CN110954566B - 一种使用透射电子显微镜确认晶体手性的方法 - Google Patents

一种使用透射电子显微镜确认晶体手性的方法 Download PDF

Info

Publication number
CN110954566B
CN110954566B CN201911309683.8A CN201911309683A CN110954566B CN 110954566 B CN110954566 B CN 110954566B CN 201911309683 A CN201911309683 A CN 201911309683A CN 110954566 B CN110954566 B CN 110954566B
Authority
CN
China
Prior art keywords
electron microscope
transmission electron
crystal
chirality
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911309683.8A
Other languages
English (en)
Other versions
CN110954566A (zh
Inventor
马延航
董卓雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ShanghaiTech University
Original Assignee
ShanghaiTech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ShanghaiTech University filed Critical ShanghaiTech University
Priority to CN201911309683.8A priority Critical patent/CN110954566B/zh
Publication of CN110954566A publication Critical patent/CN110954566A/zh
Application granted granted Critical
Publication of CN110954566B publication Critical patent/CN110954566B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明公开了一种使用透射电子显微镜确认晶体手性的方法,其特征在于,首先根据不同手性晶体的对称性确定合适的晶带轴,然后使用球差校正的透射电子显微镜将晶体转至特定的晶带轴,并拍摄沿不同晶带轴方向的系列扫描透射电子显微高分辨图像,结合左右手性结构的图像模拟结果,根据特定晶带轴方向高分辨图像中观测到的、与左右手性结构相关的、不同的原子排列。本发明突破了传统的使用多个晶胞平均信息的衍射方法的局限性,利用球差校正扫描透射电子显微镜高分辨成像,在亚原子分辨率下确认晶体局部区域的左右手性,简便易操作,具有普适性。

Description

一种使用透射电子显微镜确认晶体手性的方法
技术领域
本发明涉及一种使用透射电子显微镜确认晶体手性的方法,属于电子显微学、电子晶体学和手性晶体材料领域。
背景技术
手性在自然界和材料中都非常常见。材料的偏光、压电、催化和分离等性质,都与其手性特征密切相关,尤其是不同手性的药物可能有完全不同的作用效果,因此手性的确认对于材料的设计与合成具有指导性意义。
传统的使用单晶X射线衍射确认手性的方法基于X射线的不规则散射,该方法通常需要质量好且没有缺陷的大尺寸(几十微米级)晶体;也有人报道使用电子衍射确认小尺寸晶体的手性。但衍射是基于多个晶胞的平均信息,无法确认晶体局部区域的手性。因此,发展能够在原子尺度确认晶体局部区域手性的电子显微晶体学新方法非常必要。
发明内容
本发明所要解决的技术问题是:提供一种电子显微晶体学方法,提高确认手性晶体的局部区域左右手性的准确性。
为了解决上述技术问题,本发明提供了一种使用透射电子显微镜确认晶体手性的方法,其特征在于,首先根据不同手性晶体的对称性确定合适的晶带轴,然后使用球差校正的透射电子显微镜将晶体转至特定的晶带轴,并拍摄沿不同晶带轴方向的系列扫描透射电子显微高分辨图像,结合左右手性结构的图像模拟结果,根据特定晶带轴方向高分辨图像中观测到的、与左右手性结构相关的、不同的原子排列。
本发明突破了传统的使用多个晶胞平均信息的衍射方法的局限性,利用球差校正扫描透射电子显微镜高分辨成像,在亚原子分辨率下确认晶体局部区域的左右手性,简便易操作,具有普适性。
附图说明
图1a、b为手性晶体碲沿不同方向的结构模型;
图2为Te晶体沿[100]方向的扫描透射电子显微镜高分辨图像(a)和晶体逆时针旋转至[1-10]方向拍摄到原子分辨的高分辨图像(b)的比较图。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例:碲(Te)晶体手性的确认
由图1a、1b可见,不同手性晶体碲的原子排列不同。
先拍摄Te晶体沿[100]方向的扫描透射电子显微镜高分辨图像(如图2a所示),随后将晶体逆时针旋转至[1-10]方向并拍摄到原子分辨的高分辨图像(如图2b所示),通过观察[1-10]方向高分辨图像中与特定手性相关的原子排布(沿该晶带轴方向原子列向左弯曲为左手手性,向右弯曲为右手手性),确认该颗晶体为左手手性。

Claims (1)

1.一种使用透射电子显微镜确认晶体手性的方法,其特征在于,首先根据不同手性晶体的对称性确定合适的晶带轴,然后使用球差校正的透射电子显微镜将晶体转至特定的晶带轴,并拍摄沿不同晶带轴方向的系列扫描透射电子显微高分辨图像,结合左右手性结构的图像模拟结果,根据特定晶带轴方向高分辨图像中观测到的、与左右手性结构相关的、不同的原子排列,利用球差校正扫描透射电子显微镜高分辨成像,在亚原子分辨率下确认晶体局部区域的左右手性。
CN201911309683.8A 2019-12-18 2019-12-18 一种使用透射电子显微镜确认晶体手性的方法 Active CN110954566B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911309683.8A CN110954566B (zh) 2019-12-18 2019-12-18 一种使用透射电子显微镜确认晶体手性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911309683.8A CN110954566B (zh) 2019-12-18 2019-12-18 一种使用透射电子显微镜确认晶体手性的方法

Publications (2)

Publication Number Publication Date
CN110954566A CN110954566A (zh) 2020-04-03
CN110954566B true CN110954566B (zh) 2022-05-27

Family

ID=69982486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911309683.8A Active CN110954566B (zh) 2019-12-18 2019-12-18 一种使用透射电子显微镜确认晶体手性的方法

Country Status (1)

Country Link
CN (1) CN110954566B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG183584A1 (en) * 2006-02-20 2012-09-27 Veeco Instr Inc Method and apparatus for characterizing a probe tip
GB2497758A (en) * 2011-12-20 2013-06-26 Univ Antwerpen Generation of charged particle vortex waves
JP2015154002A (ja) * 2014-02-18 2015-08-24 国立研究開発法人理化学研究所 スキルミオンのサイズと渦の向きの制御方法及びスキルミオン結晶
WO2017115222A1 (en) * 2015-12-29 2017-07-06 Semiconductor Energy Laboratory Co., Ltd. Metal oxide film and semiconductor device
WO2019194509A1 (ko) * 2018-04-06 2019-10-10 서울대학교산학협력단 3차원 카이랄 나노 구조체
KR102173227B1 (ko) * 2018-04-06 2020-11-03 서울대학교산학협력단 3차원 카이랄 나노 구조체
CN109738470B (zh) * 2019-01-04 2020-07-14 重庆大学 元素分辨且高空间分辨的界面自旋构型二维定量磁成像方法

Also Published As

Publication number Publication date
CN110954566A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
Simons et al. Dark-field X-ray microscopy for multiscale structural characterization
Shibata et al. Atomic-scale imaging of individual dopant atoms in a buried interface
Zhang et al. Collecting 3D electron diffraction data by the rotation method
MacLaren et al. Detectors—The ongoing revolution in scanning transmission electron microscopy and why this important to material characterization
Tanaka et al. A new large radius imaging plate camera for high-resolution and high-throughput synchrotron x-ray powder diffraction by multiexposure method
Hata et al. High-angle triple-axis specimen holder for three-dimensional diffraction contrast imaging in transmission electron microscopy
Maaβ et al. Defect structure in micropillars using x-ray microdiffraction
De Andrade et al. Fast X‐ray Nanotomography with Sub‐10 nm Resolution as a Powerful Imaging Tool for Nanotechnology and Energy Storage Applications
Vaudin et al. The structure of second and third order twin boundaries in silicon
JP2015170600A (ja) 相関原子分解能断層撮影分析用の適応性がある(malleable)薄片の製作
Zou et al. Electron crystallography: imaging and single-crystal diffraction from powders
Hartmann et al. High‐resolution direct‐display x‐ray topography
Kinyanjui et al. Lattice distortions and octahedral rotations in epitaxially strained LaNiO3/LaAlO3 superlattices
Mugnaioli et al. Single-crystal analysis of nanodomains by electron diffraction tomography: mineralogy at the order-disorder borderline
CN110954566B (zh) 一种使用透射电子显微镜确认晶体手性的方法
Fujita et al. Asymmetric twins in rhombohedral boron carbide
Mao et al. Applications for Nanoscale X-Ray Imaging at High Pressure
Weirich et al. Electron crystallography: Novel approaches for structure determination of nanosized materials
Fillot et al. Nanoscale mechanics of thermally crystallized GST thin film by in situ X-ray diffraction
Czigány et al. Acquisition and evaluation procedure to improve the accuracy of SAED
Chen et al. Deformation of nanotubes in peeling contact with flat substrate: An in situ electron microscopy nanomechanical study
Smith Progress and perspectives for atomic-resolution electron microscopy
CN109738470B (zh) 元素分辨且高空间分辨的界面自旋构型二维定量磁成像方法
Müller et al. Low distortion reflection electron microscopy for surface studies
Yang et al. Tungsten-bearing rutile from the Jiaodong gold province, Shandong, China and its implication for gold mineralization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant