oligomeric, polymeric, dendrimeric molecules conjugates with carriers being macromolecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种131I标记聚乙烯亚胺/阿霉素络合物及其制备方法和应用。本发明通过将pH响应两性离子APAS与功能化聚乙烯亚胺结合,以达到癌细胞对其的高量摄取;同时将化学药物阿霉素(DOX)和小分子放射性核素碘‑131(131I)引入到该纳米体系中,所制备的兼具SPECT成像和化学/放射性治疗功能的纳米诊疗试剂有望实现癌症的早期精准诊断及高效治疗,为构建基于高聚物的纳米诊疗试剂提供思路,具有良好的生物医用及商业前景。

Description

131I标记聚乙烯亚胺/阿霉素络合物及其制备和应用
技术领域
本发明属于功能化聚乙烯亚胺材料技术领域,具体涉及一种功能化131I标记聚乙烯亚胺/阿霉素络合物及其制备方法和应用。
背景技术
近年来,癌症已逐渐的成为威胁人类身体健康的头号杀手,每一年由于癌症而死亡的人数一向居高不下。由细胞无序分裂引发的恶性肿瘤严重威胁着人类的生命健康,这些细胞具有无限增殖,并能侵略毗邻组织及扩散到其它器官的能力。尽管癌症的诊断及治疗技术高速发展,但是目前还有许多类型的恶性肿瘤无法完全治愈。传统的癌症治疗手段有化学药物治疗、放射治疗和基因治疗等,但这些肿瘤治疗的手段都存在着毒副作用大和给药效率低等缺点。特别是对癌细胞不具有特异性,虽然对于癌细胞具有一定的治疗效果,但也易于富集在正常组织脏器中损害正常细胞,若加大治疗剂量,也会对正常组织脏器具有极大损伤。因此,为提高癌症治疗效果减少毒副作用,提高药物在肿瘤处的富集,且有效避免在正常组织脏器的吸附极为关键。
纳米技术的发展为癌症早期诊断及治疗提供了思路,基于纳米颗粒较小的尺寸及粒径能够在分子层面上在体内输送,并可通过调控其尺寸及理化性质赋予其多种功能以提高在病灶部位的有效富集。目前,已有多种纳米诊疗试剂被开发出,常见的纳米诊疗体系包括:基于高聚物的体系,基于贵金属的体系,基于脂质体的体系,基于胶束的体系,基于放射性核素的体系等。该种体系虽然已在体内外实验中具有良好的肿瘤诊断及治疗效果,但相对而言,其在肿瘤处的富集量仍然较低,在正常组织脏器(肝、脾及肾)中的富集量仍然较高。因此,开发出新型纳米诊疗体系,提高在肿瘤部位的有效积累成为肿瘤高效诊疗的重点。
发明内容
本发明的目的是提供一种功能化131I标记聚乙烯亚胺/阿霉素络合物,通过将pH响应两性离子APAS与功能化聚乙烯亚胺结合,以达到癌细胞对其的高量摄取;同时将化学药物阿霉素(DOX)和小分子放射性核素碘-131(131I)引入到该纳米体系中,结合高效的化学治疗及放射性治疗功能以期提高癌症的治疗效果。
为了实现上述发明目的,本发明采用以下技术手段:
一种131I标记聚乙烯亚胺/阿霉素络合物,包括超支化聚乙烯亚胺,在所述超支化聚乙烯亚胺的内部络合有阿霉素;
所述超支化聚乙烯亚胺表面修饰有4-(1,1,1-三苯基-14,17,20,23,26-五氧杂-2-硫杂)苯磺酰基三甲胺丁酰盐和放射性核素131I;
所述放射性核素131I通过3-(4-羟基苯基)丙酸N-羟基琥珀酰亚胺酯与超支化聚乙烯亚胺连接。
上述131I标记聚乙烯亚胺/阿霉素络合物的制备方法,包括以下步骤:
步骤1,将超支化聚乙烯亚胺PEI.NH2和甲氧基聚乙二醇-琥珀酰亚胺酯mPEG-NHS溶于水中,搅拌反应得到修饰有甲氧基聚乙二醇的超支化聚乙烯亚胺PEI.NH2-(mPEG),然后加入马来酰亚胺-聚乙二醇-琥珀酰亚胺戊酸酯MAL-PEG-SVA,搅拌反应制得PEI.NH2-(PEG-MAL)-(mPEG);
步骤2,将4-(1,1,1-三苯基-14,17,20,23,26-五氧杂-2-硫杂)苯磺酰基三甲胺丁酰盐APAS与PEI.NH2-(PEG-MAL)-(mPEG)溶于水中,搅拌反应得到PEI.NH2-(PEG-APAS)-(mPEG);
步骤3,将PEI.NH2-(PEG-APAS)-(mPEG)与3-(4-羟基苯基)丙酸N-羟基琥珀酰亚胺酯HAPO反应,制得PEI.NH2-HPAO-(PEG-APAS)-(mPEG),然后向反应液中加入三乙胺,搅拌反应后再加入乙酸酐,搅拌反应,得到PEI.NHAc-HPAO-(PEG-APAS)-(mPEG);
步骤4,向盐酸阿霉素溶液中加入三乙胺中和以形成脱质子的DOX,将得到的DOX与PEI.NHAc-HPAO-(PEG-APAS)-(mPEG)混合,搅拌反应,形成络合物APAS-PNPs/DOX;
步骤5,将步骤4得到的APAS-PNPs/DOX与氯胺T、放射性Na131I溶于PBS缓冲液中,搅拌反应,然后加入焦亚硫酸钠和碘化钾,继续搅拌反应,反应液经分离纯化,制得131I标记聚乙烯亚胺/阿霉素络合物。
进一步地,步骤1中mPEG-NHS与PEI.NH2的摩尔比为13-16:1,MAL-PEG-SVA与PEI.NH2的摩尔比为13-16:1。
进一步地,步骤2中APAS与PEI.NH2-(PEG-MAL)-(mPEG)的摩尔比为10-13:1。
进一步地,步骤3中HPAO与PEI.NH2-(PEG-APAS)-(mPEG)的摩尔比为8-12:1,三乙胺、乙酸酐和PEI.NH2-HPAO-(PEG-APAS)-(mPEG)的摩尔比为120-660:100-550:1。
进一步地,步骤4中DOX与PEI.NHAc-HPAO-(PEG-APAS)-(mPEG)的摩尔比为25-35:1。
进一步地,步骤5中Na131I的放射性活性为180-360MBq。
上述131I标记聚乙烯亚胺/阿霉素络合物在制备肿瘤诊疗试剂中的应用。
本发明通过将pH响应两性离子APAS与功能化聚乙烯亚胺结合,以达到癌细胞对其的高量摄取;同时将化学药物阿霉素(DOX)和小分子放射性核素碘-131(131I)引入到该纳米体系中,结合高效的化学治疗及放射性治疗功能以期提高癌症的治疗效果。
附图说明
图1为本发明制备的APAS-131I-PNPs/DOX的合成示意图。
图2为本发明中1HNMR测试的谱图,其中(a)为PEI.NH2-(mPEG)、(b)为PEI.NH2-(PEG-MAL)-(mPEG)、(c)为PEI.NH2-(PEG-APAS)-(mPEG)、(d)为PEI.NH2-HPAO-(PEG-APAS)-(mPEG)。
图3为本发明中中PEI.NH2-(PEG-APAS)-(mPEG),PEI.NH2-HPAO-(PEG-APAS)-(mPEG),DOX和APAS-PNPs/DOX的紫外可见吸收光谱图。
图4为本发明中不同pH条件下的PNPs/DOX和APAS-PNPs/DOX溶液的电势曲线图。
图5为本发明中不同pH条件下经过不同DOX浓度的PNPs/DOX和APAS-PNPs/DOX孵化48h的C6细胞CCK-8测试结果图。
图6为本发明中在不同pH条件下分别用DOX浓度为5μM的PNPs/DOX、APAS-PNPs/DOX和DOX孵化3h的C6细胞荧光显微镜图。
图7为本发明中制备的(a)Na131I,(b)131I-PNPs/DOX,(c)APAS-131I-PNPs/DOX的放射性化学纯度。
具体实施方式
目前,在众多功能分子中,两性离子基于其独特的结构及功能已被用于提高纳米材料在癌细胞中的富集。其结构中同时具有带负电荷的基团和带正电荷的基团,基于正负电荷的平衡使其在正常生理环境中(pH 7.4)呈现电中性;然而肿瘤处具有微酸性的生理环境(pH 6.0),可向两性离子提供质子,通过带负电荷的基团与质子的结合,使整个两性离子实现由电中性向正电性的转变,基于该种电荷翻转可与细胞膜通过静电作用连接,以实现癌细胞对其高量摄取。在众多的pH响应两性离子中,4-(1,1,1-三苯基-14,17,20,23,26-五氧杂-2-硫杂)苯磺酰基三甲胺丁酰盐(APAS)在肿瘤微酸性(pH 6.0)环境中足够灵敏,可实现较大程度的电荷翻转,其修饰的金纳米颗粒在pH 6.0环境下表面电荷为15mV,且能够实现人宫颈癌HeLa细胞的高量摄取(Mizuhara,T.K.et al.Angew.Chem.,Int.Ed.2015,54,6567)。因此,可通过将APAS与纳米载体结合有望实现癌细胞对纳米诊疗材料的高效摄取,进而实现癌症的精准诊疗。
在众多的纳米载体中,超支化聚乙烯亚胺(PEI.NH2)作为一种高度支化的聚合物,表面具有繁多的氨基,内部具有一定的疏水性空隙结构,可用于表面进行功能修饰,内部包裹或稳定金属纳米颗粒,负载基因、化学药物等。基于其良好的双亲性及生物相容性可用于构建纳米诊疗试剂运用于体外及体内实验。因此,如图1所示,在本发明中将pH响应两性离子APAS与功能化聚乙烯亚胺结合,以达到癌细胞对其的高量摄取;此外,将化学药物阿霉素(DOX)和小分子放射性核素碘-131(131I)引入到该纳米体系中,结合高效的化学治疗及放射性治疗功能以期提高癌症的治疗效果,与此同时131I也具有单光子发射计算机断层成像(SPECT)功能,可监控该纳米诊疗试剂在体内的治疗效果,在体内的分布情况,以进行即时成像。通过PEI纳米技术可构建精准、高效的纳米诊疗试剂可用于肿瘤的SPECT成像及化学/放射性治疗。
本发明的制备过程简单,易于操作,所使用的制备程序可用于其它类型功能化聚乙烯亚胺的制备,具有良好的使用价值。所制备的兼具SPECT成像和化学/放射性治疗功能的纳米诊疗试剂有望实现癌症的早期精准诊断及高效治疗,为构建基于高聚物的纳米诊疗试剂提供思路,具有良好的生物医用及商业前景。
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改或替换,均属于本发明的范围。实施例中未注明具体条件的实验方法及未说明配方的试剂均为按照本领域常规条件。
实施例1
步骤1,称取150mg PEI.NH2溶解于8mL去离子水中,边搅拌边滴加溶于10mL去离子水中的180mg甲氧基-聚乙二醇-琥珀酰亚胺酯(mPEG-NHS),其中mPEG-NHS与PEI的摩尔比为15:1,经过3天的搅拌反应得到PEI.NH2-(mPEG)溶液,随后称取180mg的马来酰亚胺-聚乙二醇-琥珀酰亚胺戊酸酯(MAL-PEG-SVA)溶于10mL去离子水中,并将MAL-PEG-SVA溶液滴加到PEI.NH2-(mPEG)溶液中,其中MAL-PEG-SVA与PEI的摩尔比为15:1,经过3天的搅拌反应得到PEI.NH2-(PEG-MAL)-(mPEG)溶液,用纤维素透析膜(MWCO=14000)在磷酸盐缓冲溶液和蒸馏水中透析3天,冷冻干燥处理得到PEI.NH2-(PEG-MAL)-(mPEG)粉末。
步骤2,称取120mg获得的PEI.NH2-(PEG-MAL)-(mPEG)粉末,并溶解于8mL去离子水中,边搅拌边滴加溶于5mL去离子水中的12.3mg APAS,其中APAS与PEI.NH2-(PEG-MAL)-(mPEG)的摩尔比为12:1,经过3天的搅拌反应,基于APAS表面裸露的巯基与PEI.NH2-(PEG-MAL)-(mPEG)中的马来酰亚胺基团反应,可将APAS修饰于PEI.NH2-(PEG-MAL)-(mPEG)上形成PEI.NH2-(PEG-APAS)-(mPEG)。得到的PEI.NH2-(PEG-APAS)-(mPEG)溶液用纤维素透析膜(MWCO=14000)在磷酸盐缓冲溶液和蒸馏水中透析3天,冷冻干燥处理得到PEI.NH2-(PEG-APAS)-(mPEG)粉末。
步骤3,称取100mg的PEI.NH2-(PEG-APAS)-(mPEG)粉末并溶于10mL的DMSO中,将溶于2mL DMSO中的3.2mg HPAO滴加到PEI.NH2-(PEG-APAS)-(mPEG)的DMSO溶液中,其中HPAO与PEI.NH2-(PEG-APAS)-(mPEG)的摩尔比为10:1,搅拌反应24h,得到PEI.NH2-HPAO-(PEG-APAS)-(mPEG)溶液。随后量取596μL三乙胺N(C2H5)3加入到PEI.NH2-HPAO-(PEG-APAS)-(mPEG)溶液中,搅拌反应30min后,向反应液中加入338.04μL乙酸酐Ac2O,在室温下搅拌反应24小时,其中N(C2H5)3、Ac2O和PEI.NH2-HPAO-(PEG-APAS)-(mPEG)的摩尔比为660:550:1。将所得的溶液用纤维素透析膜(MWCO=14000)在磷酸盐缓冲溶液和蒸馏水中透析3天,冷冻干燥处理得到PEI.NHAc-HPAO-(PEG-APAS)-(mPEG)粉末。
步骤4,称取80mg的PEI.NHAc-HPAO-(PEG-APAS)-(mPEG)粉末溶解于3mL去离子水中,再称取15.56mg的盐酸阿霉素DOX.HCl溶于800μL甲醇中并用20μL的三乙胺中和以形成脱质子的DOX,将得到的DOX溶液与3mL的PEI.NHAc-HPAO-(PEG-APAS)-(mPEG)溶液混合,其中DOX与PEI.NHAc-HPAO-(PEG-APAS)-(mPEG)的摩尔比为30:1,经过搅拌反应过夜使甲醇挥发,形成PEI.NHAc-HPAO-(PEG-APAS)-(mPEG)/DOX络合物,并通过离心(7000rpm,10min)去除未络合进PEI体系中的DOX沉淀,所获得的DOX沉淀收集并溶解于1mL甲醇中用于紫外可见光谱分析。获得的上清液PEI.NHAc-HPAO-(PEG-APAS)-(mPEG)/DOX络合物通过冻干得到粉末状PEI.NHAc-HPAO-(PEG-APAS)-(mPEG)/DOX络合物(缩写为:APAS-PNPs/DOX)。
步骤5,称取200μg步骤4中得到的APAS-PNPs/DOX粉末,将其溶于150μL的PBS缓冲液(pH 7.2-7.4)中,加入溶于150μL PBS缓冲液(pH 7.2-7.4)中的氯胺T及放射性Na131I溶液(0.5mL,370MBq),搅拌反应3min后加入Na2S2O5(120μg)及KI(120μg),继续搅拌反应20min,将获得的混合溶液经PD-10脱盐柱分离纯化,以PBS缓冲液(pH 7.2-7.4)为流动相,分离纯化获得131I标记的功能化聚乙烯亚胺/阿霉素络合物(APAS-131I-PNPs/DOX)。
对比例1
步骤1,称取50mg实施例1中合成的PEI.NH2-(PEG-MAL)-(mPEG)粉末,将其溶解于5mL DMSO中,并将溶于2mL DMSO中的1.70mg HPAO滴加到PEI.NH2-(PEG-MAL)-(mPEG)的DMSO溶液中,其中HPAO与PEI.NH2-(PEG-MAL)-(mPEG)的摩尔比为10:1,搅拌反应24h,得到PEI.NH2-HPAO-(PEG-MAL)-(mPEG)的溶液。随后量取298μL三乙胺N(C2H5)3加入到PEI.NH2-HPAO-(PEG-MAL)-(mPEG)溶液中,搅拌反应30min后,向反应液中加入169.02μL乙酸酐Ac2O,在室温下搅拌反应24h,其中N(C2H5)3、Ac2O和PEI.NH2-HPAO-(PEG-MAL)-(mPEG)的摩尔比为660:550:1。将所得的溶液用纤维素透析膜(MWCO=14000)在磷酸盐缓冲溶液和蒸馏水中透析3天,冷冻干燥处理得到PEI.NHAc-HPAO-(PEG-MAL)-(mPEG)粉末。
步骤2,称取40mg的PEI.NHAc-HPAO-(PEG-MAL)-(mPEG)粉末溶解于2mL去离子水中,再称取8.16mg的盐酸阿霉素DOX.HCl溶于300μL甲醇中并用10μL的三乙胺中和以形成脱质子的DOX,将得到的DOX溶液与2mL的PEI.NHAc-HPAO-(PEG-MAL)-(mPEG)溶液混合,其中DOX与PEI.NHAc-HPAO-(PEG-MAL)-(mPEG)的摩尔比为30:1,经过搅拌反应过夜使甲醇挥发,形成PEI.NHAc-HPAO-(PEG-MAL)-(mPEG)/DOX络合物,并通过离心(7000rpm,10min)去除未络合进PEI体系中的DOX沉淀,所获得的DOX沉淀收集并溶解于1mL甲醇中用于紫外可见光谱分析。获得的上清液PEI.NHAc-HPAO-(PEG-MAL)-(mPEG)/DOX络合物通过冻干得到粉末状PEI.NHAc-HPAO-(PEG-MAL)-(mPEG)/DOX络合物(缩写为:PNPs/DOX)
步骤3,称取200μg步骤2中得到的PNPs/DOX粉末,将其溶于150μL的PBS缓冲液(pH7.2-7.4)中,加入溶于150μL PBS缓冲液(pH 7.2-7.4)中的氯胺T及放射性Na131I溶液(0.5mL,370MBq),搅拌反应3min后加入Na2S2O5(120μg)及KI(120μg),继续搅拌反应20min,将获得的混合溶液经PD-10脱盐柱分离纯化,以PBS缓冲液(pH 7.2-7.4)为流动相,分离纯化获得131I标记的功能化聚乙烯亚胺/阿霉素络合物(131I-PNPs/DOX)。
使用1HNMR(氢核磁共振)、UV-Vis(紫外可见光谱)、TEM(透射电子显微镜)、Zeta电势测试、癌细胞摄取测试、放射性稳定性测试对上述实施例制得的聚乙烯亚胺/阿霉素络合物进行表征。
(1)1HNMR测试
合成过程中对得到的功能化聚乙烯亚胺进行氢核磁共振(1H NMR)测试,如图2所示,通过定性及定量分析图谱可知:每个PEI分子上修饰了12.8个mPEG-NHS、13.5个MAL-PEG-SVA,6.5个APAS,7.3个HPAO。
(2)UV-Vis测试
对得到的PEI.NH2-(PEG-APAS)-(mPEG),PEI.NH2-HPAO-(PEG-APAS)-(mPEG),DOX和APAS-PNPs/DOX进行紫外可见吸收光谱(UV-Vis)测试。如图3所示,结果表明PEI.NH2-(PEG-APAS)-(mPEG)和PEI.NH2-HPAO-(PEG-APAS)-(mPEG)未在紫外可见光区(400~800nm)有吸收,DOX和APAS-PNPs/DOX分别在495nm和505nm处有强吸收峰,说明APAS-PNPs/DOX在505nm处的紫外可见吸收来自于DOX的负载,证明了DOX已成功负载在了APAS-PNPs上。
(3)载药量
在合成过程中,将DOX沉淀收集并溶解于1mL甲醇中,可通过DOX在甲醇溶液中的标准曲线来测定溶于1mL甲醇中的DOX沉淀的质量,通过在反应过程中加入的DOX的质量减去DOX沉淀的质量即得到络合进PEI体系中的DOX的质量,进而计算出APAS-PNPs/DOX中药物DOX的负载量,结果如下表所示。
络合物 DOX百分数(wt.%) 每个PEI中DOX的数量
PNPs/DOX 8.75% 12.03
APAS-PNPs/DOX 8.39% 12.35
从上表可知,PNPs/DOX和APAS-PNPs/DOX中,每个PEI中的DOX数量分别为12.03和12.35。
(4)Zeta电势测试
对实施例1制备得到的APAS-PNPs/DOX和对比例1制备得到的PNPs/DOX进行Zeta电势测量以测试其在不同pH条件下的表面电荷。分别将APAS-PNPs/DOX和PNPs/DOX溶解于不同pH值(5.0,5.5,6.0,6.5,7.0,7.5)的磷酸盐缓冲液中,使APAS-PNPs/DOX和PNPs/DOX的浓度均为1μM,进行Zeta电势测量。结果如图4所示,仅有APAS-PNPs/DOX随着pH值的降低,对应的表面电荷由电中性逐渐转变为正电性,且随着酸性增强,APAS-PNPs/DOX的表面正电势数值逐渐升高。作为对比,未修饰有APAS的PNPs/DOX,在pH 5.0-7.5环境下,其表面电势均接近电中性。说明基于APAS的表面修饰,赋予了APAS-PNPs/DOX在微酸性环境下电荷翻转的功能。
(5)体外抗癌活性
利用CCK-8细胞活力测试来验证APAS-PNPs/DOX在不同pH环境下体外的抗癌活性。在体外细胞实验中,设置pH 7.4环境来模拟体内正常组织及血浆的生理环境,设置pH 6.0环境来模拟肿瘤部位的生理环境。首先,将C6细胞(1×104细胞/孔)种于96孔板中,经过24h的孵化,细胞贴壁。将不同DOX浓度(0μM,5μM,10μM,15μM,20μM)的APAS-PNPs/DOX和PNPs/DOX分别孵化处于不同pH(6.0和7.4)条件下的C6细胞,经48h的孵化,将各孔材料倒掉并用PBS洗涤,最后在各孔中加入100μL新鲜的培养基和10μL的CCK-8溶液,37℃孵化2h,用酶标仪监测450nm处吸光度值,从而计算得到细胞活力。结果如图5所示,PNPs/DOX在pH 6.0和pH7.4条件下均具有一定的体外抗癌活性,其体外抗癌活性的程度与APAS-PNPs/DOX在pH 7.4条件下体外抗癌活性的程度相似;然而在pH6.0条件下,APAS-PNPs/DOX的体外抗癌活性明显提高,经APAS-PNPs/DOX孵化的C6细胞其细胞活力明显有所降低,进一步验证了在微酸性环境下基于APAS的介导可实现APAS-PNPs/DOX在C6细胞的高量摄取,并在体外具有较高的抗癌活性。
(6)细胞摄取测试
选用大鼠脑胶质瘤C6细胞作为模型细胞进行细胞摄取实验以测试本发明得到的APAS-PNPs/DOX在不同pH条件下的细胞摄取情况。基于具有荧光特性的DOX在PEI体系中的负载,可通过荧光显微镜观察在微酸性条件下APAS-PNPs/DOX在C6细胞中的摄取情况。
在体外细胞实验中,设置pH 7.4环境来模拟体内正常组织及血浆的生理环境,设置pH 6.0环境来模拟肿瘤部位的生理环境。首先,将C6细胞(8×104细胞/孔)种于12孔板中,经过24h的孵化,细胞贴壁。将DOX([DOX]=5μM),APAS-PNPs/DOX([DOX]=5μM)和PNPs/DOX([DOX]=5μM)分别孵化处于不同pH(6.0和7.4)条件下的C6细胞,经3h的孵化,将各孔材料倒掉并用PBS洗涤,每孔加入2.5%戊二醛500μL固定20min,再用PBS洗2-3次,加1μg/mLDAPI 500μL染色20min后,用PBS洗2-3次,在荧光显微镜下拍摄。结果如图6所示,无论在pH6.0还是pH 7.4环境下,经DOX孵化的C6细胞均具有较高的DOX荧光强度,说明pH值的改变不影响DOX在C6细胞内的摄取;然而无论在pH 6.0还是pH 7.4环境下,经PNPs/DOX孵化的C6细胞均具有较低的DOX荧光,说明PNPs/DOX在pH 6.0和pH 7.4条件下均具有较低的细胞摄取。在pH 7.4条件下,经APAS-PNPs/DOX孵化的C6细胞中DOX荧光仍然很低;仅在pH 6.0条件下,经APAS-PNPs/DOX孵化的C6细胞具有较高的DOX荧光,说明C6细胞对其具有较高的摄取。体外模拟实验可验证APAS-PNPs/DOX有望在肿瘤部位的微酸性(pH 6.0)环境下实现高量摄取,避免在正常组织及血浆(pH 7.4)中的富集,为后期体内实验奠定基础。
(7)放射性稳定性测试
将形成的APAS-PNPs/DOX和PNPs/DOX分别按照实施例1和对比实施例1中的方法进行放射性核素131I的标记形成APAS-131I-PNPs/DOX和131I-PNPs/DOX。在收集到APAS-131I-PNPs/DOX(100μL)、131I-PNPs/DOX(100μL)后和Na131I(100μL)一起,分别与1mL 0.9%的生理盐水混合,之后立即使用薄层色谱法(TLC)测试各个样品的放射性化学纯度。结果如图7所示,得到的APAS-131I-PNPs/DOX和131I-PNPs/DOX均具有较高的放射性化学纯度,分别为94.4%和82.4%。
材料 Na<sup>131</sup>I <sup>131</sup>I-PNPs/DOX APAS-<sup>131</sup>I-PNPs/DOX
放射性化学纯度(%) 100 82.4 94.4
由上表可知,本发明的络合物具有较高的标记效率。

Claims (8)

1.一种131I标记聚乙烯亚胺/阿霉素络合物,其特征在于:包括超支化聚乙烯亚胺,在所述超支化聚乙烯亚胺的内部络合有阿霉素;
所述超支化聚乙烯亚胺表面修饰有4-(1,1,1-三苯基-14,17,20,23,26-五氧杂-2-硫杂)苯磺酰基三甲胺丁酰盐和放射性核素131I;
所述放射性核素131I通过3-(4-羟基苯基)丙酸N-羟基琥珀酰亚胺酯与超支化聚乙烯亚胺连接。
2.权利要求1所述的131I标记聚乙烯亚胺/阿霉素络合物的制备方法,其特征在于:包括以下步骤:
步骤1,将超支化聚乙烯亚胺PEI.NH2和甲氧基聚乙二醇-琥珀酰亚胺酯mPEG-NHS溶于水中,搅拌反应得到修饰有甲氧基聚乙二醇的超支化聚乙烯亚胺PEI.NH2-(mPEG),然后加入马来酰亚胺-聚乙二醇-琥珀酰亚胺戊酸酯MAL-PEG-SVA,搅拌反应制得PEI.NH2-(PEG-MAL)-(mPEG);
步骤2,将4-(1,1,1-三苯基-14,17,20,23,26-五氧杂-2-硫杂)苯磺酰基三甲胺丁酰盐APAS与PEI.NH2-(PEG-MAL)-(mPEG) 溶于水中,搅拌反应得到PEI.NH2-(PEG-APAS)-(mPEG);
步骤3,将PEI.NH2-(PEG-APAS)-(mPEG)与3-(4-羟基苯基)丙酸N-羟基琥珀酰亚胺酯HAPO反应,制得PEI.NH2-HPAO-(PEG-APAS)-(mPEG),然后向反应液中加入三乙胺,搅拌反应后再加入乙酸酐,搅拌反应,得到PEI.NHAc-HPAO-(PEG-APAS)-(mPEG);
步骤4,向盐酸阿霉素溶液中加入三乙胺中和以形成脱质子的DOX,将得到的DOX与PEI.NHAc-HPAO-(PEG-APAS)-(mPEG)混合,搅拌反应,形成络合物APAS-PNPs/DOX;
步骤5,将步骤4得到的APAS-PNPs/DOX与氯胺T、放射性Na131I溶于PBS缓冲液中,搅拌反应,然后加入焦亚硫酸钠和碘化钾,继续搅拌反应,反应液经分离纯化,制得131I标记聚乙烯亚胺/阿霉素络合物。
3.根据权利要求2所述的制备方法,其特征在于:步骤1中mPEG-NHS与PEI.NH2的摩尔比为13-16:1,MAL-PEG-SVA与PEI.NH2的摩尔比为13-16:1。
4.根据权利要求2所述的制备方法,其特征在于:步骤2中APAS与PEI.NH2-(PEG-MAL)-(mPEG)的摩尔比为10-13:1。
5.根据权利要求2所述的制备方法,其特征在于:步骤3中HPAO与PEI.NH2-(PEG-APAS)-(mPEG)的摩尔比为8-12:1,三乙胺、乙酸酐和PEI.NH2-HPAO-(PEG-APAS)-(mPEG)的摩尔比为120-660:100-550:1。
6.根据权利要求2所述的制备方法,其特征在于:步骤4中DOX与PEI.NHAc-HPAO-(PEG-APAS)-(mPEG)的摩尔比为25-35:1。
7.根据权利要求2所述的制备方法,其特征在于:步骤5中Na131I 的放射性活性为180-360 MBq。
8.权利要求1所述的131I标记聚乙烯亚胺/阿霉素络合物在制备肿瘤诊疗试剂中的应用。
CN201911318070.0A 2019-12-19 2019-12-19 131i标记聚乙烯亚胺/阿霉素络合物及其制备和应用 Active CN110960698B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911318070.0A CN110960698B (zh) 2019-12-19 2019-12-19 131i标记聚乙烯亚胺/阿霉素络合物及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911318070.0A CN110960698B (zh) 2019-12-19 2019-12-19 131i标记聚乙烯亚胺/阿霉素络合物及其制备和应用

Publications (2)

Publication Number Publication Date
CN110960698A true CN110960698A (zh) 2020-04-07
CN110960698B CN110960698B (zh) 2022-04-22

Family

ID=70035250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911318070.0A Active CN110960698B (zh) 2019-12-19 2019-12-19 131i标记聚乙烯亚胺/阿霉素络合物及其制备和应用

Country Status (1)

Country Link
CN (1) CN110960698B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120070383A1 (en) * 2010-09-16 2012-03-22 The Regents Of The University Of California Polymeric nano-carriers with a linear dual response mechanism and uses thereof
CN106075459A (zh) * 2016-06-14 2016-11-09 东华大学 一种叶酸靶向的多功能超支化聚乙烯亚胺负载阿霉素的方法
CN109865145A (zh) * 2019-03-12 2019-06-11 东华大学 一种放射性核素131i标记的功能化聚磷腈纳米球的制备方法
CN110128666A (zh) * 2019-05-27 2019-08-16 南京工业大学 功能化聚乙烯亚胺包裹纳米金颗粒复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120070383A1 (en) * 2010-09-16 2012-03-22 The Regents Of The University Of California Polymeric nano-carriers with a linear dual response mechanism and uses thereof
CN106075459A (zh) * 2016-06-14 2016-11-09 东华大学 一种叶酸靶向的多功能超支化聚乙烯亚胺负载阿霉素的方法
CN109865145A (zh) * 2019-03-12 2019-06-11 东华大学 一种放射性核素131i标记的功能化聚磷腈纳米球的制备方法
CN110128666A (zh) * 2019-05-27 2019-08-16 南京工业大学 功能化聚乙烯亚胺包裹纳米金颗粒复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JINGYI ZHU ET AL: "99mTc-Labeled Polyethylenimine-Entrapped Gold Nanoparticles with pH-Responsive Charge Conversion Property for Enhanced Dual Mode SPECT/CT Imaging of Cancer Cells", 《LANGMUIR》 *
NA SUN ET AL: "131I-labeled polyethylenimine-entrapped gold nanoparticles for targeted tumor SPECT/CT imaging and radionuclide therapy", 《INTERNATIONAL JOURNAL OF NANOMEDICINE》 *

Also Published As

Publication number Publication date
CN110960698B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
Lu et al. Nanoscale metal–organic frameworks for therapeutic, imaging, and sensing applications
Wang et al. Photosensitizer-crosslinked in-situ polymerization on catalase for tumor hypoxia modulation & enhanced photodynamic therapy
Garrigue et al. Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors
CN110128666B (zh) 功能化聚乙烯亚胺包裹纳米金颗粒复合材料及其制备方法
CN104274834A (zh) 一种环境敏感的肿瘤靶向聚合物胶束及其制备方法
US10117956B2 (en) Radiolabeled active targeting pharmaceutical composition and the use thereof
Paunesku et al. Gadolinium-conjugated TiO2-DNA oligonucleotide nanoconjugates show prolonged intracellular retention period and T1-weighted contrast enhancement in magnetic resonance images
Wang et al. A conveniently synthesized Pt (IV) conjugated alginate nanoparticle with ligand self-shielded property for targeting treatment of hepatic carcinoma
CN113209106A (zh) 一种聚乙二醇-苯硼酸修饰的树状大分子包裹铜离子/替拉扎明复合物及其制备方法和应用
WO2023001317A1 (zh) 基于切伦科夫效应的酸响应纳米胶束及其制备方法和应用
CN113616803A (zh) 一种gsh响应型吉西他滨纳米粒子及其制备方法与应用
Zhang et al. Site-specific biomimetic precision chemistry of bimodal contrast agent with modular peptides for tumor-targeted imaging
Zhang et al. Lactate-driving Pt nanoflower with positive chemotaxis for deep intratumoral penetration
Lee et al. Silica nanoparticle-based dual imaging colloidal hybrids: cancer cell imaging and biodistribution
Wang et al. Engineering of 177Lu-labeled gold encapsulated into dendrimeric nanomaterials for the treatment of lung cancer
CN114099719A (zh) 一种树枝状大分子包裹的纳米金颗粒复合材料及其制备和应用
CN111529721B (zh) 一种自聚型纳米诊疗系统及其制备方法和应用
Zhu et al. 131I-Labeled multifunctional polyethylenimine/doxorubicin complexes with pH-controlled cellular uptake property for enhanced SPECT imaging and chemo/radiotherapy of tumors
CN110960698B (zh) 131i标记聚乙烯亚胺/阿霉素络合物及其制备和应用
Wan et al. Rapid preparation of hyperbranched β-CD functionalized hydroxyapatite based on host-guest reaction for cell imaging and drug delivery
CN110935039B (zh) pH敏感的131I标记金纳米星及其制备方法和应用
Mollarazi et al. Development of 153Sm‐folate‐polyethyleneimine‐conjugated chitosan nanoparticles for targeted therapy
CN109793896A (zh) 一种基于树状大分子的放疗增敏型乏氧双模态造影剂的制备方法
CN113332454B (zh) 一种负载超小四氧化三铁的聚乙烯亚胺纳米凝胶/siRNA复合物
CN110935041A (zh) 电荷翻转型聚乙烯亚胺复合金纳米颗粒及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant