CN110908277A - 一种基于混合编码的遗传优化轨迹跟踪控制系统 - Google Patents

一种基于混合编码的遗传优化轨迹跟踪控制系统 Download PDF

Info

Publication number
CN110908277A
CN110908277A CN201911004745.4A CN201911004745A CN110908277A CN 110908277 A CN110908277 A CN 110908277A CN 201911004745 A CN201911004745 A CN 201911004745A CN 110908277 A CN110908277 A CN 110908277A
Authority
CN
China
Prior art keywords
fuzzy
module
joint
coding
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911004745.4A
Other languages
English (en)
Other versions
CN110908277B (zh
Inventor
王宏涛
蒋清泽
蒋汶松
范需
李威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201911004745.4A priority Critical patent/CN110908277B/zh
Publication of CN110908277A publication Critical patent/CN110908277A/zh
Application granted granted Critical
Publication of CN110908277B publication Critical patent/CN110908277B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了机器人轨迹控制领域中的一种基于混合编码的遗传优化轨迹跟踪控制系统,用于多关节机器人轨迹跟踪控制。针对多关节机器人模糊PID控制器进行遗传算法优化时编码长度冗长问题,提出一种模糊控制器设计参数直接编码和特征参数编码的混合编码策略,将该混合编码应用于模糊PID控制器隶属函数和模糊规则的遗传算法优化,并应用优化后的模糊PID控制器实现了关节机器人的轨迹跟踪控制,以能够提高多关节机器人的末端轨迹控制精度。

Description

一种基于混合编码的遗传优化轨迹跟踪控制系统
技术领域
本发明涉及多关节机器人的控制技术领域,尤其是一种轨迹跟踪控制系统。
背景技术
关节机器人轨迹跟踪控制是通过控制器对各关节施加驱动力矩使得机器人的关节角、角速度等运动状态跟踪给定的期望轨迹。关节机器人是一个高度非线性和高度不确定性系统,很难得到机器人精准的数学模型,一定程度上会影响实际的控制效果,因此通过一定的控制方法来降低机器人控制误差是机器人轨迹跟踪的目标。
比例-积分-微分(PID)控制易于实现且技术成熟,被广泛应用于关节机器人控制,但PID控制属于线性控制,将其应用于非线性系统的控制,往往难以取得理想的控制效果。模糊控制无需依靠精确的数学模型便可以达到良好的控制效果,对非线性系统具有较好的逼近效果。因此模糊控制和PID控制相结合的控制方法被设计应用于机器人轨迹跟踪控制,实现了控制精度的提高。尽管如此,对于模糊控制的隶属函数和模糊规则以及PID参数的选取和设计需要经验和专家知识,存在设计不合理时难以取得最佳控制效果的不足。现有技术中,采用遗传算法(GA)对控制器参数进行寻优调整往往能提高系统的动、静态性能。当同时优化与模糊规则、隶属函数相关的模糊控制器设计参数时,若将设计参数直接编码到个体染色体会使染色体变得冗长,搜索空间过大、寻优效率较低。
发明内容
本发明的目的是针对多关节机器人模糊PID控制器进行遗传算法优化时编码长度冗长问题,提出一种基于混合编码的遗传优化轨迹跟踪控制系统,该系统模糊控制器采用设计参数直接编码和特征参数编码的混合编码策略,将该混合编码策略应用于模糊PID控制器隶属函数和模糊规则的遗传算法优化,并应用优化后的模糊PID控制器实现了关节机器人的轨迹跟踪控制,以提高多关节机器人的末端轨迹控制精度。
为实现上述目的,本发明采用如下技术方案:
一种基于混合编码的遗传优化轨迹跟踪控制系统,用于多关节机器人执行末端的轨迹跟踪控制;包括轨迹跟踪控制系统仿真模块、混合编码模块和遗传优化模块;
所述轨迹跟踪控制系统仿真模块包括动力学仿真模块和模糊PID控制器;动力学仿真模块用于在给定控制力矩τ的情况下输出机器人各个关节的仿真关节角位移q;模糊PID控制器包括模糊模块与PID模块,模糊PID控制器用以根据当前偏差e和偏差变化率ec输出控制力矩τ;
所述的混合编码模块包括隶属函数编码模块和模糊规则编码模块;隶属函数编码模块是将输入输出变量的隶属函数特征参数Pm和G用于个体染色体编码;模糊规则编码模块是将ΔKP和ΔKD的模糊规则特征参数Ps和θs以及ΔKI的模糊规则设计参数用于个体染色体编码;
所述的遗传算法模块的初始种群是随机生成N个个体染色体[a1,a2,…,a63],根据当前种群中每个个体染色体的适应度函数值J(t),若满足优化要求(遗传代数或适应度函数变化阈值等)则结束寻优,否则根据适应度函数值来进行选择、复制、变异、交叉等一系列遗传操作生成下一代种群。
进一步的,控制力矩τ的获取方式为,首先将当前偏差e和偏差变化率ec作为模糊控制器的输入变量,经过模糊化后得到e和ec隶属不同模糊集的隶属度;e表示qd与q的偏差,e=qd-q,q表示关节机器人仿真输出的关节角位移,qd为期望的关节角位移;ec表示偏差变化率,ec=de/dt。然后根据模糊规则进行模糊推理得到输出变量ΔKP、ΔKI、ΔKD的模糊结果,通过解模糊化得到输出变量精确结果;ΔKP为PID模块比例参数的调整值、ΔKI为PID模块微分参数的调整值、ΔKD为PID模块积分参数的调整值。接着利用模糊模块输出的ΔKP、ΔKI、ΔKD对PID模块参数进行在线自适应调整,然后得到PID模块作用于关节机器人的关节力矩τ。
进一步的,利用模糊控制器输出的ΔKP、ΔKI、ΔKD对PID控制器参数进行在线自适应调整的表达式为
Figure BDA0002242396030000021
得到模糊PID控制器作用于关节机器人的关节力矩τ表示为:
Figure BDA0002242396030000022
式中,KP0、KI0、KD0为PID参数ΔKP、ΔKI、ΔKD的初值。
进一步的,忽略摩擦力及机器人末端负载,其动态性能由二阶非线性动力学方程描述为:
Figure BDA0002242396030000031
式中,τ∈Rn×1是关节力矩向量,q∈Rn×1是机器人关节角度向量,
Figure BDA0002242396030000032
是机械臂关节角速度向量,
Figure BDA0002242396030000033
是机械臂关节角加速度向量;M(q)∈Rn×n是惯性对称矩阵,
Figure BDA0002242396030000034
是哥氏力和离心力系数矩阵,G(q)∈Rn×1是重力向量,矩阵M(q)、
Figure BDA0002242396030000035
和G(q)中的元素都是关于机械臂关节角度的复杂函数。
动力学仿真模块用于在给定控制力矩τ的情况下输出机器人多个关节的角加速度仿真值
Figure BDA0002242396030000036
为:
Figure BDA0002242396030000037
在初始条件为q(0)=q0
Figure BDA0002242396030000038
的情况下,用时间步长Δt对式
Figure BDA0002242396030000039
进行数值积分。从t=0开始的迭代计算为:
Figure BDA00022423960300000310
Figure BDA00022423960300000311
对于每一次迭代,都需要计算式
Figure BDA00022423960300000312
得到角加速度
Figure BDA00022423960300000313
的值,再运用式
Figure BDA00022423960300000314
的数值积分法进行计算,得到下一时刻t+Δt的角速度
Figure BDA00022423960300000315
和关节角q。
进一步的,混合编码模块包括隶属函数编码模块和模糊规则编码模块;混合编码模块中的隶属函数编码模块是使用输入变量e、ec的隶属函数和输出变量ΔKP、ΔKI、ΔKD的隶属函数的特征参数Pm和G编码,分别由染色体[a1,a2,…,a63]中的a1-a5和a6-a10基因位表示,每个变量的隶属函数顶点中心值Xi
Figure BDA00022423960300000316
式中,Xi是三角形隶属函数中心顶点值;k是隶属函数模糊集个数,此处k=7;Pm是幂函数的指数,G是伸缩因子。
混合编码模块中的模糊规则编码模块是根据3个输出变量ΔKP、ΔKI、ΔKD分别对应的3个模糊规则表导出新的模糊规则编码,ΔKP的相平面区域规则结果从左到右指定为NL、NM、NS、ZE、PS、PM、PL,ΔKD的相平面区域规则结果从左到右与ΔKP相反,ΔKP、ΔKD这2个输出变量模糊规则的特征参数Ps和θs分别由染色体[a1,a2,…,a63]中的a11-a12和a13-a14基因位表示,由这两个特征参数可以生成规则相平面的划分线和划分点,根据划分结果导出新的模糊规则;而ΔKI的模糊规则编码采用直接编码,用数字1、2、3、4、5、6、7分别表示模糊规则表中的NL、NM、NS、ZE、PS、PM、PL,由a15-a63基因位表示。
进一步的,将混合编码模块获得的隶属函数和模糊规则用于更新轨迹跟踪控制系统仿真模块中模糊模块的隶属函数和模糊规则参数,运行轨迹跟踪控制系统完成一次轨迹跟踪控制仿真,得到t时刻机器人仿真轨迹与期望轨迹的偏差e(t),计算适应度函数值;适应度函数值的计算公式为:
Figure BDA0002242396030000041
式中,e(t)为t时刻的机器人仿真轨迹与期望轨迹偏差,T为运行模糊PID控制器完成一次轨迹跟踪控制仿真的总时间,J为适应度函数值。种群中的每一个个体均需计算得到各自的适应度函数值。
进一步的,未满足遗传代数或适应度函数变化阈值等寻优结束条件时,遗传算法模块根据当前种群中个体染色体的适应度函数值进行选择、复制、变异、交叉等一系列的遗传操作来产生下一代种群;产生的种群更新成为当前种群,继续运行遗传算法,如此循环直至满足寻优结束条件;
有益效果:与现有技术相比,基于混合编码的遗传优化在寻优效率和质量方面都有提升,优化后的轨迹跟踪模糊PID控制器具有更好的控制效果,显示了基于混合编码的遗传优化方法在轨迹跟踪模糊PID控制器优化中的有效性和优越性。
附图说明
图1为轨迹跟踪控制仿真系统结构图;
图2为模糊PID控制器的隶属函数图;
图3为ΔKP模糊规则相平面划分图;
图4为遗传算法优化流程图;
图5为MATLAB/Simulink仿真图;
图6为模糊PID控制器仿真图;
图7为PUMA560动力学仿真框图;
图8为混合编码的遗传算法迭代图(a)每代最佳值和平均值(b)每代最高、最低和平均值;
图9为直接编码的遗传算法迭代图(a)每代最佳值和平均值(b)每代最高、最低和平均值;
图10为两种编码遗传算法优化后对轨迹跟踪模糊PID控制时的笛卡尔空间轨迹误差对比。
具体实施方式
下面结合附图对本发明进一步说明:
本发明公开一种基于混合编码的遗传优化轨迹跟踪模糊PID控制器,用于多关节机器人轨迹跟踪控制。
包括轨迹跟踪控制仿真系统、混合编码模块和遗传算法模块;
1.所述的轨迹跟踪控制仿真系统,其原理图如附图1所示。图中qd表示关节机器人的期望角位移;q表示关节机器人仿真输出的角位移;e表示qd与q的偏差,e=qd-q;ec表示偏差变化率,ec=de/dt;ΔKP、ΔKI、ΔKD表示PID调整参数;τ表示作用于关节机器人的关节力矩;图中虚线部分表示模糊PID控制器。
轨迹跟踪控制仿真系统由模糊PID控制器和动力学仿真模块组成。所述的动力学仿真模块用于在给定控制力矩τ的情况下输出机器人多个关节的仿真关节角度q:
考虑n关节机器人,忽略摩擦力及机器人末端负载,其动态性能可由下式所表示的二阶非线性动力学方程描述:
Figure BDA0002242396030000051
式中,τ∈Rn×1是关节力矩向量,q∈Rn×1是机器人关节角度向量,
Figure BDA0002242396030000052
是机械臂关节角速度向量,
Figure BDA0002242396030000053
是机械臂关节角加速度向量;M(q)∈Rn×n是惯性对称矩阵,
Figure BDA0002242396030000054
是哥氏力和离心力系数矩阵,G(q)∈Rn×1是重力向量,矩阵M(q)、
Figure BDA0002242396030000055
和G(q)中的元素均是关于机械臂关节角度的函数。在已知关节角度q、角速度
Figure BDA0002242396030000056
角加速度
Figure BDA0002242396030000057
和重力加速度g的情况下,可以通过牛顿-欧拉迭代动力学方程计算得到驱动关节运动所需要的力矩τ。
随着机器人关节数的增加,M(q)、
Figure BDA0002242396030000058
和G(q)矩阵元素的数学函数变得复杂且冗长,不易获得,一种可行的方法是直接求取数值解。
对于n关节机器人,其动力学方程
Figure BDA0002242396030000059
的矩阵展开为:
Figure BDA00022423960300000510
式中,矩阵M(q)中的元素是关于q的函数,与
Figure BDA0002242396030000061
无关;
Figure BDA0002242396030000062
中的元素是关于q和
Figure BDA0002242396030000063
的函数,与
Figure BDA0002242396030000064
无关;G(q)中的元素都是关于q和g的函数,与
Figure BDA0002242396030000065
无关。故设
Figure BDA0002242396030000066
为ei(n阶单位矩阵En的第i列向量),
Figure BDA0002242396030000067
为0向量,无重力时,通过牛顿-欧拉迭代动力学方程求得的关节力矩τ在数值上等于M(q)矩阵中第i列元素的数值,即取
Figure BDA0002242396030000068
q=[q1,q2,…qn]T,g=0时,由上式可得:
Figure BDA0002242396030000069
如是计算可以得到当前t时刻关节角度q下的惯性矩阵M(q)的数值矩阵,记为Mn×n
同理,设
Figure BDA00022423960300000610
为0向量,有重力时,通过牛顿-欧拉迭代动力学方程所求得的关节力矩τ在数值上等于
Figure BDA00022423960300000611
Figure BDA00022423960300000612
q=[q1,q2,…,qn]T,g=-9.81时,由式(3)可得:
Figure BDA00022423960300000613
如是计算可计算得到当前t时刻
Figure BDA00022423960300000614
的数值向量,记为Cn×1+Gn×1
根据动力学方程式
Figure BDA00022423960300000615
可求出关节角加速度
Figure BDA00022423960300000616
Figure BDA00022423960300000617
将数值矩阵Mn×n、数值向量Cn×1+Gn×1和模糊PID控制器输出的关节扭矩τ带入式
Figure BDA00022423960300000618
则可计算得到
Figure BDA00022423960300000619
Figure BDA00022423960300000620
假设时间步长Δt内
Figure BDA00022423960300000621
不变化,在初始条件为q(0)=q0
Figure BDA00022423960300000622
的情况下,对当前t时刻关节信息qt
Figure BDA00022423960300000623
进行数值积分。从t=0开始的迭代计算下一时刻t+Δt的角速度
Figure BDA00022423960300000624
和关节角qt+Δt为:
Figure BDA0002242396030000071
Figure BDA0002242396030000072
模糊PID控制器具体控制原理为:首先将当前偏差e和偏差变化率ec作为模糊模块的输入变量,经过模糊化后得到e和ec隶属不同模糊集的隶属度;然后根据模糊规则进行模糊推理得到输出变量ΔKP、ΔKI、ΔKD的模糊结果,通过解模糊化来得到输出变量精确结果;接着利用模糊模块输出的ΔKP、ΔKI、ΔKD对PID模块参数进行在线自适应调整:
Figure BDA0002242396030000073
最后得到模糊PID控制器作用于关节机器人的关节力矩τ为:
Figure BDA0002242396030000074
式中,KP0、KI0、KD0为PID模块参数ΔKP、ΔKI、ΔKD的初值。
模糊模块的输入变量偏差e和偏差变化率ec以及输出变量PID模块参数调整值ΔKP、ΔKI、ΔKD的模糊集个数均设计为7个,取为{NL,NM,NS,ZE,PS,PM,PL},即{负大,负中,负小,零,正小,正中,正大}。
模糊集隶属函数选取最常见的连续三角形函数,设计时一般以零为中心对称分布,指定各个模糊集三角形隶属函数中心顶点与零之间的距离即可。对于模糊集个数为7的隶属函数,需指定以零为中心的单侧3个中心顶点值,本技术方案中设计偏差e的三角形隶属函数如附图2所示,其余输入输出变量的隶属函数同附图2。
由于两个输入变量偏差e和偏差变化率ec的模糊集个数都为7,故每一个输出变量ΔKP、ΔKI、ΔKD所对应的模糊规则均为49条,每条模糊规则的形式为:
如果e为…,而且ec为…,那么ΔKP为…,ΔKI为…,ΔKD为…。
本技术方案中采用的ΔKP、ΔKI、ΔKD的模糊规则表如表1所示。
Figure BDA0002242396030000075
Figure BDA0002242396030000081
表1模糊规则表
2.所述的混合编码模块,包括隶属函数编码模块和模糊规则编码模块;
对于隶属函数编码模块,用于体染色体[a1,a2,…,a63]中的a1-a5和a6-a10基因位编码,分别表示输入变量e、ec的隶属函数和输出变量ΔKP、ΔKI、ΔKD的隶属函数特征参数Pm和G,根据隶属函数设计的特性,三角形隶属函数中心顶点位置与零的疏密程度关系表示为:
Figure BDA0002242396030000082
式中,Xmi是三角形隶属函数中心顶点位置与零的疏密程度;k是隶属函数模糊集个数,此处k=7;Pm是幂函数的指数,Pm取值将影响隶属函数各个中心值的疏密分布情况。
通过伸缩因子G可以得到模糊集隶属函数顶点中心值Xi为:
Figure BDA0002242396030000083
可见,通过隶属函数编码模块可以得到模糊模块中更新的隶属函数顶点参数Xi
对于模糊规则编码模块,根据3个输出变量ΔKP、ΔKI、ΔKD分别对应的3个模糊规则表获得新的模糊规则编码,ΔKP和ΔKD的模糊规则表由模糊规则的特征参数导出,具体操作为:读取个体染色体[a1,a2,…,a63]的a11-a12和a13-a14基因位,表示ΔKP和ΔKD这2个变量模糊规则的特征参数Ps和θs;再以e、ec为X,Y轴,由e、ec的不同模糊集三角顶点位置Xmi组成平面内的网格点,网格点代表了模糊规则的条件部分;然后采用一组相互平行的直线对网格点区域进行分割,这组直线为分割点的垂直平分线;最后相同区域内网格点的输出规则结果均相同,指定各个区域所代表的规则结果。采用这种方法导出模糊规则表所需的分割点坐标如下:
Figure BDA0002242396030000091
Figure BDA0002242396030000092
Figure BDA0002242396030000093
式中,(xsi,ysi)是分割点坐标,L是用来限制分割点落在相平面内的范围参数,sign是符号函数,θs是分割点连线以X正半轴逆时针绕原点旋转的角度,Ps是幂函数指数。θs和Ps是模糊规则的特征参数。
以ΔKP的模糊规则表导出为例,取参数Ps=2和θs=30°,其模糊规则相平面划分如附图3所示,ΔKP的相平面区域规则结果从左到右指定为NL、NM、NS、ZE、PS、PM、PL,导出的模糊规则表如表2所示。类似的,ΔKD的相平面区域规则结果PL、PM、PS、ZE、NS、NM、NL,亦可得ΔKD特征参数导出的模糊规则表。
Figure BDA0002242396030000094
Figure BDA0002242396030000101
表2 ΔKP特征参数导出的模糊规则表
而ΔKI的模糊规表给个体染色体[a1,a2,…,a63]中的基因位a15-a63编码,由设计参数直接编码获得,用数字1、2、3、4、5、6、7分别表示模糊规则表1中的NL、NM、NS、ZE、PS、PM、PL,则表1中ΔKI的模糊规则设计参数按列可表示为7×7=49个数字的数字串,以第4列为例,该列的设计参数编码表示为1223456。
根据以上描述,可以得到混合编码染色体基因位对应的参数表,并确定它们的取值范围如表3所示。其中a1-a5和a6-a10分别由隶属函数编码模块中输入变量e、ec的隶属函数和输出变量ΔKP、ΔKI、ΔKD的隶属函数特征参数Pm和G编码,a11-a12和a13-a14分别由模糊规则编码模块中ΔKP、ΔKD这2个输出变量模糊规则的特征参数Ps和θs编码,a15-a63则由模糊规则编码模块中ΔKI的模糊规则设计参直接编码。
表3混合编码染色体基因位对应参数表
Figure BDA0002242396030000102
3.所述的遗传算法模块,主要用于优化轨迹跟踪控制系统仿真模块中模糊PID控制器的隶属函数和模糊规则,算法流程如附图4所示,主要步骤有:
步骤1:遗传算法初始种群生成:根据特征参数和设计参数的取值范围随机生成N个行向量为[a1,a2,…,a63]的个体染色体作为当前种群,选取N=30。
步骤2:将当前种群更新作为父群。
步骤3:读取当前种群中的第j(j=1,…,N)个个体染色体各个基因位编码。
步骤4:根据编码a1-a10生成新的输入变量e、ec和输出变量ΔKP、ΔKI、ΔKD的隶属函数,更新模糊模块中的隶属函数;根据编码a11-a63产生新的输出变量ΔKP、ΔKI、ΔKD的模糊规则,并更新模糊模块中的模糊规则。
步骤5:运行轨迹跟踪控制系统仿真模块,获得各个时刻的偏差e(t),计算适应度函数值J。选择ITAE准则作为控制系统适应度函数,其表达式为:
Figure BDA0002242396030000111
式中,e(t)为t时刻的机器人仿真轨迹与期望轨迹偏差,T为运行模糊PID控制器完成一次轨迹跟踪控制仿真的总时间,J为适应度函数值。
步骤6:若个体染色体数量j不满足j>N,则j+1,进入步骤3;若满j>N,则判断是否满足代数或适应度函数变化阈值的优化条件,若满足,结束寻优,若不满足,进入步骤7。
步骤7:排序整个种群中每个个体的适应度函数值,对当前种群进行选择、复制、变异、交叉等一系列遗传操作,生成下一代种群,进入步骤2。
运用上述设计的模糊PID控制器进行轨迹跟踪控制仿真时,选取经典的PUMA560六关节机器人为控制对象,机器人末端笛卡尔空间期望轨迹设为:
Figure BDA0002242396030000112
PUMA560机器人的D-H参数如表4所示,其中ai是关节i的连杆长度,αi是关节i和关节i+1间的连杆夹角,di是关节i-1和关节i间的连杆偏置距离,θi是关节i的关节转角。
表4 PUMA560机器人D-H参数表
Figure BDA0002242396030000113
本文运用MATLAB/Simulink仿真环境搭建了PUMA560关节机器人模糊PID控制仿真系统,设置仿真步长Δt=0.01s,仿真总时长t=10s。仿真图如附图5所示;模糊PID控制器的仿真图如图6所示,图中输入从上到下分别为关节角q、角速度
Figure BDA0002242396030000114
和期望角位移qd,输出为关节力矩τ;PUMA560机器人的动力学仿真图如图7所示,图中输入从上到下分别为当前关节角q、角速度
Figure BDA0002242396030000115
关节力矩τ和外力作用(外力作用为零),输出为当前角加速度
Figure BDA0002242396030000116
经过一次积分后得到下一时刻角速度
Figure BDA0002242396030000117
再经过一次积分得到下一时刻的关节角仿真值q。
仿真结果得到了各个关节角的仿真值,运用机器人运动学求解笛卡尔空间末端轨迹,计算其与笛卡尔空间理想整圆轨迹在相同时刻的欧几里得距离,将其作为遗传算法适应度函数式中的e(t),得到适应度函数值。
为了验证所提出的混合编码策略对模糊PID控制器的优化效果,将混合编码和直接编码分别应用于关节机器人模糊PID控制遗传算法优化。为了保证对比的真实有效性,两种编码的隶属函数中心值最大为10,最小为0.01,每个输出变量的模糊规则均为49条,均采用表5的遗传算法相关参数,遗传算法优化模糊PID控制器的流程如图4所示,得到如图8和图9所示的遗传算法迭代图。
Figure BDA0002242396030000121
表5遗传算法参数表
从附图8(a)可以看出,混合编码的遗传算法优化过程在15代前后就进入了收敛阶段,从图8(b)可以看出,算法一直保持着种群的多样性,最后最佳个体的评价函数值为42.6992;从图9(a)可以看出,直接编码策略在20代前后进入收敛阶段,从图9(b)可以看出种群多样性逐渐减小,最后最佳个体的评价函数值为46.1839。可见本文提出的混合编码策略在寻优过程中具有更好的寻优效率和寻优质量。
将未经优化前的模糊PID控制器(FPID)、经过直接编码优化后的模糊PID控制器(GAdirect-FPID)和经过混合编码策略优化后的模糊PID控制器(GAhybrid-FPID)分别对PUMA560关节机器人进行轨迹跟踪控制,得到笛卡尔空间轨迹误差,如附图10所示。对比FPID和GAdirect-FPID,Gahybrid-FPID具有好的控制效果,说明了所提出的混合编码策略优化的模糊PID控制器在关节机器人轨迹跟踪控制方面的有效性和优越性。
本发明不局限于上述实施例,在本公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本发明的保护范围内。

Claims (6)

1.一种基于混合编码的遗传优化轨迹跟踪控制系统,用于多关节机器人执行末端的轨迹跟踪控制;其特征在于,
包括轨迹跟踪控制系统仿真模块、混合编码模块和遗传优化模块;
所述轨迹跟踪控制系统仿真模块包括动力学仿真模块和模糊PID控制器;动力学仿真模块用于在给定控制力矩τ的情况下输出机器人各个关节的仿真关节角位移q;模糊PID控制器包括模糊模块与PID模块,模糊PID控制器用以根据当前偏差e和偏差变化率ec输出控制力矩τ;
所述的混合编码模块包括隶属函数编码模块和模糊规则编码模块;隶属函数编码模块是将输入输出变量的隶属函数特征参数Pm和G用于个体染色体编码;模糊规则编码模块是将△KP和△KD的模糊规则特征参数Ps和θs以及△KI的模糊规则设计参数用于个体染色体编码;
所述的遗传算法模块的初始种群是随机生成N个个体染色体[a1,a2,…,a63],根据当前种群中每个个体染色体的适应度函数值J(t),若满足优化要求(遗传代数或适应度函数变化阈值等)则结束寻优,否则根据适应度函数值来进行选择、复制、变异、交叉等一系列遗传操作生成下一代种群。
2.根据权利要求1所述的控制系统,其特征在于,控制力矩τ的获取方式为,首先将当前偏差e和偏差变化率ec作为模糊控制器的输入变量,经过模糊化后得到e和ec隶属不同模糊集的隶属度;e表示qd与q的偏差,e=qd-q,qd为期望的关节角位移;ec表示偏差变化率,ec=de/dt;然后根据模糊规则进行模糊推理得到输出变量△KP、△KI、△KD的模糊结果,通过解模糊化得到输出变量精确结果;△KP为PID模块比例参数的调整值、△KI为PID模块微分参数的调整值、△KD为PID模块积分参数的调整值;接着利用模糊模块输出的△KP、△KI、△KD对PID模块参数进行在线自适应调整,然后得到PID模块作用于关节机器人的关节力矩τ。
3.根据权利要求1或2所述的控制系统,其特征在于,动力学仿真模块用于在给定控制力矩τ的情况下输出机器人多个关节的仿真关节角度q;
忽略摩擦力及机器人末端负载,其动态性能由二阶非线性动力学方程描述为:
Figure RE-FDA0002363824560000011
式中,τ∈Rn×1是关节力矩向量,q∈Rn×1是机器人关节角度向量,
Figure RE-FDA0002363824560000012
是机械臂关节角速度向量,
Figure RE-FDA0002363824560000013
是机械臂关节角加速度向量;M(q)∈Rn×n是惯性对称矩阵,
Figure RE-FDA0002363824560000014
是哥氏力和离心力系数矩阵,G(q)∈Rn×1是重力向量,矩阵M(q)、
Figure RE-FDA0002363824560000015
和G(q)中的元素都是关于机械臂关节角度q的复杂函数;
所求的关节角加速度仿真值
Figure RE-FDA0002363824560000016
为:
Figure RE-FDA0002363824560000017
在初始条件为q(0)=q0
Figure RE-FDA0002363824560000021
的情况下,用时间步长△t对式
Figure RE-FDA0002363824560000022
进行数值积分;从t=0开始的迭代计算为:
Figure RE-FDA0002363824560000023
Figure RE-FDA0002363824560000024
对于每一次迭代,都需要计算式
Figure RE-FDA0002363824560000025
得到角加速度
Figure RE-FDA0002363824560000026
的值,再运用式
Figure RE-FDA0002363824560000027
的数值积分法进行计算,得到下一时刻t+△t的角速度
Figure RE-FDA0002363824560000028
和关节角q。
4.根据权利要求1所述的控制系统,其特征在于,利用模糊模块输出的△KP、△KI、△KD对PID模块参数进行在线自适应调整的表达式为
Figure RE-FDA0002363824560000029
得到模糊PID控制器作用于关节机器人的关节力矩τ表示为:
Figure RE-FDA00023638245600000210
式中,KP0、KI0、KD0为PID参数△KP、△KI、△KD的初值。
5.根据权利要求1所述的控制系统,其特征在于,混合编码模块包括隶属函数编码模块和模糊规则编码模块;
混合编码模块中的隶属函数编码模块是使用输入变量e、ec的隶属函数和输出变量△KP、△KI、△KD的隶属函数的特征参数Pm和G编码,分别由染色体[a1,a2,…,a63]中的a1-a5和a6-a10基因位表示,每个变量的隶属函数顶点中心值Xi
Figure RE-FDA00023638245600000211
式中,Xi是三角形隶属函数中心顶点值;k是隶属函数模糊集个数,此处k=7;Pm是幂函数的指数,G是伸缩因子;
混合编码模块中的模糊规则编码是根据3个输出变量△KP、△KI、△KD分别对应的3个模糊规则表导出的,△KP的相平面区域规则结果从左到右指定为NL、NM、NS、ZE、PS、PM、PL,△KD的相平面区域规则结果从左到右与△KP相反;△KP、△KD这2个输出变量的模糊规则的特征参数Ps和θs分别给染色体[a1,a2,…,a63]中的a11-a12和a13-a14基因位编码,由这两个特征参数可以生成模糊规则相平面的划分线和划分点,根据划分结果产生新的△KP、△KD这2个输出变量模糊规则;而△KI的模糊规则采用直接编码,用数字1、2、3、4、5、6、7分别表示模糊规则表中的NL、NM、NS、ZE、PS、PM、PL,表示染色体[a1,a2,…,a63]中49个基因位a15-a63的编码,根据这49个基因位数字排列产生新的△KI模糊规则。
6.根据权利要求1所述的控制系统,其特征在于,遗传算法模块中的适应度函数是按ITAE准则设计优化的控制系统,选择ITAE准则作为控制系统适应度函数,其表达式为:
Figure RE-FDA0002363824560000031
式中,e(t)为t时刻的机器人仿真轨迹与期望轨迹偏差,T为运行模糊PID控制器完成一次轨迹跟踪控制仿真的总时间,J为适应度函数值。
CN201911004745.4A 2019-10-22 2019-10-22 一种基于混合编码的遗传优化轨迹跟踪控制系统 Active CN110908277B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911004745.4A CN110908277B (zh) 2019-10-22 2019-10-22 一种基于混合编码的遗传优化轨迹跟踪控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911004745.4A CN110908277B (zh) 2019-10-22 2019-10-22 一种基于混合编码的遗传优化轨迹跟踪控制系统

Publications (2)

Publication Number Publication Date
CN110908277A true CN110908277A (zh) 2020-03-24
CN110908277B CN110908277B (zh) 2022-04-01

Family

ID=69814827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911004745.4A Active CN110908277B (zh) 2019-10-22 2019-10-22 一种基于混合编码的遗传优化轨迹跟踪控制系统

Country Status (1)

Country Link
CN (1) CN110908277B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104635494A (zh) * 2015-02-06 2015-05-20 西安电子科技大学 一种基于遗传算法优化的车辆追尾碰撞模糊控制方法
CN105807607A (zh) * 2016-05-11 2016-07-27 杭州电子科技大学 一种遗传算法优化预测模糊pid焦化炉温度控制方法
CN106393116A (zh) * 2016-11-18 2017-02-15 山东大学 具有初态学习的机械臂分数阶迭代学习控制方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104635494A (zh) * 2015-02-06 2015-05-20 西安电子科技大学 一种基于遗传算法优化的车辆追尾碰撞模糊控制方法
CN105807607A (zh) * 2016-05-11 2016-07-27 杭州电子科技大学 一种遗传算法优化预测模糊pid焦化炉温度控制方法
CN106393116A (zh) * 2016-11-18 2017-02-15 山东大学 具有初态学习的机械臂分数阶迭代学习控制方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YAU-TARNGJUANG等: "Design of fuzzy PID controllers using modified triangular membership functions", 《INFORMATION SCIENCES》 *
刘明: "基于神经网络的混合型模糊PID控制研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
谢宏等: "遗传优化模糊PID融合算法的5自由度机械手控制", 《电子测量与仪器学报》 *

Also Published As

Publication number Publication date
CN110908277B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
CN107561942B (zh) 基于模型补偿的智能车辆轨迹跟踪模型预测控制方法
CN105676636B (zh) 一种基于nsga-ii算法的冗余度空间机械臂多目标优化方法
CN112692826B (zh) 一种基于改进遗传算法的工业机器人轨迹优化方法
JP3802965B2 (ja) 非線形の物理的な制御対象の最適制御のための自己組織化方法及び装置
Piltan et al. Design sliding mode controller for robot manipulator with artificial tuneable gain
Juang Fuzzy neural network approaches for robotic gait synthesis
CN110450156B (zh) 多自由度机械臂系统自适应模糊控制器的优化设计方法
CN114967676A (zh) 基于强化学习的模型预测控制轨迹跟踪控制系统及方法方法
JP2005310114A (ja) ソフト演算最適化装置を用いた自動二輪車のためのインテリジェントロバスト制御システム
CN115157238B (zh) 一种多自由度机器人动力学建模和轨迹跟踪方法
Li et al. A hybrid assembly sequence planning approach based on discrete particle swarm optimization and evolutionary direction operation
Tarokh et al. Real-time motion tracking of robot manipulators using adaptive genetic algorithms
CN113341719A (zh) 一种融合teb算法和模糊控制的agv轨迹跟踪控制方法
CN114326709B (zh) 一种基于模型预测控制的具有预览特性的智能车辆路径跟踪方法
CN113093526B (zh) 一种基于强化学习的无超调pid控制器参数整定方法
Kim et al. A self-organized fuzzy controller for wheeled mobile robot using an evolutionary algorithm
Nguyen et al. Genetic algorithm tuned fuzzy logic controller for a robot arm with two-link flexibility and two-joint elasticity
CN110908277B (zh) 一种基于混合编码的遗传优化轨迹跟踪控制系统
Erden et al. Multi-agent system-based fuzzy controller design with genetic tuning for a mobile manipulator robot in the hand over task
CN112379693A (zh) 一种智能并行高斯伪谱法飞行器再入轨迹优化方法
CN118192619B (zh) 一种基于ga-aco的移动机器人控制方法及系统
Nagata et al. Simulation of fine gain tuning using genetic algorithms for model-based robotic servo controllers
CN109794939A (zh) 一种焊接机器人运动规划并行束方法
Kazemian Intelligent fuzzy PID controller
Zhu et al. Path Planning and Tracking Control of Car-like Robot Based on Improved NSGA-III and Fuzzy Sliding Mode Control

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant