CN110907625A - 基于多维化学指纹量化模型判别海上溢油种类的方法 - Google Patents

基于多维化学指纹量化模型判别海上溢油种类的方法 Download PDF

Info

Publication number
CN110907625A
CN110907625A CN201911244219.5A CN201911244219A CN110907625A CN 110907625 A CN110907625 A CN 110907625A CN 201911244219 A CN201911244219 A CN 201911244219A CN 110907625 A CN110907625 A CN 110907625A
Authority
CN
China
Prior art keywords
oil
sample
fluorescence
middle east
crude oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911244219.5A
Other languages
English (en)
Other versions
CN110907625B (zh
Inventor
刘晓星
许皓伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN201911244219.5A priority Critical patent/CN110907625B/zh
Publication of CN110907625A publication Critical patent/CN110907625A/zh
Application granted granted Critical
Publication of CN110907625B publication Critical patent/CN110907625B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Raw oil, drilling fluid or polyphasic mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/64Electrical detectors
    • G01N30/68Flame ionisation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种基于多维化学指纹量化模型判别海上溢油种类的方法,具体涉及一种基于多维化学指纹量化模型判别海上溢油种类的方法快速区分燃料油、中东原油和非中东原油,属于海洋环境污染监测与治理领域。本发明选取正构烷烃、荧光特征和Ni/V构建多维化学指纹,利用偏最小二乘算法对正构烷烃的8个诊断比值进行分析提取出3个主成分,并以db7小波基对同步荧光光谱进行6层离散小波变换分析,在d3下提取出5处荧光信息,最后利用穷举法筛选出诊断比值第一主成分、d3(332±2nm)的小波系数和Ni/V作为建模变量。所建模型对建模油样鉴别准确率达到100%,对非建模和风化后的燃料油和原油判别准确率分别达到88.89%和95.50%。

Description

基于多维化学指纹量化模型判别海上溢油种类的方法
技术领域
本发明涉及一种基于多维化学指纹量化模型判别海上溢油种类的方法,具体涉及一种基于多维化学指纹量化模型判别海上溢油种类的方法快速区分燃料油、中东原油和非中东原油,属于海洋环境污染监测与治理领域。
背景技术
近年来,随着石油工业和海上运输业的发展,海面溢油事故时有发生。海上溢油会对附近海域生态系统造成危害,导致污染地区发生经济损失,甚至对人类健康造成严重危害。因此,及时准确鉴别溢油种类,采取合适的保护措施显得尤为重要[1]
几十年来,国内外学者利用气相相色谱法(GC)、气相色谱—质谱法(GC-MS)、全二维气相色谱(GC-GC)、高效液相色谱法(HPLC)[2-5]、紫外光谱法(UV)、傅里叶变换红外光谱法(FTIR)、分子荧光光谱法(FS)[6-7]等方法,通过分析油样当中的正构烷烃、多环芳烃和生物标记物等100多种化合物对油样进行鉴别。近年来一些学者也开始把主成分分析(PCA)、偏最小二乘分析(PLS)、平行因子分析(PARAFAC)、聚类分析、T检验、回归分析、判别分析等多元统计方法引入溢油鉴别。Wang等[8]利用不同浓度下的同步荧光光谱,进行主成分分析、偏最小二乘分析和Gabor小波分析,通过支持向量机(SVM)进行分类,实现了不同类型溢油100%和相似溢油92%正确率的分类。Azimah等[9]在采用GC–FID和GC–MS方法的基础上,结合主成分分析对溢油进行鉴别,结果显示提高溢油鉴别准确率同时缩短了鉴别时间。目前对于溢油的鉴别多为单一维度油指纹,但海洋环境中溢油组分极为复杂,这一类单一维度分析鉴别方法对风化后溢油鉴别存在着不确定性和局限性。而刘晓星等[10]利用正构烷烃、Ni/V特征和荧光特征建立多维化学指纹,提高了对海上长期风化原油和燃料油的准确性。
发明内容
本发明选取正构烷烃、荧光特性和Ni/V值多个化学指标为建模参数,通过Fisher判别函数建立多维化学指纹鉴别模型,实现中东原油、非中东原油和燃料油量化判别,同时对未建模和风化后油样进行判别验证。
基于多维化学指纹量化模型判别海上溢油种类的方法,包括下述步骤:
①获得待测油样中如下8个正构烷烃特征参数:n-C17/Pr、n-C18/Ph、Pr/Ph、(n-C19~n-C20)/(n-C19~n-C22)、CPI、低分子量烷烃/高分子量烷烃LMW/HMW(简写为L/H)、奇偶优势碳之比OEP1和OEP2,将获得的8个特征参数分别利用下述公式进行均值标准化,
CPI’=(CPI-1.031058)/0.108341;
L/H’=(L/H-3.510389)/4.785483;
C19-20/C19-22’=(C19-20/C19-22-0.57226)/0.133963;
C17/Pr’=(C17/Pr-2.733146)/1.410578;
C18/Ph’=(C18/Ph-2.598895)/1.343894;
Pr/Ph’=(Pr/Ph-1.150927)/0.606687;
OEP1’=(OEP1-0.965601)/0.056963;
OEP2’=(OEP2-1.039489)/0.079082;
将标准化数值带入下述公式获得PL1值,
PL1=0.2928CPI’-0.2662L/H’+0.0577C19-20/C19-22’-0.7019C17/Pr’-0.2624C18/Ph’+0.5097Pr/Ph’-0.1251OEP1’+0.0563OEP2’
②利用db7小波基函数对油样荧光光谱图进行6层分解,提取d3细节系数特征,获得待测样品在332±2nm特征波长处的小波系数d3(332±2nm)
③获得待测油样的Ni/V值;
④将步骤①、②和③获得PL1值、d3(332±2nm)值和Ni/V值带入下述Fisher判别公式Y1和Y2中,
Y1=1.323*X1-0.174*X2+0.057*X3+1.052;
Y2=0.131*X1+0.194*X2+0.01*X3-2.242;
其中,X1为PL1值,X2为d3(332±2nm)值,X3为Ni/V值;
⑤利用步骤④获得的样品(Y1,Y2)值与各组质心间的欧式距离来判断归属,判断规则为:与某组质心距离越小,样品则归属于该组类别,
其中,燃料油组质心O1(-1.608,0.664),中东原油组质心O2(-0.613,-0.81),非中东原油组质心O3(1.743,0.21)。
本发明所谓“d3(332±2nm)值”是指db7小波基函数对油样荧光光谱图进行6层分解后,在332±2nm处的d3细节系数。
进一步地,所述步骤①中,8个特征参数按下述方法计算所得:
CPI=((n-C23+n-C25+n-C27+n-C29+n-C31+n-C33)/(n-C24+n-C26+n-C28+n-C30+n-C32+n-C34)+(n-C23+n-C25+n-C27+n-C29+n-C31+n-C33)/(n-C22+n-C24+n-C26+n-C28+n-C30+n-C32))*0.5;
LMW/HMW=(n-C11~n-C21)/(n-C22~n-C32);
C19-20/C19-22=(n-C19+n-C20)/(n-C19+n-C20+n-C21+n-C22);
C17/Pr=n-C17/Pr;
C18/Ph=n-C18/Ph;
Pr/Ph;
OEP1=(n-C17+6*n-C19+n-C21)/(4*n-C18+4*n-C20);
OEP2=(n-C21+6*n-C23+n-C25)/(4*n-C22+4*n-C24);
其中,n-Cx表示碳数为x的正构烷烃含量,Pr表示姥鲛烷含量,Ph表示植烷含量。
进一步地,所述步骤②中,所述油样的荧光强度值按下述方法获得:取0.05±0.0002g油样溶解于10mL正己烷中,静置5min后,取40μL上清液用10mL正己烷定容,采用同步荧光法检测,荧光检测波长范围220nm~600nm,Δλ=10~40nm。
进一步地,所述步骤③中,所述待测油样的Ni/V值按下述方法测得:采用石墨炉原子吸收法,在波长为232nm和318.4nm条件下检测Ni和V的含量,Ni的标准曲线为A=0.0015C-0.0003,相关系数r=0.99901;V的标准曲线为A=0.4332C-0.0004,相关系数r=0.99991。
本发明优选步骤④中所述的判别公式利用Fisher判别方法获得,Fisher判别方法利用投影的方法使多维问题简化为一维问题来处理,本发明将油品分为三类,因此有两个典型变量,通过每组的组质心,得到每组的线性判别函数。Fisher判别方法的前提条件,预测变量相关性较弱,组间差异较大。
本发明的有益效果是:采用偏最小二乘算法对正构烷烃诊断比值进行降维,同时采用离散小波变换对油样的荧光光谱信息进行细节系数提取,并采用穷举法筛选变量,最终建立鉴别油品的Fisher判别模型,该模型在区分燃料油和原油的同时,可对中东原油进一步区分。所建立的模型具有较高的鉴别正确率,对非建模燃料油油样和原油油样的鉴别正确率分别为88.89%和95.50%,它也适用于风化油品的鉴别。本模型的鉴别公式仅选取了3个变量,降低了变量个数,同时克服传统判别方法只包含单一维度化学信息的问题,增加了模型的可靠度,为今后海上溢油鉴别方法的开发提供了一个技术支撑。
附图说明
图1为实施例1未风化阿曼原油正构烷烃分布;
图2为实施例1未风化阿曼原油d3细节系数;
图3为实施例1风化30天阿曼原油正构烷烃分布;
图4为实施例1风化30天阿曼原油d3细节系数;
图5为实施例2未风化180燃料油1#正构烷烃分布;
图6为实施例2未风化180燃料油1#d3细节系数;
图7为实施例2风化30天180燃料油1#正构烷烃分布;
图8为实施例2风化30天180燃料油1#d3细节系数;
图9为实施例3未风化马来西亚原油正构烷烃分布;
图10为实施例3未风化马来西亚原油d3细节系数;
图11为实施例3风化30天马来西亚原油正构烷烃分布;
图12为实施例3风化30天马来西亚原油d3细节系数。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
下述实施例中所述试验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
1实验
1.1实验样品
本实验共用21种油样,八种非中东原油为:安哥拉原油、苏丹原油、大庆原油2#、印度尼西亚原油、马来西亚原油、俄罗斯原油、辽河原油1#、辽河原油2#;七种中东原油为:伊朗原油、伊拉克原油、科威特原油、沙特原油、阿联酋原油、阿曼原油、迪拜原油;六种燃料油为:重质燃料油1#、轻质燃料油1#、180燃料油1#、180燃料油2#、380燃料油1#、380燃料油2#。
1.2仪器和试剂
实验仪器:气相色谱仪Agilent-6890N(Agilent Technologies公司);荧光分光光度计Cary Eclipse(Varian公司);TAS-990SUPER AFG原子吸收分光光度计(北京普析通用仪器责任有限公司);Milli-Q超纯水处理系统(Milipore公司);AB104-N电子分析天平(梅特勒-托利多仪器公司);玻璃层析柱(120mm×10mm)。
实验试剂:C6H14、CH2Cl2、CH3OH(色谱纯,德国Merck KGaA);无水硫酸钠(化学纯,德国BASF SE);硝酸镍(化学纯,天津科密欧化学试剂开发中心);钒标准品(北京世纪奥科生物技术有限公司);100-200目柱层硅胶(天津光复精细化工研究所)。
1.3正构烷烃测定
取油样各0.2g分别加入层析柱,用CH2Cl2:C6H14=2:1(v/v)洗脱剂进行淋洗提取正构烷烃,将洗脱后的组分浓缩至1mL封存,通过GC对其定量测定。GC实验条件:N2流量:25mL·min-1;H2流量:40mL·min-1;空气流量:450mL·min-1;汽化室温度:280℃;程序升温范围80℃~280℃;FID检测器温度:300℃。毛细管柱UF-5:30m×0.25mm×0.25μm;进样量:1μL。
1.4荧光的测定
取0.05±0.0002g油样溶解于10mL正己烷中,静置5min后,取40μL上清液用10mL正己烷定容,采用同步荧光法检测,荧光检测波长范围220nm~600nm,Δλ=10~40(nm)。
1.5 Ni和V的测定
标准溶液的配制以及油样的预处理参照GB/T 18608-2001[11]的实验方法。采用石墨炉原子吸收法,在波长为232nm和318.4nm条件下检测Ni和V。Ni的标准曲线为A=0.0015C-0.0003相关系数r=0.99901;V的标准曲线为A=0.4332C-0.0004相关系数r=0.99991。
2建模变量的选取和模型确立
2.1正构烷烃变量
诊断比值具有独特性、差异性和地球化学意义,基本不受或受风化影响较小。本文选取可以区分不同油种的特征参数。以诊断比值n-C17/Pr、n-C18/Ph、Pr/Ph、(n-C19+n-C20)/(n-C19~n-C22)、碳优势指数(CPI)、低分子量烷烃/高分子量烷烃(LMW/HMW)和奇偶优势碳之比(OEP1,OEP2)作为特征参数。采用偏最小二乘算法(PLS)对所选取的特征参数进行降维。在保留90%信息的基础上,提取出3个主成分。主成分计算公式如下:
PL1=0.2928*X1-0.2662*X2+0.0577*X3-0.7019*X4-0.2624*X5+0.5097*X6-0.1251*X7+0.0563*X8
PL2=-0.3977*X1+0.0428*X2+0.3094*X3+0.1798*X4-0.0161*X5+0.0939*X6+0.3115*X7-0.7783X8
PL3=0.2697*X1-0.2896*X2-0.1281*X3-0.2447*X4-0.5677*X5-0.4194*X6-0.4860*X7-0.1810*X8
PL1、PL2、PL3表示提取出的3个主成分,X1~X8分别表示标准化后的8个特征参数。将油样的8个特征参数分别代入可以得到油样的3个主成分的得分,将其作为变量。
2.2荧光变量
离散小波(DWT)借助特定的伸缩和平移因子并选择合适的小波基函数对原始信号进行处理,能产生反映原始信号较大尺度信息的近似系数以及较小尺度信息的细节系数,依据刘晓星等[12]研究通过db7小波基函数对油样荧光光谱图进行6层分解,提取d3细节系数特征。21种油样的d3系数均在255±2nm,280±2nm,302±2nm,332±2nm和354±2nm处有突出的荧光特征,提取这5处荧光特征,并将其作为变量。
2.3镍钒变量
以实验测量的Ni、V含量并将Ni/V计算值作为变量。
2.4穷举法建立Fisher判别模型
综合上述3种不同维度变量,可选建模变量达到9个,因此利用穷举法从3种不同维度变量中筛选出具有代表性的变量,从而进行降维。每次从3个主成分和5处荧光特征中各取一个并结合Ni/V,对21种油样进行Fisher建模,并回带估算误判率,穷举所有情况。结果显示以第一主成分PL1,d3在(332±2)nm处小波系数和Ni/V建模对21种油样的鉴别准确率为100%。
以诊断比值的第一主成分PL1、d3在(332±2)nm处小波系数和Ni/V为变量,利用SPSS建立Fisher判别模型,判别模型如下:
Y1=1.323*X1-0.174*X2+0.057*X3+1.052;
Y2=0.131*X1+0.194*X2+0.01*X3-2.242;
其中,X1为诊断比值的第一主成分,X2为d3在(332±2)nm处小波系数,X3为Ni/V。燃料油组质心O1(-1.608,0.664),中东原油组质心O2(-0.613,-0.81),非中东原油组质心O3(1.743,0.21)。测定油样中3种变量的数值,将其代入到公式中,得到样品(Y1,Y2)再计算它们与燃料油组质心O1、中东原油组质心O2和非中东原油组质心O3的欧式距离,以最小值判断油样的归属。
2.5模型验证
取非建模的3种未风化燃料油、6种风化燃料油、5种未风化非中东原油和17种风化后原油,对模型进行验证,结果显示判别模型对燃料油鉴别正确率为88.9%,对原油的鉴别正确率为95.5%。
具体实施方式之一:
以6种燃料油、8种非中东原油和7种中东原油作为分析对象,测定所有分析对象的正构烷烃含量、荧光光谱图和镍钒含量。
首先依据下述公式计算8个诊断比值:
CPI=((n-C23+n-C25+n-C27+n-C29+n-C31+n-C33)/(n-C24+n-C26+n-C28+n-C30+n-C32+n-C34)+(n-C23+n-C25+n-C27+n-C29+n-C31+n-C33)/(n-C22+n-C24+n-C26+n-C28+n-C30+n-C32))*0.5;
LMW/HMW=(n-C11~n-C21)/(n-C22~n-C32);
C19-20/C19-22=(n-C19+n-C20)/(n-C19+n-C20+n-C21+n-C22);
C17/Pr=n-C17/Pr;
C18/Ph=n-C18/Ph;
Pr/Ph;
OEP1=(n-C17+6*n-C19+n-C21)/(4*n-C18+4*n-C20);
OEP2=(n-C21+6*n-C23+n-C25)/(4*n-C22+4*n-C24);
(n-Cx表示碳数为x的正构烷烃含量,Pr表示姥鲛烷含量,Ph表示植烷含量)。
然后,将每种油的8个诊断比值进行偏最小二乘运算,提取三个主成分,得到诊断比值的载荷,进而计算各主成分的分值。
接着,将油样荧光光谱图利用db7小波基函数,进行6层分解。提取出d3层255±2nm、280±2nm、302±2nm、332±2nm、354±2nm的小波系数。
最后,通过Ni和V的标准曲线计算油样的Ni/V值。
9个变量全部计算完后,利用应用软件STATA进行穷举筛选变量,判别,并以最好组合构建Fisher判别模型,所得最好组合如下:PL1、d3在(332±2)nm处小波系数和Ni/V值。
实施例1:风化前后阿曼原油验证
表1:未风化阿曼原油8个诊断比值、d3细节系数和Ni/V
Figure BDA0002307066250000071
将表1的诊断比值代入下述公式,计算第一主成分PL1:
CPI’=(CPI-1.031058)/0.108341;
L/H’=(L/H-3.510389)/4.785483;
C19-20/C19-22’=(C19-20/C19-22-0.57226)/0.133963;
C17/Pr’=(C17/Pr-2.733146)/1.410578;
C18/Ph’=(C18/Ph-2.598895)/1.343894;
Pr/Ph’=(Pr/Ph-1.150927)/0.606687;
OEP1’=(OEP1-0.965601)/0.056963;
OEP2’=(OEP2-1.039489)/0.079082;
PL1=0.2928CPI’-0.2662L/H’+0.0577C19-20/C19-22’-0.7019C17/Pr’-0.2624C18/Ph’+0.5097Pr/Ph’-0.1251OEP1’+0.0563OEP2’;
将PL1、d3(332±2nm)和Ni/V代入下述公式:
Y1=1.323*X1-0.174*X2+0.057*X3+1.052;
Y2=0.131*X1+0.194*X2+0.01*X3-2.242;
(Y1,Y2)与燃料油组质心O1(-1.608,0.664),中东原油组质心O2(-0.613,-0.81),非中东原油组质心O3(1.743,0.21)的欧式距离分别为2.504112568、0.90495649和1.894887603。由此可知与O2距离最近,此油样为中东原油,与已知情况符合。
表2:风化30天阿曼原油8个诊断比值、d3细节系数和Ni/V
Figure BDA0002307066250000081
将表2的诊断比值代入下述公式,计算第一主成分PL1:
CPI’=(CPI-1.031058)/0.108341;
L/H’=(L/H-3.510389)/4.785483;
C19-20/C19-22’=(C19-20/C19-22-0.57226)/0.133963;
C17/Pr’=(C17/Pr-2.733146)/1.410578;
C18/Ph’=(C18/Ph-2.598895)/1.343894;
Pr/Ph’=(Pr/Ph-1.150927)/0.606687;
OEP1’=(OEP1-0.965601)/0.056963;
OEP2’=(OEP2-1.039489)/0.079082;
PL1=0.2928*CPI’-0.2662*L/H’+0.0577*C19-20/C19-22’-0.7019*C17/Pr’-0.2624*C18/Ph’+0.5097*Pr/Ph’-0.1251*OEP1’+0.0563*OEP2’;
将PL1、d3(332±2nm)和Ni/V代入下述公式:
Y1=1.323*X1-0.174*X2+0.057*X3+1.052;
Y2=0.131*X1+0.194*X2+0.01*X3-2.242;
(Y1,Y2)与燃料油组质心O1(-1.608,0.664),中东原油组质心O2(-0.613,-0.81),非中东原油组质心O3(1.743,0.21)的欧式距离分别为2.860411102、1.281815811和1.728960706。由此可知与O2距离最近,此油样为中东原油,与已知情况符合。
实施例2:风化前后180燃料油1#验证
表3未风化180燃料油1#的8个诊断比值、d3细节系数和Ni/V
Figure BDA0002307066250000091
将表3的诊断比值代入实例1中的公式,计算得到(Y1,Y2)。
(Y1,Y2)与燃料油组质心O1(-1.608,0.664),中东原油组质心O2(-0.613,-0.81),非中东原油组质心O3(1.743,0.21)的欧式距离分别为1.143253354、1.348392131和2.238644396。由此可知与O1距离最近,此油样为燃料油,与已知情况符合。
表4:风化30天180燃料油1#的8个诊断比值、d3细节系数和Ni/V
Figure BDA0002307066250000092
将表4的诊断比值代入实例1中的公式,计算得到(Y1,Y2)。
(Y1,Y2)与燃料油组质心O1(-1.608,0.664),中东原油组质心O2(-0.613,-0.81),非中东原油组质心O3(1.743,0.21)的欧式距离分别为0.457465132、2.160695733和3.831536748。由此可知与O1距离最近,此油样为燃料油,与已知情况符合。
实施例3:风化前后马来西亚原油验证
表5:未风化马来西亚原油的8个诊断比值、d3细节系数和Ni/V
Figure BDA0002307066250000101
将表5的诊断比值代入实例1中的公式,计算得到(Y1,Y2)。
(Y1,Y2)与燃料油组质心O1(-1.608,0.664),中东原油组质心O2(-0.613,-0.81),非中东原油组质心O3(1.743,0.21)的欧式距离分别为4.221683847、3.039329744和1.057082446。由此可知与O3距离最近,此油样为非中东原油,与已知情况符合。
表6:风化30天马来西亚原油的8个诊断比值、d3细节系数和Ni/V
Figure BDA0002307066250000102
将表6的诊断比值代入实例1中的公式,计算得到(Y1,Y2)。
(Y1,Y2)与燃料油组质心O1(-1.608,0.664),中东原油组质心O2(-0.613,-0.81),非中东原油组质心O3(1.743,0.21)的欧式距离分别为5.986198197、4.770137564和2.678836654。由此可知与O3距离最近,此油样为非中东原油,与已知情况符合。
实施例4:验证集油样
表7:验证集油样及其验证结果
Figure BDA0002307066250000103
Figure BDA0002307066250000111
每种油样具体实施步骤同上述实施例1、2、3。

Claims (4)

1.基于多维化学指纹量化模型判别海上溢油种类的方法,其特征在于:包括下述步骤:
①获得待测油样中如下8个正构烷烃特征参数:n-C17/Pr、n-C18/Ph、Pr/Ph、(n-C19~n-C20)/(n-C19~n-C22)、CPI、低分子量烷烃/高分子量烷烃LMW/HMW、奇偶优势碳之比OEP1和OEP2,将获得的8个特征参数分别利用下述公式进行均值标准化,
CPI’=(CPI-1.031058)/0.108341;
L/H’=(L/H-3.510389)/4.785483;
C19-20/C19-22’=(C19-20/C19-22-0.57226)/0.133963;
C17/Pr’=(C17/Pr-2.733146)/1.410578;
C18/Ph’=(C18/Ph-2.598895)/1.343894;
Pr/Ph’=(Pr/Ph-1.150927)/0.606687;
OEP1’=(OEP1-0.965601)/0.056963;
OEP2’=(OEP2-1.039489)/0.079082;
将标准化数值带入下述公式获得PL1值,
PL1=0.2928CPI’-0.2662L/H’+0.0577C19-20/C19-22’-0.7019C17/Pr’-0.2624C18/Ph’+0.5097Pr/Ph’-0.1251OEP1’+0.0563OEP2’
②利用db7小波基函数对油样荧光光谱图进行6层分解,提取d3细节系数特征,获得待测样品在332±2nm特征波长处的小波系数d3(332±2nm)
③获得待测油样的Ni/V值;
④将步骤①、②和③获得PL1值、d3(332±2nm)值和Ni/V值带入下述Fisher判别公式Y1和Y2中,
Y1=1.323*X1-0.174*X2+0.057*X3+1.052;
Y2=0.131*X1+0.194*X2+0.01*X3-2.242;
其中,X1为PL1值,X2为d3(332±2nm)值,X3为Ni/V值;
⑤利用步骤④获得的样品(Y1,Y2)值与各组质心间的欧式距离来判断归属,判断规则为:与某组质心距离越小,样品则归属于该组类别,
其中,燃料油组质心O1(-1.608,0.664),中东原油组质心O2(-0.613,-0.81),非中东原油组质心O3(1.743,0.21)。
2.根据权利要求1所述的方法,其特征在于:所述步骤①中,8个特征参数按下述方法计算所得:
CPI=((n-C23+n-C25+n-C27+n-C29+n-C31+n-C33)/(n-C24+n-C26+n-C28+n-C30+n-C32+n-C34)+(n-C23+n-C25+n-C27+n-C29+n-C31+n-C33)/(n-C22+n-C24+n-C26+n-C28+n-C30+n-C32))*0.5;
LMW/HMW=(n-C11~n-C21)/(n-C22~n-C32);
C19-20/C19-22=(n-C19+n-C20)/(n-C19+n-C20+n-C21+n-C22);
C17/Pr=n-C17/Pr;
C18/Ph=n-C18/Ph;
Pr/Ph;
OEP1=(n-C17+6*n-C19+n-C21)/(4*n-C18+4*n-C20);
OEP2=(n-C21+6*n-C23+n-C25)/(4*n-C22+4*n-C24);
其中,n-Cx表示碳数为x的正构烷烃含量,Pr表示姥鲛烷含量,Ph表示植烷含量。
3.根据权利要求1所述的方法,其特征在于:所述步骤②中,所述油样的荧光强度值按下述方法获得:取0.05±0.0002g油样溶解于10mL正己烷中,静置5min后,取40μL上清液用10mL正己烷定容,采用同步荧光法检测,荧光检测波长范围220nm~600nm,Δλ=10~40nm。
4.根据权利要求1所述的方法,其特征在于:所述步骤③中,所述待测油样的Ni/V值按下述方法测得:采用石墨炉原子吸收法,在波长为232nm和318.4nm条件下检测Ni和V的含量,Ni的标准曲线为A=0.0015C-0.0003,相关系数r=0.99901;V的标准曲线为A=0.4332C-0.0004,相关系数r=0.99991。
CN201911244219.5A 2019-12-06 2019-12-06 基于多维化学指纹量化模型判别海上溢油种类的方法 Expired - Fee Related CN110907625B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911244219.5A CN110907625B (zh) 2019-12-06 2019-12-06 基于多维化学指纹量化模型判别海上溢油种类的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911244219.5A CN110907625B (zh) 2019-12-06 2019-12-06 基于多维化学指纹量化模型判别海上溢油种类的方法

Publications (2)

Publication Number Publication Date
CN110907625A true CN110907625A (zh) 2020-03-24
CN110907625B CN110907625B (zh) 2022-02-22

Family

ID=69823259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911244219.5A Expired - Fee Related CN110907625B (zh) 2019-12-06 2019-12-06 基于多维化学指纹量化模型判别海上溢油种类的方法

Country Status (1)

Country Link
CN (1) CN110907625B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111999409A (zh) * 2020-08-28 2020-11-27 中国科学院烟台海岸带研究所 一种船舶重质燃料油和原油的指纹鉴别方法
CN113138181A (zh) * 2021-04-27 2021-07-20 江南大学 一种对清香型原酒品质分级的方法
CN113281308A (zh) * 2021-05-25 2021-08-20 中国石油大学(北京) 一种基于正构烷烃c22+/c21-比值定量鉴定烃源岩有机质来源的方法
CN113495114A (zh) * 2020-04-02 2021-10-12 中国石油天然气股份有限公司 一种地下水中油品泄漏的指纹图谱溯源方法
CN114563518A (zh) * 2020-11-27 2022-05-31 中国石油天然气集团有限公司 地下水油品泄露溯源的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994012874A1 (en) * 1992-11-27 1994-06-09 Bp Oil International Limited Method of identifying liquid petroleum products
CN101458213B (zh) * 2008-12-23 2011-02-09 潍坊学院 海洋溢油的浓度辅助参量荧光光谱油种鉴别方法
CN102980876B (zh) * 2012-11-30 2015-02-25 大连海事大学 一种鉴别海上风化原油与船用燃料油的多维化学指纹及方法
CN104849435A (zh) * 2015-05-29 2015-08-19 宁波大学 一种原油、原油降解物、成品油及类似物的快速鉴定方法
CN107250771A (zh) * 2015-01-05 2017-10-13 沙特阿拉伯石油公司 通过荧光光谱法分析表征原油及其级分
CN107389645A (zh) * 2017-08-14 2017-11-24 大连海事大学 离散小波变换解析油品荧光特性的Fisher模型鉴别海上溢油的方法
CN105973861B (zh) * 2016-07-08 2018-10-26 大连海事大学 基于油品荧光特性Fisher判别法判别海上溢油种类的方法
US20190091642A1 (en) * 2005-08-25 2019-03-28 The University of Wyoming Research Center d/b/a/ Western Research Institute Methods for analyzing hydrocarbons and hydrocarbon blends for chemical compositions

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994012874A1 (en) * 1992-11-27 1994-06-09 Bp Oil International Limited Method of identifying liquid petroleum products
US20190091642A1 (en) * 2005-08-25 2019-03-28 The University of Wyoming Research Center d/b/a/ Western Research Institute Methods for analyzing hydrocarbons and hydrocarbon blends for chemical compositions
CN101458213B (zh) * 2008-12-23 2011-02-09 潍坊学院 海洋溢油的浓度辅助参量荧光光谱油种鉴别方法
CN102980876B (zh) * 2012-11-30 2015-02-25 大连海事大学 一种鉴别海上风化原油与船用燃料油的多维化学指纹及方法
CN107250771A (zh) * 2015-01-05 2017-10-13 沙特阿拉伯石油公司 通过荧光光谱法分析表征原油及其级分
CN104849435A (zh) * 2015-05-29 2015-08-19 宁波大学 一种原油、原油降解物、成品油及类似物的快速鉴定方法
CN105973861B (zh) * 2016-07-08 2018-10-26 大连海事大学 基于油品荧光特性Fisher判别法判别海上溢油种类的方法
CN107389645A (zh) * 2017-08-14 2017-11-24 大连海事大学 离散小波变换解析油品荧光特性的Fisher模型鉴别海上溢油的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AZIMAH ISMAIL: "Chemometric techniques in oil classification from oil spill fingerprinting", 《MARINE POLLUTION BULLETIN》 *
刘晓星: "用离散小波变换建立的Fisher判别法对海上溢油的鉴别", 《光谱学与光谱分析》 *
赵明明: "基于数学统计法的海岸带溢油指纹鉴定研究", 《地球化学》 *
黄义: "基于诊断比值的Fisher判别法鉴定海上溢油", 《海洋环境科学》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113495114A (zh) * 2020-04-02 2021-10-12 中国石油天然气股份有限公司 一种地下水中油品泄漏的指纹图谱溯源方法
CN113495114B (zh) * 2020-04-02 2024-03-26 中国石油天然气股份有限公司 一种地下水中油品泄漏的指纹图谱溯源方法
CN111999409A (zh) * 2020-08-28 2020-11-27 中国科学院烟台海岸带研究所 一种船舶重质燃料油和原油的指纹鉴别方法
CN114563518A (zh) * 2020-11-27 2022-05-31 中国石油天然气集团有限公司 地下水油品泄露溯源的方法
CN114563518B (zh) * 2020-11-27 2024-03-26 中国石油天然气集团有限公司 地下水油品泄露溯源的方法
CN113138181A (zh) * 2021-04-27 2021-07-20 江南大学 一种对清香型原酒品质分级的方法
CN113281308A (zh) * 2021-05-25 2021-08-20 中国石油大学(北京) 一种基于正构烷烃c22+/c21-比值定量鉴定烃源岩有机质来源的方法
CN113281308B (zh) * 2021-05-25 2022-04-12 中国石油大学(北京) 一种基于正构烷烃c22+/c21-比值定量鉴定烃源岩有机质来源的方法

Also Published As

Publication number Publication date
CN110907625B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
CN110907625B (zh) 基于多维化学指纹量化模型判别海上溢油种类的方法
CA2555359C (en) Fingerprinting of complex hydrocarbon containing mixtures
CN103913534B (zh) 一种天然气中系列烃类化合物碳同位素分析方法
Sun et al. An efficient classification method for fuel and crude oil types based on m/z 256 mass chromatography by COW-PCA-LDA
Al-Dahhan et al. Classification of crude oils and its fractions on the basis of paraffinic, naphthenic and aromatics
CN108169179A (zh) 一种确定正构烷烃评价烃源岩生源构成的有效条件的方法
Coutinho et al. Understanding the molecular composition of petroleum and its distillation cuts
Bouyssiere et al. Investigation of the sulfur speciation in petroleum products by capillary gas chromatography with ICP-collision cell-MS detection
CN110414169B (zh) 一种傅立叶红外气测录井方法及其装置
Flumignan et al. Screening Brazilian C gasoline quality: Application of the SIMCA chemometric method to gas chromatographic data
CN105973861B (zh) 基于油品荧光特性Fisher判别法判别海上溢油种类的方法
de Paulo et al. A study of adulteration in gasoline samples using flame emission spectroscopy and chemometrics tools
CA2281269A1 (en) A method and apparatus for predicting a distillation temperature range of a hydrocarbon-containing compound
Ferreiro-González et al. Characterization of petroleum-based products in water samples by HS-MS
CN107677741A (zh) 一种利用皮尔森积矩相关系数(ppmc)法进行助燃剂种类相似性判断的方法
Bell et al. Limits of identification using VUV spectroscopy applied to C8H18 isomers isolated by GC× GC
Tellez et al. Comparison of purge and trap GC/MS and spectrophotometry for monitoring petroleum hydrocarbon degradation in oilfield produced waters
CN110658267B (zh) 一种定量判识原油热裂解程度的方法及其应用
CN106092981B (zh) 荧光法快速量化鉴别海上溢油的燃料油和原油的方法
CN102980876B (zh) 一种鉴别海上风化原油与船用燃料油的多维化学指纹及方法
Fernández-Varela et al. Identification of fuel samples from the Prestige wreckage by pattern recognition methods
CN102221534A (zh) 一种快速识别发动机燃料种类的中红外光谱方法
CN112557576A (zh) 一种测定工业循环水中钙镁离子含量的方法
Kosman et al. The use of GC-AES multielement simulated distillation for petroleum product fingerprinting
CN110895708A (zh) 一种快速准确检测甲醇汽油中甲醇含量的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220222