CN110940519A - 一种车辆滑动轴承承载力的确定方法和装置 - Google Patents

一种车辆滑动轴承承载力的确定方法和装置 Download PDF

Info

Publication number
CN110940519A
CN110940519A CN201811108516.2A CN201811108516A CN110940519A CN 110940519 A CN110940519 A CN 110940519A CN 201811108516 A CN201811108516 A CN 201811108516A CN 110940519 A CN110940519 A CN 110940519A
Authority
CN
China
Prior art keywords
determining
oil film
bearing
dimensionless
journal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811108516.2A
Other languages
English (en)
Inventor
何介夫
牛小锋
孙玉
徐波
李衡
徐楠
巩欢笑
郝海波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Great Wall Motor Co Ltd
Original Assignee
Great Wall Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Great Wall Motor Co Ltd filed Critical Great Wall Motor Co Ltd
Priority to CN201811108516.2A priority Critical patent/CN110940519A/zh
Publication of CN110940519A publication Critical patent/CN110940519A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

本发明提供了一种车辆滑动轴承承载力的获取方法和一种车辆滑动轴承承载力的确定装置,所述滑动轴承包括轴承和轴颈,具体可以包括:根据所述轴承和所述轴颈确定所述轴承的直角坐标系;其中,所述直角坐标系以所述轴承的中心为原点;所述直角坐标系包括横向坐标轴和与横向坐标轴垂直的竖向坐标轴;在所述直角坐标系中,确定所述轴颈上的径向油膜力和切向油膜力;根据所述径向油膜力和所述切向油膜力,确定在所述轴承的直角坐标系中,不同坐标轴上的各坐标油膜力;根据所述坐标油膜力,确定所述滑动轴承承载力。本发明采用有限长车辆滑动轴承承载力的计算方法,在缩短计算时间的同时,能够实现精确获得车辆滑动轴承的承载力。

Description

一种车辆滑动轴承承载力的确定方法和装置
技术领域
本发明涉及车辆技术领域,特别涉及车辆滑动轴承承载力的确定方法和装置。
背景技术
车辆滑动轴承承载力的计算,通常的步骤是先通过求解Reynolds(雷诺)方程得到油膜压力沿轴向和周向的分布,对压力分布积分即可得到油膜力,得出油膜力后即可得到承载力。因此,对于油膜力的求解极其重要。
而对于油膜力的求解,主要有数值和近似解析解两类方法。在数值求解油膜力方面,相关研究大多数基于Reynolds(雷诺)方程展开。由N-S(纳维斯托克斯)方程推导出了重要的Reynolds方程以描述油膜区域的压力分布情况,对压力分布积分可得油膜力,进而进一步求得轴承承载力。数值方法大多基于有限差分法、有限元法、有限体积法展开,有限差分法、有限元法和有限体积法,能够获得较好的精度,但其求解速度有限。
对于解析方法求轴承承载力来说,无限短和无限长轴承模型的近似解析解能够在一定条件下满足实际工程需要,但实际设计工程中,为进一步提高轴承的设计效率,需进一步提高解析解的精度,因为不论是基于无限短轴承模型或者无限长轴承模型,求解的油膜压力分布都是假设为一个方向分布,精确度较差。因此,实际工程中,有限长车辆滑动轴承油膜力的高精度近似解析解极其重要。
发明内容
有鉴于此,本发明旨在提出一种车辆滑动轴承承载力的确定方法,以解决现有技术确定的车辆滑动轴承承载力的精度差的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种车辆滑动轴承承载力的确定方法,所述滑动轴承包括轴承和轴颈,该方法包括:
根据所述轴承和所述轴颈确定所述轴承的直角坐标系;其中,所述直角坐标系以所述轴承的中心为原点;所述直角坐标系包括横向坐标轴和与横向坐标轴垂直的竖向坐标轴;
在所述直角坐标系中,确定所述轴颈上的径向油膜力和切向油膜力;
根据所述径向油膜力和所述切向油膜力,确定在所述轴承的直角坐标系中,不同坐标轴上的各坐标油膜力;
根据所述坐标油膜力,确定所述滑动轴承承载力。
进一步的,所述用于在所述直角坐标系中,确定所述轴颈上的径向油膜力和切向油膜力的步骤,包括:
根据所述直角坐标系,获取所述滑动轴承参数;
根据所述滑动轴承参数,采用雷诺方程,确定所述轴颈上的径向油膜力和切向油膜力。
进一步的,所述滑动轴承参数,包括:旋转角、偏移角、偏心距、偏位角、动力粘度、所述轴颈的旋转角速度、轴承半径、轴颈半径、轴承宽度;其中,所述旋转角为从所述竖向坐标轴的负方向一所述原点为固定点顺时针旋转开始计量的角度;所述偏移角为从偏位线以所述原点为固定点顺时针旋转开始计量的角度;所述偏位线为所述轴承的中心和所述轴颈的中心的连线;所述偏心距为所述轴承的中心和所述轴颈的中心的距离;所述偏位角为所述竖向坐标轴与所述偏位线之间的夹角;所述动力粘度为所述轴承与所述轴颈之间润滑油的粘度系数。
则所述根据所述滑动轴承参数,采用雷诺方程,确定所述轴颈上的径向油膜力和切向油膜力的步骤,包括:
确定无量纲周向坐标,包括:依据周向有量纲坐标和所述轴承半径,确定所述无量纲周向坐标;
确定无量纲轴向坐标,包括:依据轴向有量纲坐标和所述轴承的宽度,确定所述无量纲轴向坐标;
确定无量纲油膜厚度,包括;依据有量纲油膜厚度和半径间隙,确定所述无量纲油膜厚度;其中,所述半径间隙为所述轴承半径与所述轴颈半径之差;所述有量纲油膜厚度依据所述半径间隙、偏心距和偏移角度确定;
确定径向无量纲扰动速度,包括:依据所述径向有量纲扰动速度、所述轴颈的旋转角速度、所述半径间隙,确定所述径向无量纲扰动速度;
确定切向无量纲扰动速度,包括:依据所述切向有量纲扰动速度、所述轴颈的旋转角速度、所述半径间隙,确定所述切向无量纲扰动速度;
确定间隙比,包括:依据所述半径间隙和所述轴承的半径,确定所述间隙比;
确定无量纲偏心率,包括:依据所述偏心距和所述半径间隙,确定所述无量纲偏心率;
根据所述无量纲周向坐标、无量纲轴向坐标,无量纲油膜厚度,径向无量纲扰动速度,切向无量纲扰动速度,间隙比和无量纲偏心率,采用雷诺方程,确定油膜压力分布;
根据所述油膜压力分布,确定所述轴颈上的径向油膜力和切向油膜力。
进一步的,根据所述油膜压力分布,确定所述轴颈上的径向油膜力和切向油膜力的步骤,包括:
根据所述油膜压力分布,确定特解油膜力和通解油膜力;
根据所述特解油膜力和所述通解油膜力确定所述轴颈上的径向油膜力和切向油膜力。
本发明的另一目的在于提出一种车辆滑动轴承承载力的确定装置,所述滑动轴承包括轴承和轴颈,该装置,包括:
第一确定模块,用于根据所述轴承和所述轴颈确定所述轴承的直角坐标系;其中,所述直角坐标系以所述轴承的中心为原点;所述直角坐标系包括横向坐标轴和与横向坐标轴垂直的竖向坐标轴;
第二确定模块,用于在所述直角坐标系中,确定所述轴颈上的径向油膜力和切向油膜力;
第三确定模块,用于根据所述径向油膜力和所述切向油膜力,确定在所述轴承的直角坐标系中,不同坐标轴上的各坐标油膜力;
第四确定模块,用于根据所述坐标油膜力,确定所述滑动轴承承载力。
进一步的,所述第二确定模块,包括:
第一获取单元,用于根据所述直角坐标系,获取所述滑动轴承参数;
第一确定单元,用于根据所述滑动轴承参数,采用雷诺方程,确定所述轴颈上的径向油膜力和切向油膜力。
进一步的,所述滑动轴承参数,包括:旋转角、偏移角、偏心距、偏位角、动力粘度、所述轴颈的旋转角速度、轴承半径、轴颈半径、轴承宽度;其中,所述旋转角为从所述竖向坐标轴的负方向一所述原点为固定点顺时针旋转开始计量的角度;所述偏移角为从偏位线以所述原点为固定点顺时针旋转开始计量的角度;所述偏位线为所述轴承的中心和所述轴颈的中心的连线;所述偏心距为所述轴承的中心和所述轴颈的中心的距离;所述偏位角为所述竖向坐标轴与所述偏位线之间的夹角;所述动力粘度为所述轴承与所述轴颈之间润滑油的粘度系数。
则所述第一确定单元,包括:
第一确定子单元,用于确定无量纲周向坐标,包括:依据周向有量纲坐标和所述轴承半径,确定所述无量纲周向坐标;
第二确定子单元,用于确定无量纲轴向坐标,包括:依据轴向有量纲坐标和所述轴承的宽度,确定所述无量纲轴向坐标;
第三确定子单元,用于确定无量纲油膜厚度,包括;依据有量纲油膜厚度和半径间隙,确定所述无量纲油膜厚度;其中,所述半径间隙为所述轴承半径与所述轴颈半径之差;所述有量纲油膜厚度依据所述半径间隙、偏心距和偏移角度确定;
第四确定子单元,用于确定径向无量纲扰动速度,包括:依据所述径向有量纲扰动速度、所述轴颈的旋转角速度、所述半径间隙,确定所述径向无量纲扰动速度;
第五确定子单元,用于确定切向无量纲扰动速度,包括:依据所述切向有量纲扰动速度、所述轴颈的旋转角速度、所述半径间隙,确定所述切向无量纲扰动速度;
第六确定子单元,用于确定间隙比,包括:依据所述半径间隙和所述轴承的半径,确定所述间隙比;
第七确定子单元,用于确定无量纲偏心率,包括:依据所述偏心距和所述半径间隙,确定所述无量纲偏心率;
第八确定子单元,用于根据所述无量纲周向坐标、无量纲轴向坐标,无量纲油膜厚度,径向无量纲扰动速度,切向无量纲扰动速度,间隙比和无量纲偏心率,采用雷诺方程,确定油膜压力分布;
第九确定子单元,用于根据所述油膜压力分布,确定所述轴颈上的径向油膜力和切向油膜力。
进一步的,所述第九确定子单元,具体用于:
根据所述油膜压力分布,确定特解油膜力和通解油膜力;
根据所述特解油膜力和所述通解油膜力确定所述轴颈上的径向油膜力和切向油膜力。
在本发明实施例中,根据所述轴承和所述轴颈确定所述轴承的直角坐标系;其中,所述直角坐标系以所述轴承的中心为原点;所述直角坐标系包括横向坐标轴和与横向坐标轴垂直的竖向坐标轴;在所述直角坐标系中,确定所述轴颈上的径向油膜力和切向油膜力;根据所述径向油膜力和所述切向油膜力,确定在所述轴承的直角坐标系中,不同坐标轴上的各坐标油膜力;根据所述坐标油膜力,确定所述滑动轴承承载力;在本发明实施例采用有限长车辆滑动轴承承载力的计算方法,在缩短计算时间的同时,能够实现精确获得车辆滑动轴承的承载力。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例所述的一种车辆滑动轴承承载力的确定方法的步骤流程图;
图2为本发明实施例中以轴承和轴颈建立直角坐标系的示意图;
图3为本发明实施例所述的滑动轴承宽度的示意图;
图4为本发明实施例所述的另一种车辆滑动轴承承载力的确定方法的步骤流程图;
图5为本发明实施例所述的一种车辆滑动轴承承载力的确定装置的结构框图
图6为本发明实施例所述的另一种车辆滑动轴承承载力的确定装置的结构框图。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本发明。
实施例一
参照图1,示出了本发明实施例所述的车辆滑动轴承承载力的确定方法的步骤流程图,具体可以包括以下步骤:
步骤101:根据所述轴承和所述轴颈确定所述轴承的直角坐标系;其中,所述直角坐标系以所述轴承的中心为原点;所述直角坐标系包括横向坐标轴和与横向坐标轴垂直的竖向坐标轴。
本发明实施例中,所述滑动轴承包括轴承和轴颈,参照图2,以轴承的中心为原点建立直角坐标系,直角坐标系包括相互垂直的X轴和Y轴。在轴承和轴颈之间具有润滑油,在实际情况下,轴承和轴颈之间的间隙很小,图2中为了表达轴承和轴颈之间的联系,扩大了轴承与轴颈之间的间隙,以方便读者理解后续的计算。
步骤102:在所述直角坐标系中,确定所述轴颈上的径向油膜力和切向油膜力;
在本发明实施例中,轴承中心和轴颈中心的连接线为径向,与径向垂直的方向为切向。
本发明实施例中,在上述直角坐标系中,首先确定轴颈上的径向油膜力fr和切向油膜力ft。具体的,可以通过获取滑动轴承的参数进行计算。
步骤103:根据所述径向油膜力和所述切向油膜力,确定在所述轴承的直角坐标系中,不同坐标轴上的各坐标油膜力;
在本发明实施例中,当获得径向油膜力fr和切向油膜力ft后,可根据径向油膜力fr和Y轴之间的夹角θ,计算X轴方向的油膜力和Y轴方向的油膜力。
具体的,可以根据公式
Figure BDA0001808464300000071
计算,其中,Fx是X轴方向上的油膜力,Fy为Y轴方向上的油膜力。因为轴颈相对轴承是一直旋转的,所以θ的变化范围是0°到360°。
步骤104:根据所述坐标油膜力,确定所述滑动轴承承载力。
在本发明实施例中,滑动轴承承载力W的计算方法为
Figure BDA0001808464300000072
即根据X轴方向上的油膜力Fx和Y轴方向上的油膜力Fy计算得到。
在本发明实施例中,根据所述轴承和所述轴颈确定所述轴承的直角坐标系;其中,所述直角坐标系以所述轴承的中心为原点;所述直角坐标系包括横向坐标轴和与横向坐标轴垂直的竖向坐标轴;在所述直角坐标系中,确定所述轴颈上的径向油膜力和切向油膜力;根据所述径向油膜力和所述切向油膜力,确定在所述轴承的直角坐标系中,不同坐标轴上的各坐标油膜力;根据所述坐标油膜力,确定所述滑动轴承承载力;在本发明实施例采用有限长车辆滑动轴承承载力的计算方法,在缩短计算时间的同时,能够实现精确获得车辆滑动轴承的承载力。
实施例二
参照图4,示出了本发明实施例所述的另一种车辆滑动轴承承载力的确定方法的步骤流程图,具体可以包括以下步骤:
步骤201:根据所述轴承和所述轴颈确定所述轴承的直角坐标系;其中,所述直角坐标系以所述轴承的中心为原点;所述直角坐标系包括横向坐标轴和与横向坐标轴垂直的竖向坐标轴。
具体参照步骤101的论述,在此不再赘述。
步骤202:根据所述直角坐标系,获取所述滑动轴承参数。
在本发明实施例中,参照图2,所述滑动轴承参数,包括:旋转角φ、偏移角
Figure BDA0001808464300000082
偏心距e、偏位角θ、动力粘度μ、所述轴颈的旋转角速度ω、轴承半径R、轴颈半径r、轴承宽度B;其中,所述旋转角φ为从所述竖向坐标轴Y轴的负方向一所述原点为固定点顺时针旋转开始计量的角度;所述偏移角
Figure BDA0001808464300000083
为从偏位线以所述原点为固定点顺时针旋转开始计量的角度;所述偏位线为所述轴承的中心Ob和所述轴颈的中心Oj的连线;所述偏心距e为所述轴承的中心Ob和所述轴颈的中心Oj的距离;所述偏位角θ为所述竖向坐标轴与所述偏位线之间的夹角;所述动力粘度μ为所述轴承与所述轴颈之间润滑油的粘度系数。
在本发明实施例中,参照图3,为轴承剖面图,轴承宽度B可事先通过测量获得。
步骤203:根据所述滑动轴承参数,采用雷诺方程,确定所述轴颈上的径向油膜力和切向油膜力。
在本发明实施例中,雷诺方程的表达式为:
Figure BDA0001808464300000081
其中,x为周向有量纲坐标(m),z为轴向有量纲坐标(m),p为有量纲油膜压力(Pa);u为两固体表面在x方向上的相对速度(m/s)(u=Rω),两固体指的是轴承与轴颈。ve和vθ分别为径向和切向的有量纲扰动速度(m/s),轴心处的速度扰动项。
在本发明实施例中,步骤203具体包括以下步骤:
子步骤2031,确定无量纲周向坐标,包括:依据周向有量纲坐标和所述轴承半径,确定所述无量纲周向坐标;
其中,无量纲轴向坐标
Figure BDA0001808464300000091
通过公式
Figure BDA0001808464300000092
确定,x为周向有量纲坐标,R为轴承半径。
子步骤2032,确定无量纲轴向坐标,包括:依据轴向有量纲坐标和所述轴承的宽度,确定所述无量纲轴向坐标;
其中,无量纲轴向坐标λ通过公式
Figure BDA0001808464300000093
确定,z为轴向有量纲坐标,B为轴承的宽度。
子步骤2033,确定无量纲油膜厚度,包括;依据有量纲油膜厚度和半径间隙,确定所述无量纲油膜厚度;其中,所述半径间隙为所述轴承半径与所述轴颈半径之差;所述有量纲油膜厚度依据所述半径间隙、偏心距和偏移角度确定;
其中,无量纲油膜厚度H通过公式H=h/c确定,其中c为半径间隙,半径间隙c为轴承半径R与所述轴颈半径r之差,即c=R-r。h为有量纲油膜厚度,通过公式
Figure BDA0001808464300000094
确定,e为偏心距,
Figure BDA0001808464300000095
为偏移角。
子步骤2034,确定径向无量纲扰动速度,包括:依据所述径向有量纲扰动速度、所述轴颈的旋转角速度、所述半径间隙,确定所述径向无量纲扰动速度;
其中,无量纲扰动速度Ve通过公式Ve=ve/ωc确定,其中ve为有量纲扰动速度,ω为轴颈的旋转角速度,c为半径间隙。
子步骤2035,确定切向无量纲扰动速度,包括:依据所述切向有量纲扰动速度、所述轴颈的旋转角速度、所述半径间隙,确定所述切向无量纲扰动速度;
其中,切向无量纲扰动速度Vθ通过公式Vθ=vθ/ωc确定,其中vθ为切向有量纲扰动速度。
子步骤2036,确定间隙比,包括:依据所述半径间隙和所述轴承的半径,确定所述间隙比;
其中,间隙比ψ通过公式ψ=c/R确定,其中c为半径间隙,R为轴承半径。
子步骤2037,确定无量纲偏心率,包括:依据所述偏心距和所述半径间隙,确定所述无量纲偏心率;
其中,无量纲偏心率ε通过公式ε=e/c确定,其中e为偏心距,c为半径间隙。
子步骤2038,根据所述无量纲周向坐标、无量纲轴向坐标,无量纲油膜厚度,径向无量纲扰动速度,切向无量纲扰动速度,间隙比和无量纲偏心率,采用雷诺方程,确定油膜压力分布;
在本发明实施例中,将公式
Figure BDA0001808464300000101
H=h/c,Ve=ve/ωc,Vθ=vθ/ωcε=e/c,ψ=c/R代入雷诺方程(1)中,其中,油膜压力分布为P=p/p0(p0=2ωμ/ψ2)并将其也代入雷诺方程(1)中,得到无量纲的雷诺方程如下:
Figure BDA0001808464300000102
在(2)式中,D为轴承的直径,即D=2R。(2)式中,已知量为H、D、B、Ve和Vθ,自变量为
Figure BDA0001808464300000104
和λ,其中,
Figure BDA0001808464300000105
的范围为0度到油膜破裂角度
Figure BDA0001808464300000106
λ的范围为-1至1。油膜压力分布P为因变量。
子步骤2039,根据所述油膜压力分布,确定所述轴颈上的径向油膜力和切向油膜力。
子步骤2039具体包括:根据所述油膜压力分布,确定特解油膜力和通解油膜力;根据所述特解油膜力和所述通解油膜力确定所述轴颈上的径向油膜力和切向油膜力。
在本发明实施例中,式(2)为一个二阶偏微分方程。通过对式(2)求解,可获得一个通解和一个特解,在本发明实施例中,油膜压力分布
Figure BDA0001808464300000103
其中
Figure BDA0001808464300000107
是特解,
Figure BDA0001808464300000108
是通解,其中,特解可表达为
Figure BDA0001808464300000111
通解可表达为
Figure BDA0001808464300000112
在本发明实施例中,具体的根据油膜压力分布确定径向油膜压力和切向油膜压力的方法具体如下:
(1)特解油膜压力分布及油膜力计算
Figure BDA0001808464300000113
代入式(2)后,进行化解得到如下式:
Figure BDA0001808464300000114
Figure BDA0001808464300000115
其中,式(4)中,ε′=Ve
Figure BDA0001808464300000116
在本发明实施例中,式(3)为特解轴向分离函数,式(4)为通解周向分离函数。在本发明实施例中,对式(3)和式(4)分别进行二次积分后,式(3)产生两个未知量c1、c2,式(4)由于无法直接对积分,因此,通过Sommerfeld(索末菲)变换后再次积分,产生两个未知参数c3、c4,式(3)式(4)解的形式分别如下:
Pp2(λ)=Cλ2/2+c1λ+c2 (5)
Figure BDA0001808464300000117
式(3)结合特解轴向压力分布的边界条件求解未知参数C、C1、C2
式(4)先假设油膜破裂角
Figure BDA00018084643000001111
(未知参数),结合周向边界条件:
Figure BDA0001808464300000118
以及
Figure BDA0001808464300000119
可得未知参数C3、C4
C=C1=C2=0
Figure BDA00018084643000001110
Figure BDA0001808464300000121
Figure BDA0001808464300000122
(
Figure BDA0001808464300000123
为油膜破裂角)时,根据边界条件
Figure BDA0001808464300000124
得:
Figure BDA0001808464300000125
式中:运用牛顿迭代法求解该方程,得到αc,再利用Sommerfeld反变换,可以求得油膜破裂角度
Figure BDA00018084643000001211
Figure BDA00018084643000001212
这个角度即油膜实际破裂位置角度。
在本发明实施例中,Sommerfeld变换:求解雷诺方程压力分布积分的运算过程中,有些公式是无法直接对
Figure BDA00018084643000001213
积分的,顾有一系列的变化公式,通过将积分变量
Figure BDA00018084643000001214
变为α,则可对求解的公式积分计算。如下变换形式,式中:ε为偏心率。
Figure BDA0001808464300000126
在本发明实施例中,牛顿迭代法:一种求根的方法,多数方程不存在直接的求根公式,或求解根的过程非常困难,牛顿迭代法先假设一个初值,之后不断用旧值递推新值,该过程称之为迭代,最终循环计算新值和旧值误差小于设定的一个值,则终止计算。
对压力分布
Figure BDA0001808464300000127
的径向方向积分可得径向油膜力
Figure BDA0001808464300000128
对压力分布
Figure BDA0001808464300000129
的切向方向积分可得切向油膜力Ft p。具体,径向油膜力
Figure BDA00018084643000001210
和切向油膜力Ft p具体的积分结果如下:
Figure BDA0001808464300000131
其中,式(9)为特解油膜压力的计算结果。
(2)通解油膜压力分布及油膜力计算
将通解表达式
Figure BDA0001808464300000132
代入式(2),化简得:
Figure BDA0001808464300000133
Figure BDA0001808464300000134
式(10)结合轴向边界条件,通过计算,并且令κ=-k2通解沿轴向压力分布解析表达式如下:
Figure BDA0001808464300000135
在本发明实施例中,轴向边界条件是指在轴承的两端出(λ=±1处),油膜压力分布为0。
式(11)结合周向边界条件,通过化简变换并结合Sturm-Liouville(斯特鲁姆刘维尔)理论,通解周向压力分布函数基于三级函数的无穷级数展开,最终的通解油膜压力分布解析表达式如下:
Figure BDA0001808464300000136
在本发明实施例中,周向边界条件是指油膜的起始边处
Figure BDA0001808464300000137
油膜压力分布为0;油膜的终止边处
Figure BDA0001808464300000138
油膜压力分布为0。
式中:根据边界条件及Sturm-Liouville理论求得参数如下:
Figure BDA0001808464300000139
Figure BDA00018084643000001310
Figure BDA00018084643000001311
Figure BDA0001808464300000141
Figure BDA0001808464300000142
上述式中:i:本征值的个数;σi:叠加系数;
Figure BDA0001808464300000143
本征函数;ki:本征值;ηi:正交系数;
Figure BDA0001808464300000144
权重系数。
在本发明实施例中,Sturm-Liouville理论为一种求解微分方程的理论计算方法。
对压力分布
Figure BDA0001808464300000145
的径向方向积分可得径向油膜力
Figure BDA0001808464300000146
对压力分布
Figure BDA0001808464300000147
切向方向积分可得切向油膜力Ft h。可得:
Figure BDA0001808464300000148
其中,式(19)为通解径向油膜力和切向油膜力。
特解和通解径向油膜力之和Fr和切向油膜力之和Ft解析公式如下:
Figure BDA0001808464300000149
Figure BDA00018084643000001410
步骤204,根据所述径向油膜力和所述切向油膜力,确定在所述轴承的直角坐标系中,不同坐标轴上的各坐标油膜力;
参照步骤103,在此不再赘述。
步骤205,根据所述坐标油膜力,确定所述滑动轴承承载力。
参照步骤104,在此不再赘述。
在本发明实施例中,根据所述轴承和所述轴颈确定所述轴承的直角坐标系;其中,所述直角坐标系以所述轴承的中心为原点;所述直角坐标系包括横向坐标轴和与横向坐标轴垂直的竖向坐标轴;在所述直角坐标系中,确定所述轴颈上的径向油膜力和切向油膜力;根据所述径向油膜力和所述切向油膜力,确定在所述轴承的直角坐标系中,不同坐标轴上的各坐标油膜力;根据所述坐标油膜力,确定所述滑动轴承承载力;在本发明实施例采用有限长车辆滑动轴承承载力的计算方法,在缩短计算时间的同时,能够实现精确获得车辆滑动轴承的承载力。
实施例三
参照图5,示出了本发明实施例所述的一种车辆滑动轴承承载力的确定装置的结构框图,具体可以包括:
第一确定模块401,用于根据所述轴承和所述轴颈确定所述轴承的直角坐标系;其中,所述直角坐标系以所述轴承的中心为原点;所述直角坐标系包括横向坐标轴和与横向坐标轴垂直的竖向坐标轴;
第二确定模块402,用于在所述直角坐标系中,确定所述轴颈上的径向油膜力和切向油膜力;
第三确定模块403,用于根据所述径向油膜力和所述切向油膜力,确定在所述轴承的直角坐标系中,不同坐标轴上的各坐标油膜力;
第四确定模块404,用于根据所述坐标油膜力,确定所述滑动轴承承载力。
在本发明实施例中,根据所述轴承和所述轴颈确定所述轴承的直角坐标系;其中,所述直角坐标系以所述轴承的中心为原点;所述直角坐标系包括横向坐标轴和与横向坐标轴垂直的竖向坐标轴;在所述直角坐标系中,确定所述轴颈上的径向油膜力和切向油膜力;根据所述径向油膜力和所述切向油膜力,确定在所述轴承的直角坐标系中,不同坐标轴上的各坐标油膜力;根据所述坐标油膜力,确定所述滑动轴承承载力;在本发明实施例采用有限长车辆滑动轴承承载力的计算方法,在缩短计算时间的同时,能够实现精确获得车辆滑动轴承的承载力。
实施例四
参照图6,示出了本发明实施例所述的另一种车辆滑动轴承承载力的确定装置的结构框图,具体可以包括:
第一确定模块501,用于根据所述轴承和所述轴颈确定所述轴承的直角坐标系;其中,所述直角坐标系以所述轴承的中心为原点;所述直角坐标系包括横向坐标轴和与横向坐标轴垂直的竖向坐标轴;
第二确定模块502,用于在所述直角坐标系中,确定所述轴颈上的径向油膜力和切向油膜力;
第三确定模块503,用于根据所述径向油膜力和所述切向油膜力,确定在所述轴承的直角坐标系中,不同坐标轴上的各坐标油膜力;
第四确定模块504,用于根据所述坐标油膜力,确定所述滑动轴承承载力。
可选地,所述第二确定模块502,包括:
第一获取单元5021,用于根据所述直角坐标系,获取所述滑动轴承参数;
第一确定单元5022,用于根据所述滑动轴承参数,采用雷诺方程,确定所述轴颈上的径向油膜力和切向油膜力。
可选地,所述滑动轴承参数,包括:旋转角、偏移角、偏心距、偏位角、动力粘度、所述轴颈的旋转角速度、轴承半径、轴颈半径、轴承宽度;其中,所述旋转角为从所述竖向坐标轴的负方向一所述原点为固定点顺时针旋转开始计量的角度;所述偏移角为从偏位线以所述原点为固定点顺时针旋转开始计量的角度;所述偏位线为所述轴承的中心和所述轴颈的中心的连线;所述偏心距为所述轴承的中心和所述轴颈的中心的距离;所述偏位角为所述竖向坐标轴与所述偏位线之间的夹角;所述动力粘度为所述轴承与所述轴颈之间润滑油的粘度系数。
则所述第一确定单元5022,包括:
第一确定子单元,用于确定无量纲周向坐标,包括:依据周向有量纲坐标和所述轴承半径,确定所述无量纲周向坐标;
第二确定子单元,用于确定无量纲轴向坐标,包括:依据轴向有量纲坐标和所述轴承的宽度,确定所述无量纲轴向坐标;
第三确定子单元,用于确定无量纲油膜厚度,包括;依据有量纲油膜厚度和半径间隙,确定所述无量纲油膜厚度;其中,所述半径间隙为所述轴承半径与所述颈半径之差;所述有量纲油膜厚度依据所述半径间隙、偏心距和偏移角度确定;
第四确定子单元,用于确定径向无量纲扰动速度,包括:依据所述径向有量纲扰动速度、所述轴颈的旋转角速度、所述半径间隙,确定所述径向无量纲扰动速度;
第五确定子单元,用于确定切向无量纲扰动速度,包括:依据所述切向有量纲扰动速度、所述轴颈的旋转角速度、所述半径间隙,确定所述切向无量纲扰动速度;
第六确定子单元,用于确定间隙比,包括:依据所述半径间隙和所述轴承的半径,确定所述间隙比;
第七确定子单元,用于确定无量纲偏心率,包括:依据所述偏心距和所述半径间隙,确定所述无量纲偏心率;
第八确定子单元,用于根据所述无量纲周向坐标、无量纲轴向坐标,无量纲油膜厚度,径向无量纲扰动速度,切向无量纲扰动速度,间隙比和无量纲偏心率,采用雷诺方程,确定油膜压力分布;
第九确定子单元,用于根据所述油膜压力分布,确定所述轴颈上的径向油膜力和切向油膜力。
可选的,所述第九确定子单元,具体用于:
根据所述油膜压力分布,确定特解油膜力和通解油膜力;
根据所述特解油膜力和所述通解油膜力确定所述轴颈上的径向油膜力和切向油膜力。
在本发明实施例中,根据所述轴承和所述轴颈确定所述轴承的直角坐标系;其中,所述直角坐标系以所述轴承的中心为原点;所述直角坐标系包括横向坐标轴和与横向坐标轴垂直的竖向坐标轴;在所述直角坐标系中,确定所述轴颈上的径向油膜力和切向油膜力;根据所述径向油膜力和所述切向油膜力,确定在所述轴承的直角坐标系中,不同坐标轴上的各坐标油膜力;根据所述坐标油膜力,确定所述滑动轴承承载力;在本发明实施例采用有限长车辆滑动轴承承载力的计算方法,在缩短计算时间的同时,能够实现精确获得车辆滑动轴承的承载力。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种车辆滑动轴承承载力的确定方法,所述滑动轴承包括轴承和轴颈,其特征在于,包括:
根据所述轴承和所述轴颈确定所述轴承的直角坐标系;其中,所述直角坐标系以所述轴承的中心为原点;所述直角坐标系包括横向坐标轴和与横向坐标轴垂直的竖向坐标轴;
在所述直角坐标系中,确定所述轴颈上的径向油膜力和切向油膜力;
根据所述径向油膜力和所述切向油膜力,确定在所述轴承的直角坐标系中,不同坐标轴上的各坐标油膜力;
根据所述坐标油膜力,确定所述滑动轴承承载力。
2.根据权利要求1所述的方法,其特征在于,所述用于在所述直角坐标系中,确定所述轴颈上的径向油膜力和切向油膜力的步骤,包括:
根据所述直角坐标系,获取所述滑动轴承参数;
根据所述滑动轴承参数,采用雷诺方程,确定所述轴颈上的径向油膜力和切向油膜力。
3.根据权利要2所述的方法,其特征在于,所述滑动轴承参数,包括:旋转角、偏移角、偏心距、偏位角、动力粘度、所述轴颈的旋转角速度、轴承半径、轴颈半径、轴承宽度;其中,所述旋转角为从所述竖向坐标轴的负方向一所述原点为固定点顺时针旋转开始计量的角度;所述偏移角为从偏位线以所述原点为固定点顺时针旋转开始计量的角度;所述偏位线为所述轴承的中心和所述轴颈的中心的连线;所述偏心距为所述轴承的中心和所述轴颈的中心的距离;所述偏位角为所述竖向坐标轴与所述偏位线之间的夹角;所述动力粘度为所述轴承与所述轴颈之间润滑油的粘度系数。
则所述根据所述滑动轴承参数,采用雷诺方程,确定所述轴颈上的径向油膜力和切向油膜力的步骤,包括:
确定无量纲周向坐标,包括:依据周向有量纲坐标和所述轴承半径,确定所述无量纲周向坐标;
确定无量纲轴向坐标,包括:依据轴向有量纲坐标和所述轴承的宽度,确定所述无量纲轴向坐标;
确定无量纲油膜厚度,包括;依据有量纲油膜厚度和半径间隙,确定所述无量纲油膜厚度;其中,所述半径间隙为所述轴承半径与所述轴颈半径之差;所述有量纲油膜厚度依据所述半径间隙、偏心距和偏移角度确定;
确定径向无量纲扰动速度,包括:依据所述径向有量纲扰动速度、所述轴颈的旋转角速度、所述半径间隙,确定所述径向无量纲扰动速度;
确定切向无量纲扰动速度,包括:依据所述切向有量纲扰动速度、所述轴颈的旋转角速度、所述半径间隙,确定所述切向无量纲扰动速度;
确定间隙比,包括:依据所述半径间隙和所述轴承的半径,确定所述间隙比;
确定无量纲偏心率,包括:依据所述偏心距和所述半径间隙,确定所述无量纲偏心率;
根据所述无量纲周向坐标、无量纲轴向坐标,无量纲油膜厚度,径向无量纲扰动速度,切向无量纲扰动速度,间隙比和无量纲偏心率,采用雷诺方程,确定油膜压力分布;
根据所述油膜压力分布,确定所述轴颈上的径向油膜力和切向油膜力。
4.根据权利要3所述的方法,其特征在于,根据所述油膜压力分布,确定所述轴颈上的径向油膜力和切向油膜力的步骤,包括:
根据所述油膜压力分布,确定特解油膜力和通解油膜力;
根据所述特解油膜力和所述通解油膜力确定所述轴颈上的径向油膜力和切向油膜力。
5.一种车辆滑动轴承承载力的确定装置,所述滑动轴承包括轴承和轴颈,其特征在于,包括:
第一确定模块,用于根据所述轴承和所述轴颈确定所述轴承的直角坐标系;其中,所述直角坐标系以所述轴承的中心为原点;所述直角坐标系包括横向坐标轴和与横向坐标轴垂直的竖向坐标轴;
第二确定模块,用于在所述直角坐标系中,确定所述轴颈上的径向油膜力和切向油膜力;
第三确定模块,用于根据所述径向油膜力和所述切向油膜力,确定在所述轴承的直角坐标系中,不同坐标轴上的各坐标油膜力;
第四确定模块,用于根据所述坐标油膜力,确定所述滑动轴承承载力。
6.根据权利要求4所述的装置,其特征在于,所述第二确定模块,包括:
第一获取单元,用于根据所述直角坐标系,获取所述滑动轴承参数;
第一确定单元,用于根据所述滑动轴承参数,采用雷诺方程,确定所述轴颈上的径向油膜力和切向油膜力。
7.根据权利要6所述的装置,其特征在于,所述滑动轴承参数,包括:旋转角、偏移角、偏心距、偏位角、动力粘度、所述轴颈的旋转角速度、轴承半径、轴颈半径、轴承宽度;其中,所述旋转角为从所述竖向坐标轴的负方向一所述原点为固定点顺时针旋转开始计量的角度;所述偏移角为从偏位线以所述原点为固定点顺时针旋转开始计量的角度;所述偏位线为所述轴承的中心和所述轴颈的中心的连线;所述偏心距为所述轴承的中心和所述轴颈的中心的距离;所述偏位角为所述竖向坐标轴与所述偏位线之间的夹角;所述动力粘度为所述轴承与所述轴颈之间润滑油的粘度系数。
则所述第一确定单元,包括:
第一确定子单元,用于确定无量纲周向坐标,包括:依据周向有量纲坐标和所述轴承半径,确定所述无量纲周向坐标;
第二确定子单元,用于确定无量纲轴向坐标,包括:依据轴向有量纲坐标和所述轴承的宽度,确定所述无量纲轴向坐标;
第三确定子单元,用于确定无量纲油膜厚度,包括;依据有量纲油膜厚度和半径间隙,确定所述无量纲油膜厚度;其中,所述半径间隙为所述轴承半径与所述轴半径之差;所述有量纲油膜厚度依据所述半径间隙、偏心距和偏移角度确定;
第四确定子单元,用于确定径向无量纲扰动速度,包括:依据所述径向有量纲扰动速度、所述轴颈的旋转角速度、所述半径间隙,确定所述径向无量纲扰动速度;
第五确定子单元,用于确定切向无量纲扰动速度,包括:依据所述切向有量纲扰动速度、所述轴颈的旋转角速度、所述半径间隙,确定所述切向无量纲扰动速度;
第六确定子单元,用于确定间隙比,包括:依据所述半径间隙和所述轴承的半径,确定所述间隙比;
第七确定子单元,用于确定无量纲偏心率,包括:依据所述偏心距和所述半径间隙,确定所述无量纲偏心率;
第八确定子单元,用于根据所述无量纲周向坐标、无量纲轴向坐标,无量纲油膜厚度,径向无量纲扰动速度,切向无量纲扰动速度,间隙比和无量纲偏心率,采用雷诺方程,确定油膜压力分布;
第九确定子单元,用于根据所述油膜压力分布,确定所述轴颈上的径向油膜力和切向油膜力。
8.根据权利要7所述的装置,其特征在于,所述第九确定子单元,具体用于:
根据所述油膜压力分布,确定特解油膜力和通解油膜力;
根据所述特解油膜力和所述通解油膜力确定所述轴颈上的径向油膜力和切向油膜力。
CN201811108516.2A 2018-09-21 2018-09-21 一种车辆滑动轴承承载力的确定方法和装置 Pending CN110940519A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811108516.2A CN110940519A (zh) 2018-09-21 2018-09-21 一种车辆滑动轴承承载力的确定方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811108516.2A CN110940519A (zh) 2018-09-21 2018-09-21 一种车辆滑动轴承承载力的确定方法和装置

Publications (1)

Publication Number Publication Date
CN110940519A true CN110940519A (zh) 2020-03-31

Family

ID=69904429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811108516.2A Pending CN110940519A (zh) 2018-09-21 2018-09-21 一种车辆滑动轴承承载力的确定方法和装置

Country Status (1)

Country Link
CN (1) CN110940519A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092992A (zh) * 2007-07-17 2007-12-26 郭溪泉 推力轴承锥滚大端面与座圈挡边的油膜润滑方法
JP2008185339A (ja) * 2007-01-26 2008-08-14 Ntn Corp 軸受状態検査装置および軸受状態検査方法
CN103075425A (zh) * 2012-08-27 2013-05-01 浙江富春江水电设备股份有限公司 径向滑动轴承
CN103823788A (zh) * 2014-03-09 2014-05-28 北京工业大学 一种线性变形下静压转台承载能力分析方法
CN104143026A (zh) * 2014-07-31 2014-11-12 北京工业大学 一种考虑倾斜与热的静压油垫性能计算方法
CN108426714A (zh) * 2018-03-15 2018-08-21 国家电网公司 一种可倾式滑动轴承工作状态的监测系统的监测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185339A (ja) * 2007-01-26 2008-08-14 Ntn Corp 軸受状態検査装置および軸受状態検査方法
CN101092992A (zh) * 2007-07-17 2007-12-26 郭溪泉 推力轴承锥滚大端面与座圈挡边的油膜润滑方法
CN103075425A (zh) * 2012-08-27 2013-05-01 浙江富春江水电设备股份有限公司 径向滑动轴承
CN103823788A (zh) * 2014-03-09 2014-05-28 北京工业大学 一种线性变形下静压转台承载能力分析方法
CN104143026A (zh) * 2014-07-31 2014-11-12 北京工业大学 一种考虑倾斜与热的静压油垫性能计算方法
CN108426714A (zh) * 2018-03-15 2018-08-21 国家电网公司 一种可倾式滑动轴承工作状态的监测系统的监测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张永芳等: "曲轴动压滑动轴承非线性油膜力解析方法", 《交通运输工程学报》 *

Similar Documents

Publication Publication Date Title
Grechishnikov et al. Prediction and measurement of the parameters of the microtopography of a surface when turning intricately shaped parts
Tsai et al. Investigation of milling cutting forces and cutting coefficient for aluminum 6060-T6
CN111967107B (zh) 内反馈动静压滑动轴承油膜压力场的nurbs等几何求解方法
Lu et al. Chatter stability of micro-milling by considering the centrifugal force and gyroscopic effect of the spindle
CN110631959A (zh) 测量非牛顿流体表观粘度的端面效应误差消除方法及装置
CN103728136B (zh) 径向滑动轴承油膜动刚度在线测试方法
Sun et al. A high-accuracy roundness measurement for cylindrical components by a morphological filter considering eccentricity, probe offset, tip head radius and tilt error
CN113190786B (zh) 一种大型旋转装备利用多维装配参数的振动预测方法
Zhang et al. Dynamic accuracy model of porous journal air bearing considering rotational speed
CN110940519A (zh) 一种车辆滑动轴承承载力的确定方法和装置
Liu et al. Influence of thermo-mechanical coupled behaviors on milling stability of high speed motorized spindles
CN110378018B (zh) 一种液体动静压球轴承的稳态承载能力的计算方法
CN101706247A (zh) 气体静压导轨气膜厚度和气膜刚度的电容式测试方法
CN108827217A (zh) 一种自动检测滑动轴承圆度和/或圆柱度的装置及方法
Sawicki et al. A nonlinear model for prediction of dynamic coefficients in a hydrodynamic journal bearing
Kim et al. Vibration analysis of a planetary gear system based on the transfer matrix method
CN101476981A (zh) 一种确定高速滚珠轴承负荷分布的方法
CN101673318B (zh) 透平膨胀机径向静压气体轴承最佳静态参数设计方法
Viitala et al. Device and method for measuring thickness variation of large roller element bearing rings
CN111730410A (zh) 一种静压、动静压主轴油膜刚度阻尼实时测量方法、装置、检测装置、存储介质及系统
Zheng et al. Statistical evaluation method for cylindricity deviation using local least squares cylinder
Wu et al. A robust calibration method for seven-hole pressure probes
CN109815548A (zh) 一种基于Garlerkin思想的流体膜压力计算方法
CN102722656B (zh) 基于混合维模型的精密偶件配合间隙泄漏特性预测方法
Yamnikova et al. Influence of the ovality of the base surfaces of thin-walled extended axially symmetric hollow parts on the error of radial runout measurements in prisms

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200331