CN110918124A - 一种铁基MOFs固载化离子液体的制备方法及其应用 - Google Patents

一种铁基MOFs固载化离子液体的制备方法及其应用 Download PDF

Info

Publication number
CN110918124A
CN110918124A CN201911270439.5A CN201911270439A CN110918124A CN 110918124 A CN110918124 A CN 110918124A CN 201911270439 A CN201911270439 A CN 201911270439A CN 110918124 A CN110918124 A CN 110918124A
Authority
CN
China
Prior art keywords
ionic liquid
iron
based mofs
immobilized
immobilized ionic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911270439.5A
Other languages
English (en)
Inventor
杨金杯
俞舒月
陈文韬
王昌伟
余美琼
陈玉成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN201911270439.5A priority Critical patent/CN110918124A/zh
Publication of CN110918124A publication Critical patent/CN110918124A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0279Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the cationic portion being acyclic or nitrogen being a substituent on a ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0285Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre also containing elements or functional groups covered by B01J31/0201 - B01J31/0274
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0292Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate
    • B01J31/0295Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate by covalent attachment to the substrate, e.g. silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明涉及一种铁基MOFs固载化离子液体,其包括:铁基MOFs和固定在铁基MOFs上的离子液体,所述铁基MOFs为MIL‑100(Fe),所述离子液体为[Ps‑N‑(Bz)3]TSA。其制备方法包括依次将1,3‑丙磺酸内酯溶解于乙酸乙酯中,加入三苄胺反应,再加入对甲基苯磺酸溶液反应生成离子液体[Ps‑N‑(Bz)3]TSA,将离子液体依次加入硝酸铁、均苯三甲酸和硝酸溶解后,晶化得到即铁基MOFs固载化离子液体[Ps‑N‑(Bz)3]TSA@MIL‑100(Fe)。应用于汽油的深度脱硫中,所需反应条件温和、设备投资少、深度脱硫效果好、易回收,可实现重复使用。

Description

一种铁基MOFs固载化离子液体的制备方法及其应用
技术领域
本发明涉及一种固载化离子液体,具体涉及一种铁基MOFs固载化离子液体及其制备方法。
背景技术
MIL-100(Fe):是Fe(Ⅲ)与对苯二甲酸的三羧酸聚合物,骨架结构中有两种介孔笼,孔直径分别为2.5nm和2.9nm,具有较高的比表面积,热稳定性强,常用于吸附有机物质。MIL-100(Fe)是MOFs(金属有机骨架化合物)材料的一种,是以对苯二甲酸(H2BDC)为有机配体,与金属Fe3+构建的三维金属有机骨架材料。
离子液体是指在室温或接近室温下呈现液态的、完全由阴阳离子所组成的盐,也称为低温熔融盐。离子液体作为离子化合物,其熔点较低的主要原因是因其结构中某些取代基的不对称性使离子不能规则地堆积成晶体所致。
固载化离子液体:是将离子液体固定在某种固体载体上,从而得到固载离子液体进一步的使用。固载化离子液体是将离子液体填充入多孔有机或无机载体的空隙形成的液体膜,固定化离子液体可以增加离子液体的比表面积。
21世纪以来,汽车给人类带来极大便利,但含硫汽油燃烧导致雾霾天气频现,严重危害公众健康。世界各国对汽油中硫含量的要求愈加严格,我国自2019年1月起全面供应国VIA标准汽油(硫含量小于10ppm),未来汽油将向无硫发展。
目前,我国汽油池中高硫的催化裂化(FCC)汽油约占70%,为汽油的深度脱硫带来了严峻的挑战。加氢脱硫技术工艺成熟,被广泛应用于油品脱硫中,可有效脱除硫醇、硫醚和二硫化物等非杂环含硫组分,但对于FCC汽油,由于80%以上含硫组分为极性较强、空间位阻大的噻吩类化合物,如噻吩、苯并噻吩和二苯并噻吩等,加氢脱硫反应速率慢、难度高。若要实现深度脱硫,需要在苛刻的条件下进行,如高温高压、高的氢气消耗量、昂贵的贵金属催化剂等,导致汽油成本上升。
发明内容
(一)要解决的技术问题
为了解决现有技术的上述问题,本发明提供一种铁基MOFs固载化离子液体,以实现高催化活性的汽油深度脱硫;
相应的,本发明提供一种铁基MOFs固载化离子液体的制备方法;
相应的,本发明提供一种铁基MOFs固载化离子液体在汽油深度脱硫中的应用。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案包括:
本发明提供一种铁基MOFs固载化离子液体,其包括:铁基MOFs和固定在铁基MOFs上的离子液体,铁基MOFs为MIL-100(Fe),离子液体为[Ps-N-(Bz)3]TSA。
本方案中铁基MOFs固载化离子液体,即:[Ps-N-(Bz)3]TSA@MIL-100(Fe)。[Ps-N-(Bz)3]TSA,其中文全称为:N-(3-磺酸基)丙基-三苄铵对甲苯磺酸盐。
本发明提供一种上述方案中铁基MOFs固载化离子液体的制备方法,
S1离子液体的生成:将1,3-丙磺酸内酯溶解于乙酸乙酯中,加入三苄胺反应后,所得产物继续与对甲基苯磺酸溶液反应生成[Ps-N-(Bz)3]TSA,即离子液体;
S2铁基MOFs固载化离子液体的生成:将步骤S1所得离子液体与硝酸铁、均苯三甲酸和硝酸溶解后,继续晶化得到铁基MOFs固载化离子液体。
本发明制备方法进一步的方案,步骤S1包括子步骤:
S11第一次反应:将溶解在乙酸乙酯中的1,3-丙磺酸内酯,在冰浴下缓慢加入三苄胺,在40~60℃条件下反应8~12小时,经离心、洗涤、真干燥后得到白色前体盐固体。
S12第二次反应:将步骤S11所得白色前体盐固体中加入蒸馏水,缓缓滴加对甲基苯磺酸溶液,在80~100℃条件下反应10~16小时,旋转蒸发除去水,用2~3倍乙酸乙酯洗涤3次,继续旋转蒸发除去乙酸乙酯并真空干燥得到[Ps-N-(Bz)3]TSA,即离子液体。
本发明制备方法进一步的方案,步骤S2中,将步骤S1所得离子液体与硝酸铁、均苯三甲酸和硝酸在超声下溶解。
本发明制备方法进一步的方案,超声下溶解的时间为1~2小时。
本发明制备方法进一步的方案,步骤S2中,晶化的温度为110~135℃,晶化时间为24小时。
本发明制备方法进一步的方案,步骤S2中晶化后离心取沉淀物,按每次洗涤时间1h,依次经70℃去离子水洗涤三次、65℃乙醇洗涤三次,末次乙醇洗涤时,增加超声处理0.5h;洗涤结束后,在120℃下真空干燥12小时得到即铁基MOFs固载化离子液体。
本发明还提供上述任一项方案中的铁基MOFs固载化离子液体在汽油深度脱硫的应用。
(三)有益效果
本发明的有益效果是:
1.本发明铁基MOFs固载化离子液体具有MOFs的多孔结构和离子液体阴、阳离子单元,既保持了离子液体良好的萃取性能和MOFs的多孔吸附性,又耦合了铁基MOFs的类Fenton氧化深度脱硫能力,应用于汽油深度脱硫技术中,所需反应条件温和、设备投资少、深度脱硫效果好、易回收,实现重复使用。
2.本发明将离子液体[Ps-N-(Bz)3]TSA通过N-Fe配位键的作用固载到铁基MOFs上,成键稳定,不易流失。
具体实施方式
为了更好的解释本发明,以便于理解,下面通过具体实施方式,对本发明作详细描述。
铁基MOFs固载化离子液体的制备方法,具体为以下步骤:
S1离子液体[Ps-N-(Bz)3]TSA的生成:将0.1摩尔份的1,3-丙磺酸内酯溶解在100体积份的乙酸乙酯中,在冰浴下缓慢加入0.1摩尔份的三苄胺,在40~60℃条件下反应8~12小时,离心、洗涤、真空干燥后得到白色前体盐固体;将所得白色前体盐固体中加入20-30毫升的蒸馏水,缓缓滴加与白色前体盐固体等摩尔的对甲基苯磺酸溶液,在80~100℃条件下反应10~16小时,旋转蒸发除去水,用2~3倍乙酸乙酯洗涤3次,旋转蒸发除去乙酸乙酯并真空干燥得到离子液体[Ps-N-(Bz)3]TSA;
S2铁基MOFs固载化离子液体的生成:将步骤S1所得离子液体[Ps-N-(Bz)3]TSA、硝酸铁、硝酸和均苯三甲酸按摩尔比为(0.08~0.15):(0.08~0.15):(0.08~0.15):1在去离子水中超声溶解1~2小时;在110~135℃条件下晶化24小时,将所得产物经离心取沉淀物,按每次洗涤时间1h,依次经70℃去离子水洗涤三次、65℃乙醇洗涤三次,末次乙醇洗涤时,增加超声处理0.5h;洗涤结束后,后在120℃下真空干燥12小时得到即铁基MOFs固载化离子液体。
本发明生成的铁基MOFs固载化离子液体应用于汽油的深度脱硫中,其具有较强的脱硫率。其中,本发明实施例在汽油中脱硫的测试为:
以汽油中较难脱除的苯并噻吩为脱硫对象,将苯并噻吩溶解在异辛烷中,配成硫含量为30ppm的模拟汽油;称取0.1克经真空干燥过的铁基MOFs固载化离子液体和0.12克氧化剂双氧水置于锥形瓶中,形成具有吸附和氧化能力的类Fenton试剂,再往锥形瓶中加入20毫升模拟汽油,放置在恒温振荡床中进行静态吸附/氧化协同脱硫2小时,离心、静置分层,取上层脱硫后的模拟汽油通过气相色谱定量分析硫含量在4.4ppm以下,测定的脱硫率在85%以上。
实施例1
铁基MOFs固载化离子液体,其包括:铁基MOFs和固定在铁基MOFs上的离子液体,铁基MOFs为MIL-100(Fe),离子液体为[Ps-N-(Bz)3]TSA。
实施例2
铁基MOFs固载化离子液体的制备方法,具体为以下步骤:
S1离子液体[Ps-N-(Bz)3]TSA的生成:将0.1mol的1,3-丙磺酸内酯溶解在100mL乙酸乙酯中,在冰浴下缓慢加入0.1mol的三苄胺,在40℃条件下反应8小时,离心、洗涤、真空干燥后得到白色前体盐固体;将所得白色前体盐固体中加入20毫升的蒸馏水,缓缓滴加与白色前体盐固体等摩尔的对甲基苯磺酸溶液,在80℃条件下反应10小时,旋转蒸发除去水,用蒸发除去水后的其2倍体积的乙酸乙酯洗涤3次,旋转蒸发除去乙酸乙酯并真空干燥得到离子液体[Ps-N-(Bz)3]TSA;
S2铁基MOFs固载化离子液体的生成:将0.08mol步骤S1所得离子液体[Ps-N-(Bz)3]TSA、0.08mol硝酸铁、0.1mol硝酸和0.1mol均苯三甲酸按摩尔在去离子水中超声溶解1小时;在110℃条件下晶化24小时,将所得产物经离心取沉淀物,按每次洗涤时间1h,依次经70℃去离子水洗涤三次、65℃乙醇洗涤三次,末次乙醇洗涤时,增加超声处理0.5h;洗涤结束后,后在120℃下真空干燥12小时得到[Ps-N-(Bz)3]TSA@MIL-100(Fe),即铁基MOFs固载化离子液体。
将本实施例所得铁基MOFs固载化离子液体在含有苯并噻吩的模拟汽油进行测定:以汽油中较难脱除的苯并噻吩为脱硫对象,将苯并噻吩溶解在异辛烷中,配成硫含量为30ppm的模拟汽油;称取0.1克本实施例所制备的铁基MOFs固载化离子液体和0.12克氧化剂双氧水置于锥形瓶中,形成具有吸附和氧化能力的类Fenton试剂,再往锥形瓶中加入20毫升模拟汽油,放置在恒温振荡床中进行静态吸附/氧化协同脱硫2小时,离心、静置分层,取上层脱硫后的模拟汽油通过气相色谱定量分析硫含量为4.4ppm,脱硫率为85.3%。
实施例3
铁基MOFs固载化离子液体的制备方法,具体为以下步骤:
S1离子液体[Ps-N-(Bz)3]TSA的生成:将0.1mol的1,3-丙磺酸内酯溶解在100mL乙酸乙酯中,在冰浴下缓慢加入0.1mol的三苄胺,在50℃条件下反应10小时,离心、洗涤、真空干燥后得到白色前体盐固体;将所得白色前体盐固体中加入26毫升的蒸馏水,缓缓滴加与白色前体盐固体等摩尔的对甲基苯磺酸溶液,在90℃条件下反应12小时,旋转蒸发除去水,用3倍乙酸乙酯洗涤3次,旋转蒸发除去乙酸乙酯并真空干燥得到离子液体[Ps-N-(Bz)3]TSA;
S2铁基MOFs固载化离子液体的生成:将0.12mol步骤S1所得离子液体[Ps-N-(Bz)3]TSA、0.12mol硝酸铁、0.12mol硝酸和0.1mol均苯三甲酸在去离子水中超声溶解1.5小时;在12℃条件下晶化24小时,将所得产物经离心取沉淀物,用70℃去离子水和65℃乙醇分别洗涤三次,每次1小时,最后一次用乙醇洗涤时先超声0.5小时后再除去所述乙醇,后在120℃条件下真空干燥12小时后得到[Ps-N-(Bz)3]TSA@MIL-100(Fe),即铁基MOFs固载化离子液体。
将本实施例所得铁基MOFs固载化离子液体在含有苯并噻吩的模拟汽油进行测定:以汽油中较难脱除的苯并噻吩为脱硫对象,将苯并噻吩溶解在异辛烷中,配成硫含量为30ppm的模拟汽油;称取0.1克经真空干燥过的铁基MOFs固载化离子液体和0.12克氧化剂双氧水置于锥形瓶中,形成具有吸附和氧化能力的类Fenton试剂,再往锥形瓶中加入20毫升模拟汽油,放置在恒温振荡床中进行静态吸附/氧化协同脱硫2小时,离心、静置分层,取上层脱硫后的模拟汽油通过气相色谱定量分析硫含量为3.2ppm,脱硫率为89.3%。
实施例4
铁基MOFs固载化离子液体的制备方法,具体为以下步骤:
S1离子液体[Ps-N-(Bz)3]TSA的生成:将0.1mol的1,3-丙磺酸内酯溶解在100mL乙酸乙酯中,在冰浴下缓慢加入0.1mol的三苄胺,在60℃条件下反应12小时,离心、洗涤、真空干燥后得到白色前体盐固体;将所得白色前体盐固体中加入30毫升的蒸馏水,缓缓滴加与白色前体盐固体等摩尔的对甲基苯磺酸溶液,在100℃条件下反应16小时,旋转蒸发除去水,用3倍乙酸乙酯洗涤3次,旋转蒸发除去乙酸乙酯并真空干燥得到离子液体[Ps-N-(Bz)3]TSA;
S2铁基MOFs固载化离子液体的生成:将0.15mol步骤S1所得离子液体[Ps-N-(Bz)3]TSA、0.15mol硝酸铁、0.15mol硝酸和0.1mol均苯三甲酸在去离子水中超声溶解1~2小时;在110~135℃条件下晶化24小时,将所得产物经离心取沉淀物,用70℃去离子水和65℃乙醇分别洗涤三次,每次1小时,最后一次用乙醇洗涤时先超声0.5小时后再除去所述乙醇,后在120℃条件下真空干燥12小时后得到[Ps-N-(Bz)3]TSA@MIL-100(Fe),即铁基MOFs固载化离子液体。
将本实施例所得铁基MOFs固载化离子液体在含有苯并噻吩的模拟汽油进行测定:以汽油中较难脱除的苯并噻吩为脱硫对象,将苯并噻吩溶解在异辛烷中,配成硫含量为30ppm的模拟汽油;称取0.1克经真空干燥过的铁基MOFs固载化离子液体和0.12克氧化剂双氧水置于锥形瓶中,形成具有吸附和氧化能力的类Fenton试剂,再往锥形瓶中加入20毫升模拟汽油,放置在恒温振荡床中进行静态吸附/氧化协同脱硫2小时,离心、静置分层,取上层脱硫后的模拟汽油通过气相色谱定量分析硫含量为2.1ppm,脱硫率为93.0%。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (8)

1.一种铁基MOFs固载化离子液体,其特征在于,其包括:铁基MOFs和固定在铁基MOFs上的离子液体,所述铁基MOFs为MIL-100(Fe),所述离子液体为[Ps-N-(Bz)3]TSA。
2.如权利要求1所述的铁基MOFs固载化离子液体的制备方法,其特征在于,其包括以下步骤:
S1离子液体的生成:将1,3-丙磺酸内酯溶解于乙酸乙酯中,加入三苄胺反应后,所得产物继续与对甲基苯磺酸溶液反应生成[Ps-N-(Bz)3]TSA,即离子液体;
S2铁基MOFs固载化离子液体的生成:将步骤S1所得离子液体与硝酸铁、均苯三甲酸和硝酸溶解后,继续晶化得到铁基MOFs固载化离子液体。
3.如权利要求2所述的铁基MOFs固载化离子液体的制备方法,其特征在于,步骤S1包括子步骤:
S11第一次反应:将溶解在乙酸乙酯中的1,3-丙磺酸内酯,在冰浴下缓慢加入三苄胺,在40~60℃条件下反应8~12小时,经离心、洗涤、真干燥后得到白色前体盐固体;
S12第二次反应:将步骤S11所得白色前体盐固体中加入蒸馏水,缓缓滴加对甲基苯磺酸溶液,在80~100℃条件下反应10~16小时,旋转蒸发除去水,用2~3倍乙酸乙酯洗涤3次,继续旋转蒸发除去乙酸乙酯并真空干燥得到[Ps-N-(Bz)3]TSA,即离子液体。
4.如权利要求2所述的铁基MOFs固载化离子液体的制备方法,其特征在于,步骤S2中离子液体的超声溶解:步骤S1所得离子液体与硝酸铁、均苯三甲酸和硝酸在超声下溶解。
5.如权利要求4所述的铁基MOFs固载化离子液体的制备方法,其特征在于:所述超声下溶解的时间为1~2小时。
6.如权利要求2所述的铁基MOFs固载化离子液体的制备方法,其特征在于,步骤S2中,晶化的温度为110~135℃,晶化的时间为24小时。
7.如权利要求2所述的铁基MOFs固载化离子液体的制备方法,其特征在于,步骤S2中:晶化后离心取沉淀物,按每次洗涤时间1h,依次经70℃去离子水洗涤三次、65℃乙醇洗涤三次,末次乙醇洗涤时,增加超声处理0.5h;洗涤结束后,后在120℃下真空干燥12小时得到即铁基MOFs固载化离子液体。
8.如权利要求1-7任一项所述的铁基MOFs固载化离子液体在汽油深度脱硫的应用。
CN201911270439.5A 2019-12-12 2019-12-12 一种铁基MOFs固载化离子液体的制备方法及其应用 Pending CN110918124A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911270439.5A CN110918124A (zh) 2019-12-12 2019-12-12 一种铁基MOFs固载化离子液体的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911270439.5A CN110918124A (zh) 2019-12-12 2019-12-12 一种铁基MOFs固载化离子液体的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN110918124A true CN110918124A (zh) 2020-03-27

Family

ID=69860159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911270439.5A Pending CN110918124A (zh) 2019-12-12 2019-12-12 一种铁基MOFs固载化离子液体的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN110918124A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115805101A (zh) * 2021-09-13 2023-03-17 中国石油化工股份有限公司 一种用于制备羟基芳酮的催化剂及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106694036A (zh) * 2016-11-15 2017-05-24 浙江工商大学 一种固载化离子液体催化剂的制备方法
CN106693899A (zh) * 2016-12-07 2017-05-24 华南理工大学 一种金属有机骨架材料/功能化离子液体复合材料及其制备与应用
US20170305869A1 (en) * 2016-04-22 2017-10-26 NOHMs Technologies, Inc. Heterocyclic ionic liquids
CN107638870A (zh) * 2016-07-22 2018-01-30 浙江大学 一种离子液体与金属有机框架复合吸附剂的制备方法和应用
CN108435254A (zh) * 2018-03-20 2018-08-24 华南理工大学 一种酸性离子液体汽油脱硫催化剂及其制备方法与应用
CN109174008A (zh) * 2018-08-28 2019-01-11 扬州大学 在金属有机骨架中固载离子液体的吸附剂及其制备方法与应用
CN109225337A (zh) * 2018-09-10 2019-01-18 太原理工大学 一种MOFs封装离子液体催化剂及其制备和应用
CN110331001A (zh) * 2019-07-11 2019-10-15 福建师范大学福清分校 铁基金属有机骨架固载化离子液体的制备方法及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170305869A1 (en) * 2016-04-22 2017-10-26 NOHMs Technologies, Inc. Heterocyclic ionic liquids
CN107638870A (zh) * 2016-07-22 2018-01-30 浙江大学 一种离子液体与金属有机框架复合吸附剂的制备方法和应用
CN106694036A (zh) * 2016-11-15 2017-05-24 浙江工商大学 一种固载化离子液体催化剂的制备方法
CN106693899A (zh) * 2016-12-07 2017-05-24 华南理工大学 一种金属有机骨架材料/功能化离子液体复合材料及其制备与应用
CN108435254A (zh) * 2018-03-20 2018-08-24 华南理工大学 一种酸性离子液体汽油脱硫催化剂及其制备方法与应用
CN109174008A (zh) * 2018-08-28 2019-01-11 扬州大学 在金属有机骨架中固载离子液体的吸附剂及其制备方法与应用
CN109225337A (zh) * 2018-09-10 2019-01-18 太原理工大学 一种MOFs封装离子液体催化剂及其制备和应用
CN110331001A (zh) * 2019-07-11 2019-10-15 福建师范大学福清分校 铁基金属有机骨架固载化离子液体的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
韩乐: "MIL(Cr,Fe)材料的绿色合成及吸附脱硫性能研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技I辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115805101A (zh) * 2021-09-13 2023-03-17 中国石油化工股份有限公司 一种用于制备羟基芳酮的催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN110331001B (zh) 铁基金属有机骨架固载化离子液体的制备方法及其应用
Su et al. Postsynthetic functionalization of Mg-MOF-74 with tetraethylenepentamine: structural characterization and enhanced CO2 adsorption
CN108816287B (zh) Uio-66原位固载羧基功能化离子液体复合材料及其制备和应用
US20130131344A1 (en) Organo-metallic frameworks derived from carbenophilic metals and methods of making same
US20120259135A1 (en) Complex mixed ligand open framework materials
Li et al. Controlled construction of Cu (I) sites within confined spaces via host–guest redox: Highly efficient adsorbents for selective CO adsorption
CN111545171B (zh) 一种耐酸性的选择性吸附六价铬的Zr-MOF材料的制备方法
CN102962036A (zh) 基于过渡金属钴的多孔金属有机骨架材料及其制备方法
CN103071449B (zh) 氨基功能化介孔氧化铝基双功能吸附剂的制备方法和应用
CN105327689B (zh) 一种负载功能化离子液体的分子筛汽油脱硫剂的制备及其应用
CN111905817B (zh) 一种还原CO2为甲酸的高效光催化材料PCN-222-Zn的制备方法及应用
US20120259117A1 (en) Organo-metallic frameworks and methods of making same
CN110918124A (zh) 一种铁基MOFs固载化离子液体的制备方法及其应用
García-Martín et al. Ligand adsorption on an activated carbon for the removal of chromate ions from aqueous solutions
CN106622143B (zh) 一种杂化有机骨架材料及其制备方法与应用
Zhang et al. Nanochannel-Based Heterometallic {CoIITbIII}-Organic Framework for Fluorescence Recognition of Tryptophan and Catalytic Cycloaddition of Epoxides with CO2
CN113578275A (zh) 一种用于NOx气体去除的锰钴二元金属基MOF吸附剂及其制备方法
CN105561929A (zh) 一种高效脱除燃料油中二苯并噻吩的改性有机骨架材料
Patra et al. Thiol and thioether-based metal–organic frameworks: synthesis, structure, and multifaceted applications
CN108543515B (zh) 用于超深度脱除汽油中噻吩类硫化物的rey分子筛吸附剂的制备方法及应用
Newell et al. Studies of bicarbonate binding by dinuclear and mononuclear Ni (II) complexes
CN110354814B (zh) 锌基质MOFs材料及其在钒吸附中的应用
KR101670490B1 (ko) 4배위 전이금속 및 질소를 포함하는 3배위 리간드를 포함하는 탄산무수화효소 모사 촉매 및 이의 용도
JPS61171535A (ja) リチウム吸着剤、その製造方法及びそれを用いたリチウム回収方法
Liu et al. Ultrasonic controllable synthesis of sulfur-functionalized metal–organic frameworks (S-MOFs) and their application in piezo-photocatalytic rapid reduction of hexavalent chromium (Cr)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200327

RJ01 Rejection of invention patent application after publication