CN110907420A - 一种不互溶液-液相间传质平衡时间的测量装置及利用其的测量方法 - Google Patents

一种不互溶液-液相间传质平衡时间的测量装置及利用其的测量方法 Download PDF

Info

Publication number
CN110907420A
CN110907420A CN201911225664.7A CN201911225664A CN110907420A CN 110907420 A CN110907420 A CN 110907420A CN 201911225664 A CN201911225664 A CN 201911225664A CN 110907420 A CN110907420 A CN 110907420A
Authority
CN
China
Prior art keywords
laser
camera
transparent
mass transfer
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911225664.7A
Other languages
English (en)
Other versions
CN110907420B (zh
Inventor
段晓霞
杜秀鑫
杨超
毛在砂
李媛媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Jiuzhang Chemical Tech Co Ltd
Institute of Process Engineering of CAS
Original Assignee
Nanjing Jiuzhang Chemical Tech Co Ltd
Institute of Process Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Jiuzhang Chemical Tech Co Ltd, Institute of Process Engineering of CAS filed Critical Nanjing Jiuzhang Chemical Tech Co Ltd
Priority to CN201911225664.7A priority Critical patent/CN110907420B/zh
Publication of CN110907420A publication Critical patent/CN110907420A/zh
Application granted granted Critical
Publication of CN110907420B publication Critical patent/CN110907420B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8405Application to two-phase or mixed materials, e.g. gas dissolved in liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8411Application to online plant, process monitoring

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种不互溶液‑液相间传质平衡时间的测量装置及利用其的测量方法。所述测量装置包括计算机、激光器、同步控制器、相机和透明反应装置。利用上述测量装置的测量方法,可以在同步控制器的协调控制下,实现激光器发射激光片光照射到透明反应装置上,诱导示踪剂发出荧光,相机实时记录所述荧光,并将记录数据实时传输至计算机中,通过计算机绘制的归一化灰度值变化曲线得到传质平衡时间。该测量方法采用非浸入式PLIF技术,不仅可以实时监测动态的相间传质过程,还可以实现激光、相机和计算机的同步控制,提高数据准确度,又具有测试成本低、测量过程操作简单、数据处理方便等优点。

Description

一种不互溶液-液相间传质平衡时间的测量装置及利用其的 测量方法
技术领域
本发明涉及流体流动测量领域,具体地说,涉及一种不互溶液-液相间传质平衡时间的测量装置及利用其的测量方法。
背景技术
目前,在石油、化工、能源、生物制药、冶金等领域,液-液两相搅拌槽作为反应器广泛应用于溶剂萃取、乳液/悬浮聚合、硝化处理、磺化处理等工业过程中。然而,设备结构、操作条件和物性参数等因素会直接或间接地影响搅拌槽内流体流动的动力学特性,复杂的动力学特性又会影响相互依赖的混合过程、传质过程以及化学反应进程。因此,开展液-液两相搅拌槽内传质和混合过程综合影响的研究,对于工业设计过程和反应放大过程具有重要的参考价值。
液-液两相搅拌槽内搅拌混合的主要目的在于促进不互溶液-液两相之间的良好接触,扩大界面面积,提高传质效率。搅拌中的宏观混合描述了物料在整个反应器内的循环、分散和混合过程,进一步促进了不互溶液-液两相体系之间动态相间传质过程的发展。对于相间传质过程,可用传质平衡时间和三维示踪剂灰度值分布彩图来表征传质过程。传质平衡时间是表征反应器内传质混合状况的一个重要参数,是评定传质效率快慢的一个重要指标,而三维示踪剂灰度值分布彩图则定性地从可视化的角度体现相间动态传质过程。
传质平衡时间指的是动态相间传质过程达到一定均匀程度时所需要的时间。传质平衡时间的测量是在反应器内加入示踪剂后,使用相机跟踪实时拍摄记录示踪剂的浓度信息随时间的变化。所加入的示踪剂可以是化学物质或者感光材料,示踪剂在整个反应器内分散,并在不互溶液-液两相之间进行动态传质。最终,当相间传质过程达到动态平衡后,示踪剂在反应器内呈现整体的均匀分布。
平面激光诱导荧光法(Planar Laser Induced Fluorescence,PLIF)可用于传质平衡时间的测量和动态传质过程的表征。相比其他测量方法,例如酸碱可视化法、电导率法、粒子图像测速技术等,PLIF技术是一种基于激光显示和图像处理的非侵入性方法,已被发展用于测量搅拌反应器中示踪剂的瞬时浓度变化。PLIF技术的测量原理是利用片状激光光源诱导荧光示踪剂发出荧光,进而可以获得高时空分辨率的示踪剂浓度分布。因为荧光强度与示踪剂浓度间存在线性关系,通过分析荧光强度对应的灰度值情况,可以间接获得反应器内示踪剂浓度值随时间变化的趋势,从而可以实现相间传质过程的可视化实时动态检测。
目前,现有技术公开了一些有关传质过程的研究方法。例如CN106018280A公开了一种同时测量速度场和浓度场的装置和方法,尤其适合于流体混合过程中的速度场和浓度场在线测量。所述测量方法通过在待测流体中同时加入示踪粒子和荧光试剂,利用分光装置和相机来同时形成激光照射的图像和由诱导荧光照射的图像,进而采用粒子图像测速方法来测量速度场,采用激光诱导荧光方法来测量浓度场。所述测量方法虽然表明了PLIF技术测定浓度变化的可行性,但是其实验装置含有多组平面反射镜,操作较复杂且安全性不高,而且没有考虑到激光、相机和计算机的同步控制,数据准确度不高。
CN103364377A公开了一种强电解质溶液中宏观混合时间的测量方法及应用。所述测量方法加入示踪剂后,应用带物理窗口的浸入式光纤探头监测流体内部示踪剂浓度随时间的变化,从而确定示踪剂在强电解质水溶液中的混合时间。所述测量方法虽然装置简单、测试成本低、数据处理方便,但是没有考虑到激光、相机和计算机的同步控制,数据准确度不高。而且,所述测量方法采用的示踪剂仅溶解于某一相中,仅能测量示踪剂溶解相的混合时间,无法测量不互溶液-液两相之间相互作用下的混合时间和传质平衡时间,适用范围有限。
CN101839859A公开了一种物料停留时间分布测试装置。所述测量装置包括激发光源、通光筒、半透半反镜、光学窗口、荧光探测器、信号处理单元等组件,通过对诱导荧光的收集和处理,计算出物料停留时间分布。所述测量装置不仅无法测量不互溶液-液两相之间相互作用下的混合时间和传质平衡时间,适用范围有限,还无法实现可视化的动态监测过程,数据准确度大大降低。
以上现有技术中的研究方法,虽然均采用了PLIF技术,但是均没有实现激光、相机和计算机的同步控制,导致数据准确度不高。又因为不互溶液-液相间传质过程要求示踪剂能够同时溶解于连续相和分散相之中,对示踪剂的要求更高,导致现有技术中的研究方法不能有效应用于不互溶液-液相间传质平衡时间的测量过程中。因此,目前亟需开发一种简单有效、准确度高的不互溶液-液相间传质平衡时间的测量方法。
发明内容
鉴于现有技术中存在的问题,本发明提出一种不互溶液-液相间传质平衡时间的测量装置及利用其的测量方法。所述测量装置包括计算机、激光器、同步控制器、相机和透明反应装置。利用上述测量装置的测量方法,可以在同步控制器的协调控制下,实现激光器发射激光片光照射到透明反应装置上,诱导示踪剂发出荧光,相机实时记录所述荧光,并将记录数据实时传输至计算机中,通过计算机绘制的归一化灰度值变化曲线得到传质平衡时间。该测量方法采用非浸入式PLIF技术,不仅可以实时监测动态的相间传质过程,还可以实现激光、相机和计算机的同步控制,提高数据准确度,又具有测试成本低、测量过程操作简单、数据处理方便等优点。
为达此目的,本发明采用以下技术方案:
本发明的目的之一在于提供一种不互溶液-液相间传质平衡时间的测量装置,所述测量装置包括计算机、激光器、同步控制器、相机、透明反应装置;
所述同步控制器通过传输光纤分别和计算机、激光器、相机连接,其中所述相机和计算机也通过传输光纤连接;
所述激光器发射的激光片光照射到透明反应装置上,且所述激光片光的平面垂直于所述透明反应装置中的液面;
所述相机的镜头正对透明反应装置,且所述镜头平面平行于激光片光的平面。
本发明所述不互溶液-液体系指的是静置足够时间仍可分层的液-液体系,包括部分互溶液-液体系和完全不互溶液-液体系。
本发明中所提供的测量装置,通过传输光纤不仅将相机和计算机连接,更将同步控制器分别和计算机、激光器、相机连接,实现了实时监测动态的相间传质过程处于同步控制状态,提高数据准确度。
作为本发明优选的技术方案,所述相机为CCD相机。
本发明中所提供的CCD相机指的是电荷耦合元件相机,其中CCD是Charge coupledDevice的英文简称。CCD相机能够将光线变为电荷并将电荷存储及转移,也可将存储的电荷取出使电压发生变化,实现光信号向数字信号的有效转化。此外,CCD相机还具有体积小、重量轻、不受磁场影响、抗震动等特性,因而被广泛应用。
优选地,所述相机的镜头前设置滤波片。
本发明中所提供的滤波片可以过滤掉环境光和其余波段激光的干扰,实现特定波长的示踪剂诱导荧光进入相机被监测的效果。
作为本发明优选的技术方案,所述透明反应装置包括透明圆形槽、透明方形槽和搅拌装置。
优选地,所述透明圆形槽设置于所述透明方形槽的内部,且两者的中心轴线平行。
作为本发明优选的技术方案,所述透明圆形槽的形状为平底圆柱形。
优选地,所述透明圆形槽的内径为80-120mm,例如80mm、90mm、100mm、110mm或120mm等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述透明圆形槽的高度为120-200mm,例如120mm、130mm、140mm、150mm、160mm、170mm、180mm、190mm或200mm等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述透明圆形槽的内部槽壁上等间距地设置2-8块竖直挡板,例如2块、3块、4块、5块、6块、7块或8块等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述竖直挡板的宽度为8-12mm,例如8mm、9mm、10mm、11mm或12mm等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述搅拌装置包括电机、搅拌轴、搅拌桨。
优选地,所述搅拌桨包括六叶圆盘涡轮桨、45°六叶上推桨和45°六叶下压桨中的任意一种或至少两种的组合。
本发明的目的之二在于提供一种利用目的之一所述测量装置的测量方法,所述测量方法包括如下步骤:
(a)将不互溶液-液体系加入透明反应装置中,然后注入示踪剂;
(b)在同步控制器的控制协调下,激光器发射的激光片光照射到步骤(a)所述透明反应装置上,并诱导所述示踪剂发出荧光,同时相机实时记录所述荧光,并将记录数据实时传输至计算机中;
(c)在步骤(b)所述计算机中,采用软件进行图像处理和灰度值分析,绘制归一化灰度值变化曲线并得到传质平衡时间。
本发明中所提供的测量方法采用平面激光诱导荧光法,即PLIF技术,来测量不互溶液-液相间传质平衡时间,基于示踪剂所激发出的荧光强度与示踪剂的浓度呈线性关系的理论基础,应用相关的设备和软件对传质过程中的实时图像进行跟踪检测和灰度值处理,进而可以得到归一化灰度值随时间的变化。当灰度值达到均匀平衡后,即可得到不互溶液-液体系在相应条件下的传质平衡时间。
作为本发明优选的技术方案,步骤(a)所述透明反应装置包括透明圆形槽和透明方形槽,并在两者之间加入去离子水;
优选地,所述去离子水的液面高于所述透明圆形槽内的液面。
本发明中所提供的透明反应装置将透明圆形槽设置于透明方形槽内部,并在两者之间加入去离子水,不仅可以减小透明圆形槽的曲面槽壁对激光片光和诱导荧光的折射、散射和漫射干扰,还可以减小光路上介质杂质的干扰,提高测量的准确性。
作为本发明优选的技术方案,对步骤(a)所述不互溶液-液体系进行搅拌预饱和处理,然后注入示踪剂。
优选地,所述搅拌预饱和处理的时间为40-60min,例如40min、42min、45min、47min、50min、53min、55min、58min或60min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本发明所述搅拌预饱和可以避免液滴界面对激光片光的干扰,还可以保证不互溶液-液两相体系达到了动态平衡状态,为测量传质平衡时间提供前提条件。
优选地,步骤(a)所述示踪剂的浓度为30-120μg/L,例如30μg/L、40μg/L、50μg/L、60μg/L、70μg/L、80μg/L、90μg/L、100μg/L、110μg/L或120μg/L等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本发明步骤(a)所述示踪剂采用不互溶液-液体系中的任意一相来稀释,可以避免示踪剂对不互溶液-液体系的干扰。
优选地,步骤(a)所述示踪剂为罗丹明B。
本发明所述示踪剂优选为罗丹明B,因为其可以同时溶解在连续相和分散相中,为测量不互溶液-液体系的相间传质过程提供了前提条件。此外,罗丹明B不仅可以迅速活化和衰减,还兼具化学稳定、发光效应良好、毒性小、成本低、无特殊工艺等优点,是一种理想型的示踪剂。
作为本发明优选的技术方案,步骤(b)所述激光器的激光强度为40-60%,例如40%、42%、45%、47%、50%、53%、55%、58%或60%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(b)所述相机为镜头前设置滤波片的CCD相机,且拍摄通道为Camlink。
作为本发明优选的技术方案,步骤(c)所述软件包括MicroVec-V3和MATLAB。
优选地,在步骤(c)所述归一化灰度值变化曲线中,当归一化灰度值与最后稳定的归一化平均灰度值相差±10%以内,即认为达到传质动态平衡,对应的时间为传质平衡时间。
作为本发明优选的技术方案,所述测量方法包括如下步骤:
(a’)将不互溶液-液体系加入透明反应装置中,进行40-60min的搅拌预饱和处理,然后注入浓度为30-120μg/L的示踪剂罗丹明B;
(b’)在同步控制器的控制协调下,激光器发射的激光片光照射到步骤(a)所述透明反应装置上,并诱导所述示踪剂发出荧光,同时相机实时记录所述荧光,并将记录数据实时传输至计算机中;
其中,所述激光器的激光强度为40-60%;
所述相机为镜头前设置滤波片的CCD相机,且拍摄通道为Camlink;
(c’)在步骤(b’)所述计算机中,采用软件MicroVec-V3和MATLAB进行图像处理和灰度值分析,然后绘制归一化灰度值变化曲线,当归一化灰度值与最后稳定的归一化平均灰度值相差±10%以内,即认为达到传质动态平衡,对应的时间为传质平衡时间。
与现有技术方案相比,本发明至少具有以下有益效果:
(1)本发明所提供的不互溶液-液相间传质平衡时间的测量装置,设置有同步控制器,可以实现激光、相机和计算机的同步控制,提高数据准确度;
(2)本发明所述测量装置采用带有“夹套”结构的双透明槽作为透明反应装置,不仅可以减小槽壁曲面对激光片光和诱导荧光的折射、散射和漫射干扰,还可以减小光路上介质杂质的干扰,提高测量的准确性;
(3)本发明所述测量方法采用非浸入式的激光显示和图像处理,不会改变反应器内流场结构,不会对传质平衡时间造成影响;
(4)本发明所述测量方法操作过程简单,数据处理高效,还可以实现相间传质过程的可视化实时动态检测;
(5)本发明所述测量装置结构简单,测试成本低。
附图说明
图1是本发明实施例1至4采用的不互溶液-液相间传质平衡时间的测量装置的示意图;
图2是本发明实施例1中45°六叶下压桨对应的归一化灰度值随时间变化曲线;
图3是本发明实施例2中分散相NaI水溶液的体积分数为40%对应的归一化灰度值随时间变化曲线;
图4是本发明实施例3中搅拌转速为350rpm对应的归一化灰度值随时间变化曲线;
图5是本发明实施例4中搅拌桨12的离底高度为10mm对应的归一化灰度值随时间变化曲线;
图中:1-计算机;2-激光器;3-同步控制器;4-相机;5-第一传输光纤;6-第二传输光纤;7-第三传输光纤;8-第四传输光纤;9-透明圆形槽;10-电机;11-搅拌轴;12-搅拌桨;13-透明方形槽;14-透明反应装置。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
本发明实施例1至4采用的不互溶液-液相间传质平衡时间的测量装置的示意图如图1所示:
测量装置包括计算机1、激光器2、同步控制器3、相机4、第一传输光纤5、第二传输光纤6、第三传输光纤7、第四传输光纤8、透明反应装置14;
同步控制器3通过第一传输光纤5与相机4连接;
同步控制器3通过第二传输光纤6与激光器2连接;
同步控制器3通过第三传输光纤7与计算机1连接;
相机4通过第四传输光纤8与计算机1连接;
透明反应装置14包括透明圆形槽9、电机10、搅拌轴11、搅拌桨12、透明方形槽13;其中,透明圆形槽9设置于透明方形槽13的内部,且两者的中心轴线重合;透明圆形槽9和透明方形槽13之间加入去离子水,且去离子水的液面高于透明圆形槽9内的液面;
激光器2发射的激光片光照射到透明反应装置14上,且激光片光的平面垂直于透明反应装置14中的液面;
相机4的镜头正对透明反应装置14,且镜头平面平行于激光片光的平面。
为便于理解本发明,本发明列举实施例如下。
实施例1
(a1)采用的透明反应装置14中,透明圆形槽9选择内径为100mm、高为160mm的平底圆柱形搅拌槽反应器,且内部槽壁上等间距地设置4块宽为10mm的竖直挡板;透明方形槽13选择长为160mm、宽为160mm、高为216mm的平底长方体形槽体;搅拌桨12选择六叶圆盘涡轮桨、45°六叶上推桨和45°六叶下压桨,且搅拌桨直径和离底高度均为40mm;
将不互溶液-液体系加入透明反应装置14中;其中,选择质量浓度为46.28%的NaI水溶液作为分散相,辛醇作为连续相,且NaI水溶液的体积分数为50%;透明圆形槽9内部的液面高度为100mm,外部去离子水的液面高度为150mm;
打开并调整计算机1、激光器2、同步控制器3和相机4至工作状态;其中,计算机1采用软件MicroVec-V3和MATLAB对图像进行处理和灰度值分析,并绘制归一化灰度值变化曲线;激光器2的激光强度设置为50%,以防造成眩目;相机4为镜头前设置滤波片的CCD相机,且拍摄通道为Camlink,调整相机4的光圈大小、位置以及镜头焦距,直至计算机1显示屏上的画面清晰;
打开电机10且调整搅拌转速为550rpm,进行50min的搅拌预饱和处理;
(b1)在步骤(a1)所述透明圆形槽9的两竖直挡板之间且靠近槽壁的液面下30mm处,瞬间注入1.5mL浓度为50μg/L的示踪剂罗丹明B;其中,示踪剂罗丹明B采用质量浓度为46.28%的NaI水溶液稀释;
(c1)在同步控制器3的控制协调下,激光器2发射的激光片光照射到透明反应装置14上,诱导步骤(b1)所述示踪剂罗丹明B发出荧光,相机4实时记录所述荧光,并将记录数据实时传输至计算机1中;
(d1)计算机1中的软件MicroVec-V3和MATLAB进行图像处理和灰度值分析,然后绘制归一化灰度值变化曲线,当归一化灰度值与最后稳定的归一化平均灰度值相差±10%以内,即认为达到传质动态平衡,对应的时间为传质平衡时间;
在搅拌桨12采用不同桨型的条件下,对某一操作条件重复6次实验,取平均值以消除随机实验误差,实验结果如表1所示,其中45°六叶下压桨对应的归一化灰度值随时间变化曲线如图2所示。
表1
Figure BDA0002302130000000111
实施例2
和实施例1相比,本实施例的区别在于:搅拌桨12固定为六叶圆盘涡轮桨;不互溶液-液体系中分散相NaI水溶液的体积分数分别为10%、20%、30%、40%;其他条件和实施例1完全相同。
在分散相NaI水溶液采用不同体积分数的条件下,对某一操作条件重复6次实验,取平均值以消除随机实验误差,实验结果如表2所示,其中分散相NaI水溶液的体积分数为40%对应的归一化灰度值随时间变化曲线如图3所示。
表2
分散相NaI水溶液的体积分数 10% 20% 30% 40%
传质平衡时间平均值/s 28 41 77 99
实施例3
和实施例1相比,本实施例的区别在于:搅拌桨12固定为六叶圆盘涡轮桨;搅拌转速分别为350rpm、450rpm、550rpm;其他条件和实施例1完全相同。
在改变搅拌转速的条件下,对某一操作条件重复6次实验,取平均值以消除随机实验误差,实验结果如表3所示,其中搅拌转速为350rpm对应的归一化灰度值随时间变化曲线如图4所示。
表3
搅拌转速 350rpm 450rpm 550rpm
本发明所测传质平衡时间/s 326 192 105
实施例4
和实施例1相比,本实施例的区别在于:搅拌桨12固定为六叶圆盘涡轮桨;搅拌桨12的离底高度分别为10mm、20mm、40mm;其他条件和实施例1完全相同。
在搅拌桨12采用不同离底高度的条件下,对某一操作条件重复6次实验,取平均值以消除随机实验误差,实验结果如表4所示,其中搅拌桨12的离底高度为10mm对应的归一化灰度值随时间变化曲线如图5所示。
表4
搅拌桨12的离底高度 10mm 20mm 40mm
本发明所测传质平衡时间/s 218 140 105
由上述实施例1至4可以得出如下结论:利用本发明所述测量装置对应的测量方法,采用非浸入式PLIF技术,不仅可以实时监测动态的相间传质过程,还可以实现激光、相机和计算机的同步控制,提高数据准确度,又具有测试成本低、测量过程操作简单、数据处理方便等优点。
申请人声明,本发明通过上述实施例来说明本发明的详细结构特征,但本发明并不局限于上述详细结构特征,即不意味着本发明必须依赖上述详细结构特征才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用部件的等效替换以及辅助部件的增加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (10)

1.一种不互溶液-液相间传质平衡时间的测量装置,其特征在于,所述测量装置包括计算机(1)、激光器(2)、同步控制器(3)、相机(4)、透明反应装置(14);
所述同步控制器(3)通过传输光纤分别和计算机(1)、激光器(2)、相机(4)连接,其中所述相机(4)和计算机(1)也通过传输光纤连接;
所述激光器(2)发射的激光片光照射到透明反应装置(14)上,且所述激光片光的平面垂直于所述透明反应装置(14)中的液面;
所述相机(4)的镜头正对透明反应装置(14),且所述镜头平面平行于激光片光的平面。
2.根据权利要求1所述的测量装置,其特征在于,所述相机(4)为CCD相机;
优选地,所述相机(4)的镜头前设置滤波片。
3.根据权利要求1或2所述的测量装置,其特征在于,所述透明反应装置(14)包括透明圆形槽(9)、透明方形槽(13)和搅拌装置;
优选地,所述透明圆形槽(9)设置于所述透明方形槽(13)的内部,且两者的中心轴线平行。
4.根据权利要求3所述的测量装置,其特征在于,所述透明圆形槽(9)的形状为平底圆柱形;
优选地,所述透明圆形槽(9)的内径为80-120mm;
优选地,所述透明圆形槽(9)的高度为120-200mm;
优选地,所述透明圆形槽(9)的内部槽壁上等间距地设置2-8块竖直挡板;
优选地,所述竖直挡板的宽度为8-12mm;
优选地,所述搅拌装置包括电机(10)、搅拌轴(11)、搅拌桨(12);
优选地,所述搅拌桨(12)包括六叶圆盘涡轮桨、45°六叶上推桨和45°六叶下压桨中的任意一种或至少两种的组合。
5.一种利用权利要求1至4任一项所述测量装置的测量方法,其特征在于,所述测量方法包括如下步骤:
(a)将不互溶液-液体系加入透明反应装置(14)中,然后注入示踪剂;
(b)在同步控制器(3)的控制协调下,激光器(2)发射的激光片光照射到步骤(a)所述透明反应装置(14)上,并诱导所述示踪剂发出荧光,同时相机(4)实时记录所述荧光,并将记录数据实时传输至计算机(1)中;
(c)在步骤(b)所述计算机(1)中,采用软件进行图像处理和灰度值分析,绘制归一化灰度值变化曲线并得到传质平衡时间。
6.根据权利要求5所述的测量方法,其特征在于,步骤(a)所述透明反应装置(14)包括透明圆形槽(9)和透明方形槽(13),并在两者之间加入去离子水;
优选地,所述去离子水的液面高于所述透明圆形槽(9)内的液面。
7.根据权利要求5或6所述的测量方法,其特征在于,对步骤(a)所述不互溶液-液体系进行搅拌预饱和处理,然后注入示踪剂;
优选地,所述搅拌预饱和处理的时间为40-60min;
优选地,步骤(a)所述示踪剂的浓度为30-120μg/L;
优选地,步骤(a)所述示踪剂为罗丹明B。
8.根据权利要求5至7任一项所述的测量方法,其特征在于,步骤(b)所述激光器(2)的激光强度为40-60%;
优选地,步骤(b)所述相机(4)为镜头前设置滤波片的CCD相机,且拍摄通道为Camlink。
9.根据权利要求5至8任一项所述的测量方法,其特征在于,步骤(c)所述软件包括MicroVec-V3和MATLAB;
优选地,在步骤(c)所述归一化灰度值变化曲线中,当归一化灰度值与最后稳定的归一化平均灰度值相差±10%以内,即认为达到传质动态平衡,对应的时间为传质平衡时间。
10.根据权利要求5至9任一项所述的测量方法,其特征在于,所述测量方法包括如下步骤:
(a’)将不互溶液-液体系加入透明反应装置(14)中,进行40-60min的搅拌预饱和处理,然后注入浓度为30-120μg/L的示踪剂罗丹明B;
(b’)在同步控制器(3)的控制协调下,激光器(2)发射的激光片光照射到步骤(a)所述透明反应装置(14)上,并诱导所述示踪剂发出荧光,同时相机(4)实时记录所述荧光,并将记录数据实时传输至计算机(1)中;
其中,所述激光器(2)的激光强度为40-60%;
所述相机(4)为镜头前设置滤波片的CCD相机,且拍摄通道为Camlink;
(c’)在步骤(b’)所述计算机(1)中,采用软件MicroVec-V3和MATLAB进行图像处理和灰度值分析,然后绘制归一化灰度值变化曲线,当归一化灰度值与最后稳定的归一化平均灰度值相差±10%以内,即认为达到传质动态平衡,对应的时间为传质平衡时间。
CN201911225664.7A 2019-12-04 2019-12-04 一种不互溶液-液相间传质平衡时间的测量装置及利用其的测量方法 Active CN110907420B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911225664.7A CN110907420B (zh) 2019-12-04 2019-12-04 一种不互溶液-液相间传质平衡时间的测量装置及利用其的测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911225664.7A CN110907420B (zh) 2019-12-04 2019-12-04 一种不互溶液-液相间传质平衡时间的测量装置及利用其的测量方法

Publications (2)

Publication Number Publication Date
CN110907420A true CN110907420A (zh) 2020-03-24
CN110907420B CN110907420B (zh) 2021-07-02

Family

ID=69822221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911225664.7A Active CN110907420B (zh) 2019-12-04 2019-12-04 一种不互溶液-液相间传质平衡时间的测量装置及利用其的测量方法

Country Status (1)

Country Link
CN (1) CN110907420B (zh)

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1669631A (zh) * 2005-01-31 2005-09-21 清华大学 一种液液快速混合反应器
US20070118134A1 (en) * 2005-10-17 2007-05-24 Jeffery Thramann Surgical Tools and method to facilitate spinal surgery
KR100822365B1 (ko) * 2006-12-27 2008-04-17 한국항공우주연구원 아세톤 평면 레이저 유도 형광 기법을 이용한 유동장 내의 유동체 농도 분포 측정 장치 및 그 방법
CN101625308A (zh) * 2009-07-22 2010-01-13 宜兴市晶科光学仪器有限公司 比色皿及制备方法
CN101791212A (zh) * 2009-12-31 2010-08-04 中国科学院长春光学精密机械与物理研究所 普适性液晶自适应像差校正视网膜成像系统
CN101932693A (zh) * 2007-10-08 2010-12-29 M2P-实验室有限责任公司 微型反应器
CN103063636A (zh) * 2012-12-28 2013-04-24 江苏大学 一种平面激光诱导荧光混药浓度场在线测量方法
CN202974846U (zh) * 2012-12-19 2013-06-05 王琼波 新型比色皿
CN103364377A (zh) * 2012-04-01 2013-10-23 中国科学院过程工程研究所 一种强电解质溶液中宏观混合时间的测量方法及应用
CN203299117U (zh) * 2013-07-01 2013-11-20 中粮生物化学(安徽)股份有限公司 一种近红外仪器的液体进样装置
CN103559709A (zh) * 2013-11-04 2014-02-05 北京航空航天大学 一种用于plif火焰前锋提取的条件型水平集方法
CN103760142A (zh) * 2014-01-14 2014-04-30 中国科学院工程热物理研究所 一种燃油喷嘴液滴空间分布光学测量方法及装置
CN105548100A (zh) * 2015-12-07 2016-05-04 哈尔滨工业大学 用于plif流场诊断示踪剂的产生、注入的装置及方法
CN106018280A (zh) * 2016-07-19 2016-10-12 江苏大学 一种同时测量速度场和浓度场的装置和方法
CN205879796U (zh) * 2016-08-09 2017-01-11 上海禾赛光电科技有限公司 基于plif技术的火焰检测装置
CN106501227A (zh) * 2016-10-25 2017-03-15 中国航空工业集团公司沈阳空气动力研究所 基于压力敏感涂料探针分子荧光寿命的测量方法
CN106770115A (zh) * 2016-12-26 2017-05-31 天津大学 管道内周向液膜特征光学畸变校正与测量方法
CN206270237U (zh) * 2016-12-08 2017-06-20 三峡大学 一种用于qpq技术基盐成分分析的多功能样品反应检测室
CN107015375A (zh) * 2017-04-27 2017-08-04 中国科学院长春光学精密机械与物理研究所 一种激光器偏振合束光路装调装置及方法
US20170322401A1 (en) * 2013-02-01 2017-11-09 Bio-Rad Laboratories, Inc. Detection system with one-piece optical element to concentrate and homogenize light
CN108037310A (zh) * 2017-11-21 2018-05-15 东南大学 一种用于显微粒子成像测速系统的图像采集装置及采集方法
CN108168471A (zh) * 2018-02-09 2018-06-15 中国科学院长春光学精密机械与物理研究所 偏振定标装置的安装平行度检测方法
CN108226120A (zh) * 2018-01-23 2018-06-29 哈尔滨工业大学 一种测量片状激光光束尺寸和能量分布的装置及方法
CN109142161A (zh) * 2018-10-23 2019-01-04 武汉工程大学 一种固体在液体中溶解度自动测定系统及测定方法
CN109297940A (zh) * 2018-09-06 2019-02-01 中国科学院沈阳自动化研究所 一种在微米尺度下激光离焦量自动调节装置及其调节方法

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1669631A (zh) * 2005-01-31 2005-09-21 清华大学 一种液液快速混合反应器
US20070118134A1 (en) * 2005-10-17 2007-05-24 Jeffery Thramann Surgical Tools and method to facilitate spinal surgery
KR100822365B1 (ko) * 2006-12-27 2008-04-17 한국항공우주연구원 아세톤 평면 레이저 유도 형광 기법을 이용한 유동장 내의 유동체 농도 분포 측정 장치 및 그 방법
CN101932693A (zh) * 2007-10-08 2010-12-29 M2P-实验室有限责任公司 微型反应器
CN101625308A (zh) * 2009-07-22 2010-01-13 宜兴市晶科光学仪器有限公司 比色皿及制备方法
CN101791212A (zh) * 2009-12-31 2010-08-04 中国科学院长春光学精密机械与物理研究所 普适性液晶自适应像差校正视网膜成像系统
CN103364377A (zh) * 2012-04-01 2013-10-23 中国科学院过程工程研究所 一种强电解质溶液中宏观混合时间的测量方法及应用
CN202974846U (zh) * 2012-12-19 2013-06-05 王琼波 新型比色皿
CN103063636A (zh) * 2012-12-28 2013-04-24 江苏大学 一种平面激光诱导荧光混药浓度场在线测量方法
US20170322401A1 (en) * 2013-02-01 2017-11-09 Bio-Rad Laboratories, Inc. Detection system with one-piece optical element to concentrate and homogenize light
CN203299117U (zh) * 2013-07-01 2013-11-20 中粮生物化学(安徽)股份有限公司 一种近红外仪器的液体进样装置
CN103559709A (zh) * 2013-11-04 2014-02-05 北京航空航天大学 一种用于plif火焰前锋提取的条件型水平集方法
CN103760142A (zh) * 2014-01-14 2014-04-30 中国科学院工程热物理研究所 一种燃油喷嘴液滴空间分布光学测量方法及装置
CN105548100A (zh) * 2015-12-07 2016-05-04 哈尔滨工业大学 用于plif流场诊断示踪剂的产生、注入的装置及方法
CN106018280A (zh) * 2016-07-19 2016-10-12 江苏大学 一种同时测量速度场和浓度场的装置和方法
CN205879796U (zh) * 2016-08-09 2017-01-11 上海禾赛光电科技有限公司 基于plif技术的火焰检测装置
CN106501227A (zh) * 2016-10-25 2017-03-15 中国航空工业集团公司沈阳空气动力研究所 基于压力敏感涂料探针分子荧光寿命的测量方法
CN206270237U (zh) * 2016-12-08 2017-06-20 三峡大学 一种用于qpq技术基盐成分分析的多功能样品反应检测室
CN106770115A (zh) * 2016-12-26 2017-05-31 天津大学 管道内周向液膜特征光学畸变校正与测量方法
CN107015375A (zh) * 2017-04-27 2017-08-04 中国科学院长春光学精密机械与物理研究所 一种激光器偏振合束光路装调装置及方法
CN108037310A (zh) * 2017-11-21 2018-05-15 东南大学 一种用于显微粒子成像测速系统的图像采集装置及采集方法
CN108226120A (zh) * 2018-01-23 2018-06-29 哈尔滨工业大学 一种测量片状激光光束尺寸和能量分布的装置及方法
CN108168471A (zh) * 2018-02-09 2018-06-15 中国科学院长春光学精密机械与物理研究所 偏振定标装置的安装平行度检测方法
CN109297940A (zh) * 2018-09-06 2019-02-01 中国科学院沈阳自动化研究所 一种在微米尺度下激光离焦量自动调节装置及其调节方法
CN109142161A (zh) * 2018-10-23 2019-01-04 武汉工程大学 一种固体在液体中溶解度自动测定系统及测定方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MORTON E GURTIN ET AL.: "Two-phase bindary fluids and immiscible fluids described by an order papameter", 《MATHEMATICAL MODELS AND METHODS IN APPLID SCIENCES》 *
YUCHAO ZHAO ET AL.,: "Liquid–Liquid Two-Phase Mass Transfer in the T-Junction Microchannels", 《AICHE JOURNAL》 *
王文坦 等: "激光诱导荧光技术在液体混合可视化研究中的应用", 《化工学报》 *
许前会: "《化学工程与工艺专业实验》", 30 June 2011, 东南大学出版社 *
赵超凡 等: "液液界面传质过程的激光干涉法研究", 《化学工程》 *

Also Published As

Publication number Publication date
CN110907420B (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
Chen et al. In vivo flow speed measurement of capillaries by photoacoustic correlation spectroscopy
Fonte et al. Flow imbalance and Reynolds number impact on mixing in Confined Impinging Jets
Braeckmans et al. Line FRAP with the confocal laser scanning microscope for diffusion measurements in small regions of 3-D samples
Chaigne et al. Light focusing and two-dimensional imaging through scattering media using the photoacoustic transmission matrix with an ultrasound array
Fan et al. Microfluidic channel integrated with a lattice lightsheet microscopic system for continuous cell imaging
Bouche et al. Mixing in a swarm of bubbles rising in a confined cell measured by mean of PLIF with two different dyes
Awel et al. Visualizing aerosol-particle injection for diffractive-imaging experiments
JPWO2017069260A1 (ja) 粒子分析装置
CN110907420B (zh) 一种不互溶液-液相间传质平衡时间的测量装置及利用其的测量方法
Cheng et al. Experimental study on the dispersed phase macro-mixing in an immiscible liquid–liquid stirred reactor
Choo et al. Wavelength-dependent differential interference contrast inversion of anisotropic gold nanoparticles
Hall et al. Mixing in unbaffled high-throughput experimentation reactors
Harvey et al. Optical coherence tomography velocimetry in controlled shear flow
Russo et al. Characterization of polymers by dynamic light scattering
CN209416867U (zh) 一种微颗粒的超快光谱研究装置
Rodgers et al. Comparison of a networks-of-zones fluid mixing model for a baffled stirred vessel with three-dimensional electrical resistance tomography
Xu Electrophoretic light scattering: Zeta potential measurement
Chen et al. Accelerated stimulated Raman projection tomography by sparse reconstruction from sparse-view data
Krikunov et al. Refraction of an astigmatic laser beam in a transition layer of a stratified liquid
CN103364377B (zh) 一种强电解质溶液中宏观混合时间的测量方法及应用
CN109374487B (zh) 一种微颗粒的超快光谱研究装置
JP2006528508A (ja) 管内で測定を実行する手段
Kling et al. Quantitative measurements of micro-and macromixing in a stirred vessel using planar laser-induced fluorescence
Mann et al. Resistance tomography imaging of stirred vessel mixing at plant scale
Ishida et al. Measurement of swirling flow in a blood chamber by laser Doppler imaging system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant