CN110904412A - 一种提高太赫兹器件散热及输出功率的方法 - Google Patents

一种提高太赫兹器件散热及输出功率的方法 Download PDF

Info

Publication number
CN110904412A
CN110904412A CN201911291389.9A CN201911291389A CN110904412A CN 110904412 A CN110904412 A CN 110904412A CN 201911291389 A CN201911291389 A CN 201911291389A CN 110904412 A CN110904412 A CN 110904412A
Authority
CN
China
Prior art keywords
terahertz
deposition
laser
output power
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911291389.9A
Other languages
English (en)
Other versions
CN110904412B (zh
Inventor
王雪敏
湛治强
蒋涛
彭丽萍
樊龙
肖婷婷
阎大伟
李恪宇
舒琳
张泽涵
罗佳文
吴卫东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laser Fusion Research Center China Academy of Engineering Physics
Original Assignee
Laser Fusion Research Center China Academy of Engineering Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laser Fusion Research Center China Academy of Engineering Physics filed Critical Laser Fusion Research Center China Academy of Engineering Physics
Priority to CN201911291389.9A priority Critical patent/CN110904412B/zh
Publication of CN110904412A publication Critical patent/CN110904412A/zh
Application granted granted Critical
Publication of CN110904412B publication Critical patent/CN110904412B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Semiconductor Lasers (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种提高太赫兹器件散热及输出功率的方法,包括:在太赫兹器件表面沉积导热薄膜;所述太赫兹器件为太赫兹量子级联激光器。所述导热薄膜为氮化铝薄膜;所述沉积采用的方法为脉冲激光沉积法所述脉冲激光沉积法的过程为:将太赫兹量子级联激光器装入脉冲激光沉积设备中,采用AlN陶瓷靶进行沉积;设置沉积参数:抽真空,激光能量200mJ,频率2Hz,靶基距10cm,所述氮化铝薄膜的厚度为0.8~1.2μm。本发明采用在太赫兹器件表面沉积导热薄膜,更优选为氮化铝薄膜,该氮化铝薄膜覆盖太赫兹量子级联激光器的输出功率得到明显提高,表明通过制备氮化铝薄膜覆盖太赫兹量子级联激光器可以提高器件的散热,从而达到提高器件输出功率的目的。

Description

一种提高太赫兹器件散热及输出功率的方法
技术领域
本发明涉及半导体光电器件应用技术领域,具体涉及一种提高太赫兹器 件散热及输出功率的方法。
背景技术
太赫兹(THz)波是指频率从300GHz-10THz,频率介于毫米波与红外光之 间的电磁波。由于其自身的特点,太赫兹波在高速通信、成像、频谱分析和 遥感等方面,具有广阔的应用前景。作为THz频段重要辐射源的太赫兹量子 级联激光器(Terahertz QuantumCascade Laser,THz QCL)得到了广泛而深入的 研究,并取得了重要的进展。THzQCL具有能量转换效率高、响应速度快、 体积小、易集成以及使用寿命长等特点。其中,太赫兹光谱学、通信、成像 等系统中需要具有良好的温度特性、能够连续状态工作的THz QCL。通常THzQCL工作在高偏压和电流下,大部分输入电功率最终转换成了焦耳热。不能 从器件中及时散出的焦耳热会积累在器件中,最终导致有源区温度升高。而 有源区温度升高会使上能级到下能级的非辐射光学声子散增加,破坏粒子数 反转,抑制器件激射,降低辐射效率。另外,在较高温度下,载流子分布在 更宽广的能级范围内,也会抑制器件激射。当THz QCL处于连续或高占空比 脉冲的工作状态下,热量产生会更多,散热问题更加严重。
发明内容
本发明的一个目的是解决至少上述问题和/或缺陷,并提供至少后面将说 明的优点。
为了实现根据本发明的这些目的和其它优点,提供了一种提高太赫兹器 件散热及输出功率的方法,包括:在太赫兹器件表面沉积导热薄膜。
优选的是,所述太赫兹器件为太赫兹量子级联激光器。
优选的是,所述导热薄膜为氮化铝薄膜。
优选的是,所述沉积采用的方法为脉冲激光沉积法。
优选的是,所述脉冲激光沉积法的过程为:将太赫兹量子级联激光器的 出光面用胶遮盖,然后装入脉冲激光沉积设备中,采用AlN陶瓷靶进行沉积, 设置固定频率的脉冲激光,用脉冲激光轰击AlN陶瓷靶一定时间;设置沉积 参数:抽真空,真空度5×10-5Pa,激光能量200mJ,频率2Hz,靶基距10cm, 沉积发数144000,分三次沉积,沉积温度为室温,其中,沉积发数为脉冲激 光轰击靶材的次数,且在沉积过程中使器件进行旋转以保证沉积薄膜的均匀 性。
优选的是,所述氮化铝薄膜的厚度为0.8~1.2μm。
本发明至少包括以下有益效果:本发明采用在太赫兹器件表面沉积导热 薄膜,更优选为氮化铝薄膜,该氮化铝薄膜覆盖太赫兹量子级联激光器的输 出功率得到明显提高,表明通过制备氮化铝薄膜覆盖太赫兹量子级联激光器 可以提高器件的散热,从而达到提高器件输出功率的目的。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将 通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明:
图1为本发明THz QCL激光器镀AlN前后的脉冲输出功率对比曲线;
图2为本发明THz QCL激光器镀AlN后的不同位置的光学显微镜图;
图3为本发明THz QCL激光器镀AlN前的实物照片;
图4为本发明THz QCL激光器镀AlN后的实物照片;
图5为独角仙腿的生物全息成像。
具体实施方式:
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照 说明书文字能够据以实施。
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不配出一 个或多个其它元件或其组合的存在或添加。
实施例1:
一种提高太赫兹器件散热及输出功率的方法,包括:在太赫兹量子级联 激光器表面沉积氮化铝薄膜;
所述脉冲激光沉积法的过程为:将太赫兹量子级联激光器的出光面用胶 遮盖,然后装入脉冲激光沉积设备中,采用AlN陶瓷靶进行沉积,设置固定 频率的脉冲激光,用脉冲激光轰击AlN陶瓷靶一定时间;设置沉积参数:抽 真空,真空度5×10-5Pa,激光能量200mJ,频率2Hz,靶基距10cm,沉积发 数144000,分三次沉积,沉积温度为室温,其中,沉积发数为脉冲激光轰击 靶材的次数,且在沉积过程中使器件进行旋转以保证沉积薄膜的均匀性;沉积氮化铝薄膜的厚度为1μm;沉积薄膜后将出光面的胶去除;沉积时间与沉 积发数的关系为:沉积发数/2Hz=时间(s)。
图2为太赫兹量子级联激光器上制备的氮化铝AlN薄膜的光学显微镜 图;其中(a)、(b)、(c)和(d)代表不同区域的光学显微镜图;图2(a)和(b)为在 Au电极上沉积的AlN薄膜的光学显微镜图;图2(c)和(d)为在量子级联激光 器上沉积的AlN薄膜图;可以看到,量子级联激光器上沉积的AlN薄膜表面 覆盖性非常好,且致密性也很好;图2中看到裸露出来的部分是由于沉积薄 膜时导线对AlN薄膜有影响;但这并不影响整体AlN薄膜对器件导热性的作 用;并且从裸露出来部分也可以观察到沉积AlN薄膜的厚度也是足够的;图 3为未沉积AlN薄膜的THz QCL激光器的实物图;图4为沉积了AlN薄膜 的THz QCL激光器的实物图;从图3和4中可以看出,沉积了AlN薄膜的 器件颜色发生明显改变;且由于AlN薄膜具有良好的导热特性,对器件在工 作时的散热也具有增强的作用。
将该镀氮化铝的太赫兹量子级联激光器和未镀氮化铝的太赫兹量子级联 激光器的输出功率进行了测量;将镀氮化铝的太赫兹量子级联激光器或未镀 氮化铝的太赫兹量子级联激光器安装在闭循环低温系统中杜瓦的冷指上,经 真空抽取和系统降温小于10K,测试低温电阻R=1.4KΩ;调节激光器电源(DEI PCX-7420)的输出,使激光器所产生的脉冲THz辐射经winston光锥(美国 IR lab公司F2.0型)汇聚后穿过PE窗片,由OPHIR 3A-P-THz功率探测器(频 率范围0.3THz-10THz,功率量程0W-3W,噪声水平5μW,接收面元直径大 于30mm)收集,并通过与功率探测器匹配的OPHIR II功率计数显表头给出 实际测得太赫兹波脉冲输出功率。测试结果如表1所示和图1所示。
表1
表1未镀和镀氮化铝的THz QCL激光器脉冲输出功率
Figure BDA0002319180330000041
从表1和图1的对比结果可以看出,制备AlN薄膜覆盖THz QCL器件 的输出功率得到明显提高,特别是小于50K的工作温度下输出功率提升13%。 表明通过制备AlN薄膜覆盖THz QCL器件可以提高器件的散热,从而达到 提高器件输出功率的目的。
将本发明的镀AlN膜THz QCL器件应用于移动式QCL-THz全息成像仪 的全息成像实验,为该仪器提供了脉冲输出功率更高的THz光源;图5所示 为基于该器件,采用移动式QCL-THz全息成像仪,获得的独角仙腿全息成像。
对比例1:
太赫兹量子级联激光器的出光面未用胶遮盖,其与工艺参数与实施例1 相同;
将该THz QCL激光器的输出功率进行了测量,测试结果发现,该器件 的输出功率降低,进一步原因分析发现,THz QCL激光器的腔面(出光面) 镀上了AlN薄膜,从而导致输出功率的衰减而降低。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方 式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领 域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范 围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图 例。

Claims (6)

1.一种提高太赫兹器件散热及输出功率的方法,其特征在于,包括:在太赫兹器件表面沉积导热薄膜。
2.如权利要求1所述的提高太赫兹器件散热及输出功率的方法,其特征在于,所述太赫兹器件为太赫兹量子级联激光器。
3.如权利要求1所述的提高太赫兹器件散热及输出功率的方法,其特征在于,所述导热薄膜为氮化铝薄膜。
4.如权利要求2所述的提高太赫兹器件散热及输出功率的方法,其特征在于,所述沉积采用的方法为脉冲激光沉积法。
5.如权利要求4所述的提高太赫兹器件散热及输出功率的方法,其特征在于,所述脉冲激光沉积法的过程为:将太赫兹量子级联激光器的出光面用胶遮盖,然后装入脉冲激光沉积设备中,采用AlN陶瓷靶进行沉积,设置固定频率的脉冲激光,用脉冲激光轰击AlN陶瓷靶一定时间;设置沉积参数:抽真空,真空度5×10-5Pa,激光能量200mJ,频率2Hz,靶基距10cm,沉积发数144000,分三次沉积,沉积温度为室温,其中,沉积发数为脉冲激光轰击靶材的次数,且在沉积过程中使器件进行旋转以保证沉积薄膜的均匀性。
6.如权利要求3所述的提高太赫兹器件散热及输出功率的方法,其特征在于,所述氮化铝薄膜的厚度为0.8~1.2μm。
CN201911291389.9A 2019-12-16 2019-12-16 一种提高太赫兹器件散热及输出功率的方法 Active CN110904412B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911291389.9A CN110904412B (zh) 2019-12-16 2019-12-16 一种提高太赫兹器件散热及输出功率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911291389.9A CN110904412B (zh) 2019-12-16 2019-12-16 一种提高太赫兹器件散热及输出功率的方法

Publications (2)

Publication Number Publication Date
CN110904412A true CN110904412A (zh) 2020-03-24
CN110904412B CN110904412B (zh) 2021-11-30

Family

ID=69825775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911291389.9A Active CN110904412B (zh) 2019-12-16 2019-12-16 一种提高太赫兹器件散热及输出功率的方法

Country Status (1)

Country Link
CN (1) CN110904412B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283796A (ja) * 1992-03-31 1993-10-29 Sony Corp 面発光型半導体レーザ
CN102945898A (zh) * 2012-11-23 2013-02-27 广州市众拓光电科技有限公司 生长在金属Ag衬底上的AlN薄膜及其制备方法、应用
CN103915758A (zh) * 2014-03-26 2014-07-09 中国科学院上海微系统与信息技术研究所 一种多模干涉结构太赫兹量子级联激光器及制作方法
JP2014207399A (ja) * 2013-04-16 2014-10-30 独立行政法人情報通信研究機構 テラヘルツ帯光素子導波路
CN104538844A (zh) * 2015-01-27 2015-04-22 中国科学院上海微系统与信息技术研究所 太赫兹量子级联激光器器件结构及其制作方法
CN105655866A (zh) * 2016-02-01 2016-06-08 中国科学院半导体研究所 一种太赫兹半导体激光器及其制造方法
CN106328774A (zh) * 2016-08-29 2017-01-11 华南理工大学 一种GaN薄膜的外延生长方法及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283796A (ja) * 1992-03-31 1993-10-29 Sony Corp 面発光型半導体レーザ
CN102945898A (zh) * 2012-11-23 2013-02-27 广州市众拓光电科技有限公司 生长在金属Ag衬底上的AlN薄膜及其制备方法、应用
JP2014207399A (ja) * 2013-04-16 2014-10-30 独立行政法人情報通信研究機構 テラヘルツ帯光素子導波路
CN103915758A (zh) * 2014-03-26 2014-07-09 中国科学院上海微系统与信息技术研究所 一种多模干涉结构太赫兹量子级联激光器及制作方法
CN104538844A (zh) * 2015-01-27 2015-04-22 中国科学院上海微系统与信息技术研究所 太赫兹量子级联激光器器件结构及其制作方法
CN105655866A (zh) * 2016-02-01 2016-06-08 中国科学院半导体研究所 一种太赫兹半导体激光器及其制造方法
CN106328774A (zh) * 2016-08-29 2017-01-11 华南理工大学 一种GaN薄膜的外延生长方法及应用

Also Published As

Publication number Publication date
CN110904412B (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
Siebert et al. Continuous-wave all-optoelectronic terahertz imaging
Cai et al. Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection
US20170294629A1 (en) Light emission from electrically biased graphene
US20110127431A1 (en) PHOTOCONDUCTOR DEVICE HAVING POLYCRYSTALLINE GaAs THIN FILM AND METHOD OF MANUFACTURING THE SAME
JP3001261B2 (ja) 材料のマイクロウエーブ処理装置及び方法
CN110904412B (zh) 一种提高太赫兹器件散热及输出功率的方法
Bazarov et al. Thermal emittance and response time measurements of a GaN photocathode
Kazantsev et al. Experimental Comparison of Parameters of Loop Antennas with and Without Laser Control
Saji et al. Optical emission spectroscopic studies on laser ablated zinc oxide plasma
Nazarenus et al. Posttreatment of powder aerosol deposited oxide ceramic films by high power LED
JP6590420B2 (ja) 窒素化合物の製造方法及び製造装置
Kimura et al. Crystallization and activation of silicon by microwave rapid annealing
Shanmugan et al. Thermal transient analysis of LED using carbon doped AlN film deposited on metal substrate as heat sink
Subramani et al. CVD processed ZnO thin film as solid thermal interface material in electronic devices: thermal and optical performance of LED
US11255731B2 (en) Infrared detector and infrared imager
CN106868461A (zh) 一种射频板条co2激光器电极表面镀膜方法
Miyazaki et al. Carbon heating tube used for rapid heating system for semiconductor annealing
Maqbool Luminescence from thulium and samarium doped amorphous AlN thin films deposited by RF magnetron sputtering and the effect of thermal activation on luminescence
Lin et al. An Ultra-wideband Elliptical Bowtie Antenna With Depressed Bias for THz Vacuum Photomixers
CN205900774U (zh) 一种收发一体的太赫兹天线和太赫兹测量系统
CN112014359B (zh) 一种铟砷锑组分确定方法及装置
Chek et al. Study of high efficiency, low noise sputtered magnetron's cathode using GaN and SiC semiconductors for modulated microwave power transmission
US3403352A (en) Laser having efficient coupling between a phosphor pump source and the laser medium
Irimajiri et al. Measurements of Receiver Noise Temperature of an Ni-NbN HEBM at 2 THz
Antipov et al. Improved bandwidth of a 2 THz hot-electron bolometer heterodyne mixer fabricated on sapphire with a GaN buffer layer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant