CN110917898B - 光热转化陶瓷膜制备方法及用于处理难降解废水的方法 - Google Patents

光热转化陶瓷膜制备方法及用于处理难降解废水的方法 Download PDF

Info

Publication number
CN110917898B
CN110917898B CN201911158089.3A CN201911158089A CN110917898B CN 110917898 B CN110917898 B CN 110917898B CN 201911158089 A CN201911158089 A CN 201911158089A CN 110917898 B CN110917898 B CN 110917898B
Authority
CN
China
Prior art keywords
ceramic membrane
membrane
solution
preparing
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911158089.3A
Other languages
English (en)
Other versions
CN110917898A (zh
Inventor
张耀中
王涛
陈阳
梁娜
曹昕
郑兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201911158089.3A priority Critical patent/CN110917898B/zh
Publication of CN110917898A publication Critical patent/CN110917898A/zh
Application granted granted Critical
Publication of CN110917898B publication Critical patent/CN110917898B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0076Pretreatment of inorganic membrane material prior to membrane formation, e.g. coating of metal powder
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/08Thin film evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes

Abstract

本发明公开了一种光热转化陶瓷膜的制备方法,具体按照以下步骤实施:制备SiO2‑Al2O3陶瓷膜,即先制备铸膜液;然后将制备的铸膜液均匀涂覆在玻璃板上,将涂覆有铸膜液的玻璃板放入水中进行相转化成膜,然后将相转换好的膜取出形成胚体,高温烧结制备陶瓷膜;再制备单向皮层改性可光热转化的陶瓷膜。本发明使膜具有很好的光热传导能力和亲水性能。本发明还公开了一种将光热转化陶瓷膜用于处理难降解废水的方法,以蒸发过滤方式对高浓度难降解废水进行浓缩处理的方法,实现低能耗排放处理。

Description

光热转化陶瓷膜制备方法及用于处理难降解废水的方法
技术领域
本发明属于难降解废水深度处理技术领域,具体涉及一种光热转化陶瓷膜的制备方法,本发明还涉及将光热转化陶瓷膜用于处理难降解废水的方法。
背景技术
水是人类生产、生活等各项社会活动必不可少的一部分,但我国目前水体污染问题却不容乐观,近几年随着工业的大力发展,难降解废水已经制约着经济社会的发展:难降解有机废水以及强腐蚀性、强氧化性废水的量也在同步增长。这类废水由于含盐量高,有机物浓度大,可生化降解的可能性低且具有腐蚀性和氧化性,处理工艺往往需要结合物理、化学方法,处理工艺复杂且成本过高。
膜作为一种高效的水处理技术,在过滤过程中不可避免的受到有机无机物质的污染,降低膜的使用寿命;另外对于一些难处理的特种废水,例如氯离子以及高氯酸根离子,利用现有的膜技术有难做到有效的处理,且价格昂贵。因此,本发明对陶瓷膜进行改性,利用高分子层的光热转化功能实现此类废水的浓缩预处理。
聚吡咯是一种杂环共轭型导电高分子,通常为无定型黑色固体,以吡咯为单体,经过化学氧化聚合可制成薄膜,具有很好的光热传递性能。聚合使用的氧化剂通常为金属离子、三氯化铁等。
废水中水分通过陶瓷膜的毛细管作用透过亲水化改性的陶瓷膜底面;具有良好光热传导能力的聚吡咯薄膜吸收太阳能,将光能转化为热能加热膜表面,使膜吸收的水逐渐蒸发。这一过程会在光照下持续进行。而难降解物质、有机质及强腐蚀物会留在废水中,最终实现废水浓缩;同时整个处理体系能量均依靠太阳光,向空气排放水蒸气,工艺过程绿色、友好,几乎没有外加能量损耗,运行成本低廉。
发明内容
本发明的目的是提供一种光热转化陶瓷膜的制备方法,使膜具有很好的光热传导能力和亲水性能。
本发明的另一目的是提供一种将光热转化陶瓷膜用于处理难降解废水的方法,以蒸发过滤方式对高浓度难降解废水进行浓缩处理的方法,实现低能耗排放处理。
本发明所采用的第一技术方案是,一种光热转化陶瓷膜的制备方法,具体按照以下步骤实施:
步骤1、制备SiO2-Al2O3陶瓷膜,包括以下步骤:
步骤1.1、制备铸膜液;
步骤1.2、将所述步骤1.1制备的铸膜液均匀涂覆在玻璃板上,将涂覆有铸膜液的玻璃板放入水中进行相转化成膜,然后将相转换好的膜取出形成胚体,高温烧结制备陶瓷膜;
步骤2、制备单向皮层改性可光热转化的陶瓷膜。
本发明第一技术方案的特点还在于,
步骤1.1具体如下:
步骤1.1.1、按质量百分比称取1-甲基-2-吡咯烷酮36.5%-53.5%、聚醚砜6%-8%、聚乙烯吡咯烷酮0.3%-0.6%、碳酸钙颗粒4%-6%,其余为陶瓷膜基准物质,以上各组分的质量百分比之和为100%,其中,陶瓷膜基准物质为三氧化二铝颗粒23%-40%或者二氧化硅颗粒24-45%或者三氧化二铝颗粒和二氧化硅颗粒的混合颗粒31.9%-53.2%,将以上各组分混合,在20-25℃条件下持续搅拌至各组分混合均匀形成铸膜液;
步骤1.1.2、将搅拌之后的铸膜液放入20-25℃水中超声震荡2-3h,功率为50-100HZ,使铸膜液混合均匀,将超声之后的铸膜液进行恒温油浴,控制温度为55-60℃,并磁力搅拌搅拌10-12h;
步骤1.1.3、将步骤1.1.2中搅拌完成的铸膜液保持温度不变静止放置,去除铸膜液中的气泡。
步骤1.1.1中,当陶瓷膜基准物质为三氧化二铝颗粒时,三氧化二铝颗粒粒径为30-60μm,当陶瓷膜基准物质为二氧化硅颗粒时,二氧化硅颗粒粒径为30-60μm,当陶瓷膜基准物质为三氧化二铝颗粒和二氧化硅颗粒的混合颗粒时,三氧化二铝颗粒及二氧化硅颗粒粒径均为30~60μm。
步骤1.2具体如下:
步骤1.2.1、将步骤1.1得到的铸膜液均匀涂布在玻璃板上,然后将涂覆有铸膜液的玻璃板放入去离子水中,温度控制为20-25℃,进行固液相转化得到平板膜胚料,将平板膜胚料置于55-60℃温度下烘干10-12h;
步骤1.2.2、为了成功制备陶瓷膜形成陶瓷骨架,将所述1.2.1烘干的膜进行加热,温度升至100-110℃保持2-3h,去除残余水分与有机溶剂,然后将炉中温度升至550-600℃保持2-3h,确保坯料内部的有机黏结剂成分充分挥发去除,进一步成孔,再次将温度升至1100-1200℃保持2-3h,预热陶瓷膜基准物质;最后,以升温速率1-1.2℃/min升温至1500-1600℃保持4-5h,形成陶瓷骨架;
步骤1.2.3、停止加热自然冷却降温,得到SiO2-Al2O3陶瓷膜。
步骤2具体如下:
步骤2.1、配置浓度为0.05-0.1mol/L的HCl溶液,将所述步骤1制得的陶瓷膜浸泡在溶液中5-6min,分解陶瓷膜中的氧化钙以及碳酸钙颗粒,使膜具有更大的孔隙率,同时减轻膜的重量;
步骤2.2、将步骤2.1得到的膜的其中一面黏贴遮蔽,防止氧化;
步骤2.3、配制体积分数为15-20%的乙醇溶液,配置浓度为0.3-0.5mol/L的吡咯和浓度为0.3-0.5mol/L的硫酸、浓度为0.2-0.3mol/L的乙二醇、浓度为0.2-0.3mol/L乙二酸的混合溶液,在此混合溶液中加入上述所配制的乙醇溶液备用;
步骤2.4、配置浓度为0.15-0.2mol/L的过硫酸铵和浓度为0.25-0.3mol/L的硫酸的混合溶液,备用;
步骤2.5、将步骤2.2中的陶瓷膜浸泡在步骤2.3所配置的溶液中,其中被表面聚合聚吡咯一面置于空气中,另一面完全浸没在溶液中,浸泡时间为3-5min,加快吡咯在水溶液中的溶解;
步骤2.6、将步骤2.5中浸泡后的陶瓷膜取出放入步骤2.4配置的溶液中,全部浸泡,以增加引发和氧化剂的作用,控制浸泡时间为2-3min后将陶瓷膜置于纯水充分浸泡,陶瓷膜未遮蔽的表层产生一层黑色高分子层;
步骤2.7、将步骤2.6得到的表面聚合了导热高分子层的膜浸泡在浓度为45-50%的乙醇溶液中,浸泡10-15min,然后用纯水冲洗,表面黑色物质脱落;
步骤2.8、重复步骤2.3~步骤2.7进行多次聚合,控制重复次数为3-4次,使表面高分子层更牢固,得到光热转化的陶瓷膜。
本发明所采用的第二技术方案是,一种光热转化陶瓷膜用于处理难降解废水的方法,在20-25℃条件下,将所述光热转化陶瓷膜放置于待处理废水中,将待处理废水全部覆盖,经过高分子化学聚合的一面朝上,利用光热转化陶瓷膜的光热转化功能,使待处理废水中的水分蒸发,以蒸发过滤方式对高浓度难降解废水进行浓缩处理,实现低能耗零排放处理。
本发明的有益效果是,一种光热转化陶瓷膜的制备方法,对陶瓷膜两表面分别改性,使其同时兼具光热转换和过滤功能,具有很好的热传导性能和亲水性能;一种将光热转化陶瓷膜用于处理难降解废水的方法,处理废水时,直接利用太阳能,无需外加能量,节省资源耗费,同时处理过程中,排放水蒸气,处理工艺对环境友好,可以达到节能环保的要求。
附图说明
图1是功能陶瓷膜SEM断面图;
图2是功能陶瓷膜光热转换面;
图3是功能陶瓷膜亲水面;
图4(a)是实施例1中污染水体处理前的照片;
图4(b)是实施例1中污染水体处理后的照片。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种光热转化陶瓷膜的制备方法,具体按照以下步骤实施:
步骤1、制备SiO2-Al2O3陶瓷膜,包括以下步骤:
步骤1.1、制备铸膜液,具体如下:
步骤1.1.1、按质量百分比称取1-甲基-2-吡咯烷酮36.5%-53.5%、聚醚砜6%-8%、聚乙烯吡咯烷酮0.3%-0.6%、碳酸钙颗粒4%-6%,其余为陶瓷膜基准物质,以上各组分的质量百分比之和为100%,其中,陶瓷膜基准物质为三氧化二铝颗粒23%-40%或者二氧化硅颗粒24-45%或者三氧化二铝颗粒和二氧化硅颗粒的混合颗粒31.9%-53.2%,将以上各组分混合,在20-25℃条件下持续搅拌至各组分混合均匀形成铸膜液;
步骤1.1.2、将搅拌之后的铸膜液放入20-25℃水中超声震荡2-3h,功率为50-100HZ,使铸膜液混合均匀,将超声之后的铸膜液进行恒温油浴,控制温度为55-60℃,并磁力搅拌搅拌10-12h;
步骤1.1.3、将步骤1.1.2中搅拌完成的铸膜液保持温度不变静止放置,去除铸膜液中的气泡。
步骤1.1.1中,当陶瓷膜基准物质为三氧化二铝颗粒时,三氧化二铝颗粒粒径为30-60μm,当陶瓷膜基准物质为二氧化硅颗粒时,二氧化硅颗粒粒径为30-60μm,当陶瓷膜基准物质为三氧化二铝颗粒和二氧化硅颗粒的混合颗粒时,三氧化二铝颗粒及二氧化硅颗粒粒径均为30~60μm。
步骤1.2、将所述步骤1.1制备的铸膜液均匀涂覆在玻璃板上,将涂覆有铸膜液的玻璃板放入水中进行相转化成膜,然后将相转换好的膜取出形成胚体,高温烧结制备陶瓷膜,具体如下:
步骤1.2.1、将步骤1.1得到的铸膜液均匀涂布在玻璃板上,然后将涂覆有铸膜液的玻璃板放入去离子水中,温度控制为20-25℃,进行固液相转化得到平板膜胚料,将平板膜胚料置于55-60℃温度下烘干10-12h;
步骤1.2.2、为了成功制备陶瓷膜形成陶瓷骨架,将所述1.2.1烘干的膜进行加热,温度升至100-110℃保持2-3h,去除残余水分与有机溶剂,然后将炉中温度升至550-600℃保持2-3h,确保坯料内部的有机黏结剂成分充分挥发去除,进一步成孔,再次将温度升至1100-1200℃保持2-3h,预热陶瓷膜基准物质;最后,以升温速率1-1.2℃/min升温至1500-1600℃保持4-5h,形成陶瓷骨架;
步骤1.2.3、停止加热自然冷却降温,得到SiO2-Al2O3陶瓷膜。
步骤2、制备单向皮层改性可光热转化的陶瓷膜;
步骤2具体如下:
步骤2.1、配置浓度为0.05-0.1mol/L的HCl溶液,将所述步骤1制得的陶瓷膜浸泡在溶液中5-6min,分解陶瓷膜中的氧化钙以及碳酸钙颗粒,使膜具有更大的孔隙率,同时减轻膜的重量;
步骤2.2、将步骤2.1得到的膜的其中一面黏贴遮蔽,防止氧化;
步骤2.3、配制体积分数为15-20%的乙醇溶液,配置浓度为0.3-0.5mol/L的吡咯和浓度为0.3-0.5mol/L的硫酸、浓度为0.2-0.3mol/L的乙二醇、浓度为0.2-0.3mol/L乙二酸的混合溶液,在此混合溶液中加入上述所配制的乙醇溶液备用;
步骤2.4、配置浓度为0.15-0.2mol/L的过硫酸铵和浓度为0.25-0.3mol/L的硫酸的混合溶液,备用;
步骤2.5、将步骤2.2中的陶瓷膜浸泡在步骤2.3所配置的溶液中,其中被表面聚合聚吡咯一面置于空气中,另一面完全浸没在溶液中,浸泡时间为3-5min,加快吡咯在水溶液中的溶解;
步骤2.6、将步骤2.5中浸泡后的陶瓷膜取出放入步骤2.4配置的溶液中,全部浸泡,以增加引发和氧化剂的作用,控制浸泡时间为2-3min后将陶瓷膜置于纯水充分浸泡,陶瓷膜未遮蔽的表层产生一层黑色高分子层;
步骤2.7、将步骤2.6得到的表面聚合了导热高分子层的膜浸泡在浓度为45-50%的乙醇溶液中,浸泡10-15min,然后用纯水冲洗,表面黑色物质脱落;
步骤2.8、重复步骤2.3~步骤2.7进行多次聚合,控制重复次数为3-4次,使表面高分子层更牢固,得到光热转化的陶瓷膜。
一种光热转化陶瓷膜用于处理难降解废水的方法,在20-25℃条件下,将所述光热转化陶瓷膜放置于待处理废水中,将待处理废水全部覆盖,经过高分子化学聚合的一面朝上,利用光热转化陶瓷膜的光热转化功能,使待处理废水中的水分蒸发,以蒸发过滤方式对高浓度难降解废水进行浓缩处理,实现低能耗零排放处理。
图1是功能陶瓷膜SEM断面图,膜断面均较平整,无机颗粒自由堆积且均匀性较好,膜整体结构完整,无明显的缺陷,膜内部结构中有较多孔洞,能够对难降解废水中的杂质进行有效截留。
图2,图3分别为功能陶瓷膜光热转换面以及功能陶瓷膜亲水面。经过化学氧化聚合聚吡咯之后,膜表面形成均匀牢固的黑色光热转化面,黑色聚吡咯薄膜易吸收、传递太阳能,具有良好的热传导性能,将光能转化为热能加热膜表面,使膜吸收的水逐渐蒸发。经过表面接枝对膜另一表面进行亲水性改性,使上述蒸发的水分更易透过陶瓷膜而挥发到空气中。
图4所示分别为对芒硝湖水样处理前后的对比。芒硝湖水样中污染成分复杂,难降解,水体含盐量高(TDS=100000ppm),COD高达10300mg/L。如图4(a)所示,当该双向皮层可光热转化功能陶瓷膜用于处理某地区芒硝湖水样时,采用以下方式进行处理:
将以上所制备的双向皮层可光热转化功能陶瓷膜铺展在待处理废水中,将待处理废水全部覆盖,经过高分子化学聚合的一面朝上,便于吸收太阳辐射能。改性陶瓷膜表面的黑色聚吡咯薄膜易吸收、传递太阳能,经过足够光照条件5h之后,使污染水体具有较高的温度,污染水体中的水分吸收大量的热能并通过陶瓷膜的毛细管作用透过亲水化改性的陶瓷膜底面排放至大气,经过处理之后,处理效果如图4(b)所示,水样体积从20L缩减为10L实现了废水浓缩处理。
实施例1
本发明一种光热转化陶瓷膜的制备方法,具体按照以下步骤实施:
步骤1、制备SiO2-Al2O3陶瓷膜,包括以下步骤:
步骤1.1、制备铸膜液,具体如下:
步骤1.1.1、按质量百分比称取1-甲基-2-吡咯烷酮36.5%、聚醚砜8%、聚乙烯吡咯烷酮0.6%、碳酸钙颗粒6%,其余为陶瓷膜基准物质,以上各组分的质量百分比之和为100%,其中,陶瓷膜基准物质为三氧化二铝颗粒38.9%,将以上各组分混合,在20℃条件下持续搅拌至各组分混合均匀形成铸膜液;
步骤1.1.2、将搅拌之后的铸膜液放入20℃水中超声震荡3h,功率为50HZ,使铸膜液混合均匀,将超声之后的铸膜液进行恒温油浴,控制温度为55℃,并磁力搅拌搅拌10h;
步骤1.1.3、将步骤1.1.2中搅拌完成的铸膜液保持温度不变静止放置,去除铸膜液中的气泡。
步骤1.1.1中,三氧化二铝颗粒粒径为30μm。
步骤1.2、将所述步骤1.1制备的铸膜液均匀涂覆在玻璃板上,将涂覆有铸膜液的玻璃板放入水中进行相转化成膜,然后将相转换好的膜取出形成胚体,高温烧结制备陶瓷膜,具体如下:
步骤1.2.1、将步骤1.1得到的铸膜液均匀涂布在玻璃板上,然后将涂覆有铸膜液的玻璃板放入去离子水中,温度控制为20℃,进行固液相转化得到平板膜胚料,将平板膜胚料置于55℃温度下烘干10h;
步骤1.2.2、为了成功制备陶瓷膜形成陶瓷骨架,将所述1.2.1烘干的膜进行加热,温度升至100℃保持2h,去除残余水分与有机溶剂,然后将炉中温度升至550℃保持2h,确保坯料内部的有机黏结剂成分充分挥发去除,进一步成孔,再次将温度升至1100℃保持2h,预热陶瓷膜基准物质;最后,以升温速率1℃/min升温至1500℃保持4h,形成陶瓷骨架;
步骤1.2.3、停止加热自然冷却降温,得到SiO2-Al2O3陶瓷膜。
步骤2、制备单向皮层改性可光热转化的陶瓷膜;
步骤2具体如下:
步骤2.1、配置浓度为0.05mol/L的HCl溶液,将所述步骤1制得的陶瓷膜浸泡在溶液中5min,分解陶瓷膜中的氧化钙以及碳酸钙颗粒,使膜具有更大的孔隙率,同时减轻膜的重量;
步骤2.2、将步骤2.1得到的膜的其中一面黏贴遮蔽,防止氧化;
步骤2.3、配制体积分数为15%的乙醇溶液,配置浓度为0.3mol/L的吡咯和浓度为0.3mol/L的硫酸、浓度为0.2mol/L的乙二醇、浓度为0.2mol/L乙二酸的混合溶液,在此混合溶液中加入上述所配制的乙醇溶液备用;
步骤2.4、配置浓度为0.15mol/L的过硫酸铵和浓度为0.25mol/L的硫酸的混合溶液,备用;
步骤2.5、将步骤2.2中的陶瓷膜浸泡在步骤2.3所配置的溶液中,其中被表面聚合聚吡咯一面置于空气中,另一面完全浸没在溶液中,浸泡时间为3min,加快吡咯在水溶液中的溶解;
步骤2.6、将步骤2.5中浸泡后的陶瓷膜取出放入步骤2.4配置的溶液中,全部浸泡,以增加引发和氧化剂的作用,控制浸泡时间为2min后将陶瓷膜置于纯水充分浸泡,陶瓷膜未遮蔽的表层产生一层黑色高分子层;
步骤2.7、将步骤2.6得到的表面聚合了导热高分子层的膜浸泡在浓度为45%的乙醇溶液中,浸泡10min,然后用纯水冲洗,表面黑色物质脱落;
步骤2.8、重复步骤2.3~步骤2.7进行多次聚合,控制重复次数为3次,使表面高分子层更牢固,得到光热转化的陶瓷膜。
实施例2
本发明一种光热转化陶瓷膜的制备方法,具体按照以下步骤实施:
步骤1、制备SiO2-Al2O3陶瓷膜,包括以下步骤:
步骤1.1、制备铸膜液,具体如下:
步骤1.1.1、按质量百分比称取1-甲基-2-吡咯烷酮53.5%、聚醚砜6%、聚乙烯吡咯烷酮0.3%、碳酸钙颗粒4%,其余为陶瓷膜基准物质,以上各组分的质量百分比之和为100%,其中,陶瓷膜基准物质为三氧化二铝颗粒36.2%,将以上各组分混合,在25℃条件下持续搅拌至各组分混合均匀形成铸膜液;
步骤1.1.2、将搅拌之后的铸膜液放入25℃水中超声震荡2h,功率为100HZ,使铸膜液混合均匀,将超声之后的铸膜液进行恒温油浴,控制温度为60℃,并磁力搅拌搅拌12h;
步骤1.1.3、将步骤1.1.2中搅拌完成的铸膜液保持温度不变静止放置,去除铸膜液中的气泡。
步骤1.1.1中,当陶瓷膜基准物质为三氧化二铝颗粒时,三氧化二铝颗粒粒径为60μm,当陶瓷膜基准物质为二氧化硅颗粒时,二氧化硅颗粒粒径为60μm,当陶瓷膜基准物质为三氧化二铝颗粒和二氧化硅颗粒的混合颗粒时,三氧化二铝颗粒及二氧化硅颗粒粒径均为60μm。
步骤1.2、将所述步骤1.1制备的铸膜液均匀涂覆在玻璃板上,将涂覆有铸膜液的玻璃板放入水中进行相转化成膜,然后将相转换好的膜取出形成胚体,高温烧结制备陶瓷膜,具体如下:
步骤1.2.1、将步骤1.1得到的铸膜液均匀涂布在玻璃板上,然后将涂覆有铸膜液的玻璃板放入去离子水中,温度控制为25℃,进行固液相转化得到平板膜胚料,将平板膜胚料置于60℃温度下烘干12h;
步骤1.2.2、为了成功制备陶瓷膜形成陶瓷骨架,将所述1.2.1烘干的膜进行加热,温度升至110℃保持3h,去除残余水分与有机溶剂,然后将炉中温度升至600℃保持3h,确保坯料内部的有机黏结剂成分充分挥发去除,进一步成孔,再次将温度升至1200℃保持3h,预热陶瓷膜基准物质;最后,以升温速率1.2℃/min升温至1600℃保持5h,形成陶瓷骨架;
步骤1.2.3、停止加热自然冷却降温,得到SiO2-Al2O3陶瓷膜。
步骤2、制备单向皮层改性可光热转化的陶瓷膜;
步骤2具体如下:
步骤2.1、配置浓度为0.1mol/L的HCl溶液,将所述步骤1制得的陶瓷膜浸泡在溶液中6min,分解陶瓷膜中的氧化钙以及碳酸钙颗粒,使膜具有更大的孔隙率,同时减轻膜的重量;
步骤2.2、将步骤2.1得到的膜的其中一面黏贴遮蔽,防止氧化;
步骤2.3、配制体积分数为20%的乙醇溶液,配置浓度为0.5mol/L的吡咯和浓度为0.5mol/L的硫酸、浓度为0.3mol/L的乙二醇、浓度为0.3mol/L乙二酸的混合溶液,在此混合溶液中加入上述所配制的乙醇溶液备用;
步骤2.4、配置浓度为0.2mol/L的过硫酸铵和浓度为0.3mol/L的硫酸的混合溶液,备用;
步骤2.5、将步骤2.2中的陶瓷膜浸泡在步骤2.3所配置的溶液中,其中被表面聚合聚吡咯一面置于空气中,另一面完全浸没在溶液中,浸泡时间为5min,加快吡咯在水溶液中的溶解;
步骤2.6、将步骤2.5中浸泡后的陶瓷膜取出放入步骤2.4配置的溶液中,全部浸泡,以增加引发和氧化剂的作用,控制浸泡时间为3min后将陶瓷膜置于纯水充分浸泡,陶瓷膜未遮蔽的表层产生一层黑色高分子层;
步骤2.7、将步骤2.6得到的表面聚合了导热高分子层的膜浸泡在浓度为50%的乙醇溶液中,浸泡15min,然后用纯水冲洗,表面黑色物质脱落;
步骤2.8、重复步骤2.3~步骤2.7进行多次聚合,控制重复次数为4次,使表面高分子层更牢固,得到光热转化的陶瓷膜。
实施例3
本发明一种光热转化陶瓷膜的制备方法,具体按照以下步骤实施:
步骤1、制备SiO2-Al2O3陶瓷膜,包括以下步骤:
步骤1.1、制备铸膜液,具体如下:
步骤1.1.1、按质量百分比称取1-甲基-2-吡咯烷酮53.5%、聚醚砜8%、聚乙烯吡咯烷酮0.6%、碳酸钙颗粒6%,其余为陶瓷膜基准物质,以上各组分的质量百分比之和为100%,其中,陶瓷膜基准物质wei三氧化二铝颗粒和二氧化硅颗粒的混合颗粒31.9%,将以上各组分混合,在23℃条件下持续搅拌至各组分混合均匀形成铸膜液;
步骤1.1.2、将搅拌之后的铸膜液放入23℃水中超声震荡2.5h,功率为80HZ,使铸膜液混合均匀,将超声之后的铸膜液进行恒温油浴,控制温度为58℃,并磁力搅拌搅拌11h;
步骤1.1.3、将步骤1.1.2中搅拌完成的铸膜液保持温度不变静止放置,去除铸膜液中的气泡。
步骤1.1.1中,三氧化二铝颗粒和二氧化硅颗粒的混合颗粒粒径均为40μm。
步骤1.2、将所述步骤1.1制备的铸膜液均匀涂覆在玻璃板上,将涂覆有铸膜液的玻璃板放入水中进行相转化成膜,然后将相转换好的膜取出形成胚体,高温烧结制备陶瓷膜,具体如下:
步骤1.2.1、将步骤1.1得到的铸膜液均匀涂布在玻璃板上,然后将涂覆有铸膜液的玻璃板放入去离子水中,温度控制为23℃,进行固液相转化得到平板膜胚料,将平板膜胚料置于58℃温度下烘干11h;
步骤1.2.2、为了成功制备陶瓷膜形成陶瓷骨架,将所述1.2.1烘干的膜进行加热,温度升至105℃保持2.5h,去除残余水分与有机溶剂,然后将炉中温度升至580℃保持2.5h,确保坯料内部的有机黏结剂成分充分挥发去除,进一步成孔,再次将温度升至1150℃保持2.5h,预热陶瓷膜基准物质;最后,以升温速率1.1℃/min升温至1550℃保持4-5h,形成陶瓷骨架;
步骤1.2.3、停止加热自然冷却降温,得到SiO2-Al2O3陶瓷膜。
步骤2、制备单向皮层改性可光热转化的陶瓷膜;
步骤2具体如下:
步骤2.1、配置浓度为0.08mol/L的HCl溶液,将所述步骤1制得的陶瓷膜浸泡在溶液中5.5min,分解陶瓷膜中的氧化钙以及碳酸钙颗粒,使膜具有更大的孔隙率,同时减轻膜的重量;
步骤2.2、将步骤2.1得到的膜的其中一面黏贴遮蔽,防止氧化;
步骤2.3、配制体积分数为18%的乙醇溶液,配置浓度为0.4mol/L的吡咯和浓度为0.3mol/L的硫酸、浓度为0.25mol/L的乙二醇、浓度为0.25mol/L乙二酸的混合溶液,在此混合溶液中加入上述所配制的乙醇溶液备用;
步骤2.4、配置浓度为0.18mol/L的过硫酸铵和浓度为0.28mol/L的硫酸的混合溶液,备用;
步骤2.5、将步骤2.2中的陶瓷膜浸泡在步骤2.3所配置的溶液中,其中被表面聚合聚吡咯一面置于空气中,另一面完全浸没在溶液中,浸泡时间为4min,加快吡咯在水溶液中的溶解;
步骤2.6、将步骤2.5中浸泡后的陶瓷膜取出放入步骤2.4配置的溶液中,全部浸泡,以增加引发和氧化剂的作用,控制浸泡时间为2.5min后将陶瓷膜置于纯水充分浸泡,陶瓷膜未遮蔽的表层产生一层黑色高分子层;
步骤2.7、将步骤2.6得到的表面聚合了导热高分子层的膜浸泡在浓度为48%的乙醇溶液中,浸泡13min,然后用纯水冲洗,表面黑色物质脱落;
步骤2.8、重复步骤2.3~步骤2.7进行多次聚合,控制重复次数为3次,使表面高分子层更牢固,得到光热转化的陶瓷膜。

Claims (5)

1.一种光热转化陶瓷膜的制备方法,其特征在于,具体按照以下步骤实施:
步骤1、制备SiO2-Al2O3陶瓷膜,包括以下步骤:
步骤1.1、制备铸膜液;
步骤1.2、将所述步骤1.1制备的铸膜液均匀涂覆在玻璃板上,将涂覆有铸膜液的玻璃板放入水中进行相转化成膜,然后将相转换好的膜取出形成胚体,高温烧结制备陶瓷膜;
步骤2、制备单向皮层改性可光热转化的陶瓷膜,具体如下:
步骤2.1、配置浓度为0.05-0.1mol/L 的HCl溶液,将所述步骤1制得的陶瓷膜浸泡在溶液中5-6min,分解陶瓷膜中的氧化钙以及碳酸钙颗粒,使膜具有更大的孔隙率,同时减轻膜的重量;
步骤2.2、将步骤2.1得到的膜的其中一面黏贴遮蔽,防止氧化;
步骤2.3、配制体积分数为15-20%的乙醇溶液,配置浓度为0.3-0.5mol/L的吡咯和浓度为0.3-0.5mol/L的硫酸、浓度为0.2-0.3mol/L的乙二醇、浓度为0.2-0.3mol/L乙二酸的混合溶液,在此混合溶液中加入上述所配制的乙醇溶液备用;
步骤2.4、配置浓度为0.15-0.2mol/L的过硫酸铵和浓度为0.25-0.3 mol/L的硫酸的混合溶液,备用;
步骤2.5、将步骤2.2中的陶瓷膜浸泡在步骤2.3所配置的溶液中,其中被表面聚合聚吡咯一面置于空气中,另一面完全浸没在溶液中,浸泡时间为3-5min,加快吡咯在水溶液中的溶解;
步骤2.6、将步骤2.5中浸泡后的陶瓷膜取出放入步骤2.4配置的溶液中,全部浸泡,以增加引发和氧化剂的作用,控制浸泡时间为2-3min后将陶瓷膜置于纯水充分浸泡,陶瓷膜未遮蔽的表层产生一层黑色高分子层;
步骤2.7、将步骤2.6得到的表面聚合了导热高分子层的膜浸泡在浓度为45-50%的乙醇溶液中,浸泡10-15min,然后用纯水冲洗,表面黑色物质脱落;
步骤2.8、重复步骤2.3~步骤2.7进行多次聚合,控制重复次数为 3-4次,使表面高分子层更牢固,得到光热转化的陶瓷膜。
2.根据权利要求1所述的一种光热转化陶瓷膜的制备方法,其特征在于,所述步骤1.1具体如下:
步骤1.1.1、按质量百分比称取 1-甲基-2-吡咯烷酮36.5%-53.5%、聚醚砜6%-8%、聚乙烯吡咯烷酮0.3%-0.6%、碳酸钙颗粒4%-6%,其余为陶瓷膜基准物质31.9%-53.2%,以上各组分的质量百分比之和为100%,其中,陶瓷膜基准物质为三氧化二铝和二氧化硅颗粒的混合掺料,将以上各组分混合,在20-25℃ 条件下持续搅拌至各组分混合均匀形成铸膜液;
步骤1.1.2、将搅拌之后的铸膜液放入20-25℃水中超声震荡2-3h,功率为50-100HZ,使铸膜液混合均匀,将超声之后的铸膜液进行恒温油浴,控制温度为55-60℃,并磁力搅拌10-12h;
步骤1.1.3、将步骤1.1.2中搅拌完成的铸膜液保持温度不变静止放置,去除铸膜液中的气泡。
3.根据权利要求2所述的一种光热转化陶瓷膜的制备方法,其特征在于,所述步骤1.1.1中,陶瓷膜基准物质为三氧化二铝颗粒和二氧化硅颗粒的混合颗粒,三氧化二铝颗粒及二氧化硅颗粒粒径均为30~60μm。
4.根据权利要求2所述的一种光热转化陶瓷膜的制备方法,其特征在于,所述步骤1.2具体如下:
步骤1.2.1、将步骤1.1得到的铸膜液均匀涂布在玻璃板上,然后将涂覆有铸膜液的玻璃板放入去离子水中,温度控制为20-25℃,进行固液相转化得到平板膜胚料,将平板膜胚料置于55-60℃温度下烘干10-12h;
步骤1.2.2、为了成功制备陶瓷膜形成陶瓷骨架,将所述1.2.1烘干的膜进行加热,温度升至100-110℃保持2-3h,去除残余水分与有机溶剂,然后将炉中温度升至550-600℃保持2-3h,确保坯料内部的有机黏结剂成分充分挥发去除,进一步成孔,再次将温度升至1100-1200℃保持2-3h,预热陶瓷膜基准物质;最后,以升温速率1-1.2℃/min升温至1500-1600℃保持4-5h,形成陶瓷骨架;
步骤1.2.3、停止加热自然冷却降温,得到SiO2-Al2O3陶瓷膜。
5.一种光热转化陶瓷膜用于处理难降解废水的方法,利用如权利要求1-4任一项所述的一种光热转化陶瓷膜的制备方法制备得到的光热转化陶瓷膜,其特征在于,在20-25℃条件下,将所述光热转化陶瓷膜放置于待处理废水中,将待处理废水全部覆盖,经过高分子化学聚合的一面朝上,利用光热转化陶瓷膜的光热转化功能,使待处理废水中的水分蒸发,以蒸发过滤方式对高浓度难降解废水进行浓缩处理,实现低能耗零排放处理。
CN201911158089.3A 2019-11-22 2019-11-22 光热转化陶瓷膜制备方法及用于处理难降解废水的方法 Active CN110917898B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911158089.3A CN110917898B (zh) 2019-11-22 2019-11-22 光热转化陶瓷膜制备方法及用于处理难降解废水的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911158089.3A CN110917898B (zh) 2019-11-22 2019-11-22 光热转化陶瓷膜制备方法及用于处理难降解废水的方法

Publications (2)

Publication Number Publication Date
CN110917898A CN110917898A (zh) 2020-03-27
CN110917898B true CN110917898B (zh) 2021-02-12

Family

ID=69850842

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911158089.3A Active CN110917898B (zh) 2019-11-22 2019-11-22 光热转化陶瓷膜制备方法及用于处理难降解废水的方法

Country Status (1)

Country Link
CN (1) CN110917898B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111547801A (zh) * 2020-04-14 2020-08-18 西安理工大学 一种苦咸水脱盐浓水光热蒸发处理装置及其处理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106966386A (zh) * 2017-03-09 2017-07-21 北京理工大学 一种石墨烯片垂直取向薄膜材料的制备方法及其应用
CN109721893A (zh) * 2018-12-04 2019-05-07 中国科学院生态环境研究中心 自漂浮的隔热导水材料及其制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145319A (ja) * 2010-12-22 2012-08-02 Sumitomo Electric Ind Ltd 太陽熱温水装置及び造水システム
US20150353385A1 (en) * 2014-06-09 2015-12-10 King Abdullah University Of Science And Technology Hydrophobic photothermal membranes, devices including the hydrophobic photothermal membranes, and methods for solar desalination
US20180221829A1 (en) * 2017-02-04 2018-08-09 The Texas A&M University System In-situ solar-to-heat coating for drinking water purification, seawater desalination, and wastewater treatment
CN108889138B (zh) * 2018-05-28 2021-04-30 中国科学院宁波材料技术与工程研究所 一种聚合物微孔膜及其制备方法和应用
CN109438771A (zh) * 2018-09-28 2019-03-08 中国科学院生态环境研究中心 自漂浮柔性碳基光热转化薄膜及其制备方法和应用
CN109176790A (zh) * 2018-10-20 2019-01-11 海南大学 一种基于木材的高效光热水蒸汽转化方法
CN109530688B (zh) * 2018-11-05 2020-10-20 山东科技大学 一种光热海水淡化用的多孔陶瓷膜材料及制备方法和应用
CN110040801A (zh) * 2019-04-29 2019-07-23 江苏金羿射日新材料科技有限公司 一种加速晒盐的方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106966386A (zh) * 2017-03-09 2017-07-21 北京理工大学 一种石墨烯片垂直取向薄膜材料的制备方法及其应用
CN109721893A (zh) * 2018-12-04 2019-05-07 中国科学院生态环境研究中心 自漂浮的隔热导水材料及其制备方法和应用

Also Published As

Publication number Publication date
CN110917898A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
CN104399516B (zh) 一种处理硝基苯酚废水的光催化剂的制备方法、一种硝基苯酚废水的处理方法
CN110917898B (zh) 光热转化陶瓷膜制备方法及用于处理难降解废水的方法
CN104163474B (zh) 一种应用于电芬顿体系阴极的石墨毡活化方法
CN113617351A (zh) 类石墨相氮化碳/石墨烯/氧化石墨烯复合气凝胶及方法
CN104556597A (zh) 一种污泥的处理方法
CN107175093A (zh) 一种硼原子修饰的有序介孔碳复合材料活化过硫酸盐降解有机物的方法
CN111204829B (zh) 基于废纸和石墨的太阳能污水净化气凝胶及其制备方法
CN102385962A (zh) 一种三维电极反应器的绝缘粒子及制备与应用方法
CN104556596A (zh) 一种污泥的处理方法
CN113087086B (zh) 一种基于废弃松木渣的碳板电极及其制备方法
CN112500586B (zh) 一种双层-各向异性结构壳聚糖基凝胶材料及其制备方法和应用
CN110038572A (zh) 一种用于降解有机污染物的α-Fe2O3/Fe光催化剂及其制备方法
CN103280281A (zh) 一种防污闪绝缘子的制备方法
CN112090296A (zh) 基于F-TiO2/Fe-g-C3N4的自清洁平板式PVDF超滤膜及制备方法
CN107008482A (zh) 一种可在无光条件下使用的不含金属元素的光催化剂及其制备方法
CN116535565A (zh) 一种海藻糖改性光热水凝胶及其制备方法和应用
CN113790538B (zh) 一种光热转换膜及其制备方法和应用
CN107661698A (zh) 铁铜双金属负载介孔碳氧化铝复合陶瓷膜材料的制备方法及其应用
CN115350589A (zh) 一种聚合纳滤膜及其制备与应用
CN214528418U (zh) 一种用于垃圾渗滤液蒸发出水的深度处理系统
CN108676486B (zh) 一种循环使用处理污水的纳米涂装结构及其应用方法
CN113880222A (zh) 一种基于天然电气石协同过氧化氢降解有机废水的方法
CN111547801A (zh) 一种苦咸水脱盐浓水光热蒸发处理装置及其处理方法
CN115231620B (zh) 一种提高铁基三维多孔结构稳定性的方法和应用
CN115975499B (zh) 一种用于太阳能界面蒸发的光热涂层复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant