CN110891507B - 用于在鼻炎的治疗中定位血管的系统和方法 - Google Patents
用于在鼻炎的治疗中定位血管的系统和方法 Download PDFInfo
- Publication number
- CN110891507B CN110891507B CN201880043774.9A CN201880043774A CN110891507B CN 110891507 B CN110891507 B CN 110891507B CN 201880043774 A CN201880043774 A CN 201880043774A CN 110891507 B CN110891507 B CN 110891507B
- Authority
- CN
- China
- Prior art keywords
- probe
- ultrasound
- ultrasound transducer
- tissue
- treatment site
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/06—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating caused by chemical reaction, e.g. moxaburners
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/76—Manipulators having means for providing feel, e.g. force or tactile feedback
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/06—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
- A61B8/0833—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
- A61B8/085—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/08—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
- A61B18/082—Probes or electrodes therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00026—Conductivity or impedance, e.g. of tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00084—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00106—Sensing or detecting at the treatment site ultrasonic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
- A61B2018/0022—Balloons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00297—Means for providing haptic feedback
- A61B2018/00303—Means for providing haptic feedback active, e.g. with a motor creating vibrations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00321—Head or parts thereof
- A61B2018/00327—Ear, nose or throat
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00642—Sensing and controlling the application of energy with feedback, i.e. closed loop control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/0088—Vibration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00904—Automatic detection of target tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
- A61B2018/0212—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
- A61B2018/0231—Characteristics of handpieces or probes
- A61B2018/0262—Characteristics of handpieces or probes using a circulating cryogenic fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2051—Electromagnetic tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2063—Acoustic tracking systems, e.g. using ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/061—Measuring instruments not otherwise provided for for measuring dimensions, e.g. length
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/064—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/378—Surgical systems with images on a monitor during operation using ultrasound
- A61B2090/3782—Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument
- A61B2090/3784—Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument both receiver and transmitter being in the instrument or receiver being also transmitter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
- A61B8/0858—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
- A61B8/4461—Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
- A61B8/4466—Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe involving deflection of the probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4477—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device using several separate ultrasound transducers or probes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/46—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
- A61B8/461—Displaying means of special interest
- A61B8/463—Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Radiology & Medical Imaging (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Otolaryngology (AREA)
- Robotics (AREA)
- Plasma & Fusion (AREA)
- Vascular Medicine (AREA)
- Hematology (AREA)
- Cardiology (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Surgical Instruments (AREA)
- Gynecology & Obstetrics (AREA)
Abstract
本文公开用于治疗和监测诸如鼻炎的病症的设备和方法。该技术利用超声扫描以识别目标治疗位点,并监测经受治疗的患者的治疗。治疗可以是鼻神经(例如用于治疗诸如鼻炎的鼻病症的PNN)的消融治疗。超声扫描用超声探针或组合的超声和消融探针在鼻腔内进行,并且可使用多普勒、A模式、B模式、M模式或其他超声和非超声方式来检测和监测目标治疗位点。
Description
相关申请的交叉引用
本申请要求2017年4月28日提交的美国临时申请序列号62/492,074的权益,其全部内容出于所有目的整体援引加入本文。本申请涉及2017年8月31日提交的美国申请序列号15/693,216;2017年10月17日提交的美国申请序列号15/786,306;2017年8月22日提交的美国申请序列号15/682,804;2017年2月13日提交的美国申请序列号15/431,740和2017年6月15日提交的美国申请序列号15/624,632,其中的每一个均转让给与本申请相同的受让人,且出于所有目的整体援引加入本文。
发明领域
本发明涉及用于识别和监测用于消融组织区域的治疗位点的系统、装置和方法。更具体地,本发明涉及定位鼻腔中的用以消融的治疗位点用于治疗诸如鼻炎的鼻病症,同时抑制或减少任何侧副血管损伤(例如,动脉出血)。
发明背景
鼻炎被定义为衬着鼻部的膜的炎症,其特征在于鼻部症状,包括瘙痒、打喷嚏、前鼻滴流(鼻漏)、鼻后滴流(鼻后滴漏)和/或鼻塞。慢性鼻炎影响美国的数千万人,并且是患者寻求医疗的主要原因。医学治疗已经被证明对慢性鼻炎患者具有有限的效果,并且需要每日用药或麻烦的过敏反应治疗,并且高达20%的患者可能是难治性的。
选择性地中断患有慢性鼻炎的患者的鼻后神经(PNN)可改善它们的症状,同时避免与翼管神经切除术相关的发病。具体地,选择性中断PNN中断了对鼻粘膜的躯体传入神经支配,并且可以降低鼻粘膜的超敏反应和轴突反射。虽然PNN的消融是比先前的用于治疗鼻炎的手术方法具有更少的并发症和副作用的微创手术,但是如果在消融期间大血管被损坏,则可能存在并发症。
如图1和2所示,PNN通常沿着蝶腭动脉(SPA)。在一些患者解剖结构中,SPA可能与PNN位于同一位置。因此,在PNN的消融期间,可能发生对SPA的无意附带损伤,这可能导致对患者的过度出血或其它伤害。在一些情况下,过度的鼻出血可能需要后续外科治疗或干预以修复受损的SPA。因此,需要解决这些治疗挑战中的一些的改进的系统、装置和方法。
发明概述
本技术涉及使用超声来识别目标治疗位点并监测经受鼻神经(例如,PNN)的消融治疗的患者的治疗的系统、装置和方法,用于治疗诸如鼻炎的鼻病症。这样的系统、装置和方法提供PNN的消融,同时抑制和/或减少无意的侧副血管损伤(例如,SPA或与其相关的分支的出血)。本技术还可用于治疗鼻瓣膜塌陷。本技术还可用于治疗鼻后滴漏和其它相关病症,如美国专利9,801,752中所公开的,其出于所有目的整体援引加入本文。本技术还可用于神经调节和其它相关治疗,如美国公开申请2016/0331459A1中所公开的,其出于所有目的整体援引加入本文。
实施方案包括用于治疗患者的鼻炎的方法,包括将外科探针前进到患者的鼻腔中。外科探针可包括具有近端和远端的细长探针轴、联接到近端的手柄、联接到探针轴的超声换能器和联接到探针轴的冷冻消融元件。该方法还可包括用超声换能器确定鼻腔内目标治疗位点的位置,将冷冻消融元件定位在目标治疗位点位置处;和冷冻消融目标治疗位点,以便消融至少一个鼻神经以减少至少一种鼻炎症状。
在实施方案中,该方法还可包括确定目标治疗位点的位置,其包括用超声换能器检测鼻腔中的粘膜组织的相对厚度以识别与目标治疗位点的位置相关的解剖标志。
在实施方案中,该方法还可包括通过用超声换能器检测鼻腔中的腭骨或蝶骨的相对厚度以识别与目标治疗位点的位置相关的解剖标志来确定目标治疗位点的位置。
在实施方案中,该方法还可包括通过用超声换能器检测鼻腔中的两个骨之间的或鼻腔中的骨和软骨之间的相对边界或过渡(transition)以识别与目标治疗位点的位置相关的解剖标志来确定目标治疗位点的位置。该过渡可包括与用于识别腭骨的垂直项(claim)的1-3mm的骨相邻的0.5-1mm的软骨。
在实施方案中,该方法还可包括使用外科探针,该外科探针还包括联接到探针轴的第二超声换能器。超声换能器可相对于探针轴的远端和冷冻消融元件的远侧联接到探针轴。第二超声换能器可相对于探针轴的近端和冷冻消融元件的近侧联接到探针轴。确定目标治疗位点的位置可包括用超声换能器和第二超声换能器两者来检测组织性质。
在实施方案中,该方法还可包括用超声换能器和第二超声换能器来检测组织性质,以通过识别相对粘膜组织厚度来确定目标治疗位点的位置,该相对粘膜组织厚度指示冷冻消融元件被定位在接近目标治疗位点的位置。
在实施方案中,该方法还可包括用超声换能器和第二超声换能器来检测组织性质,以通过识别相对骨厚度来确定目标治疗位点的位置,该相对骨厚度指示冷冻消融元件被定位在接近目标治疗位点的位置。相对骨厚度可指示超声换能器检测到蝶骨,并且第二超声换能器检测到腭骨。
在实施方案中,该方法还可包括冷冻消融元件和超声换能器以相对于彼此的预定距离联接到探针轴的外科探针。预定距离可对应于用超声换能器可检测的解剖特征和至少一个鼻神经之间的距离。确定目标治疗位点的位置可包括用超声换能器定位解剖特征。冷冻消融目标治疗位点可包括在超声换能器检测到指示超声换能器接近解剖特征的信号时消融至少一个鼻神经。
在实施方案中,该方法还可包括解剖特征是血管。
在实施方案中,该方法还可包括通过用超声换能器检测鼻腔中的中鼻甲来确定外科探针正前进通过中鼻道而将外科探针前进到鼻腔中。
在实施方案中,该方法还可包括,探针轴包括被构造为便于超声换能器相对于冷冻消融元件的铰接的铰接接头的外科探针。用超声换能器确定目标治疗位点的位置可包括将超声换能器与铰接接头铰接,以扫描鼻腔内的组织区域。
在实施方案中,该方法还可包括具有联接到探针轴的发光元件的外科探针。当目标治疗位点的位置被确定时,发光元件可在鼻腔内发出视觉指示。
在实施方案中,该方法还可包括具有联接到手柄的触觉反馈元件的外科探针。当目标治疗位点的位置被确定时,触觉反馈元件可以发出触觉指示。
在实施方案中,该方法还可包括包括可扩张结构的冷冻消融元件。进一步地,冷冻消融目标治疗位点可包括通过可扩张结构内的低温流体的蒸发来将可扩张结构膨胀。
在实施方案中,该方法还可包括用联接到探针轴的超声换能器或第二超声换能器监测在冷冻消融目标治疗位点时形成的冰球的尺寸。超声换能器或第二超声换能器可以相对于探针轴的纵向轴线的角度发射超声束,以便横穿(intersect)鼻腔中形成冰球处的组织。
在实施方案中,该方法还可包括当冰球的尺寸达到预定尺寸范围时终止冷冻消融。
在实施方案中,该方法还可包括可滑动地联接到探针轴的冷冻消融元件。在实施方案中,在确定目标治疗位点的位置之后,将冷冻消融元件通过沿着轴朝向外科探针轴的远端滑动到目标治疗位点来将冷冻消融元件前进到鼻腔中。
实施方案还包括通过将外科探针前进到患者的鼻腔中来治疗鼻炎的方法。外科探针可包括具有近端和远端的细长探针轴、联接到近端的手柄和联接在探针轴的远端的超声换能器。该方法可包括用超声换能器检测鼻腔内的解剖特征以便确定目标治疗位点的位置,在超声换能器定位在接近所检测的解剖特征时将可滑动地联接到探针轴的冷冻消融元件朝向远端前进到所确定的目标治疗位点位置;和在超声换能器定位在接近所检测的解剖特征时冷冻消融目标治疗位点,以便消融至少一个鼻神经以减少至少一种鼻炎症状。
在实施方案中,该方法还可包括解剖特征是血管,并且通过检测血管中的血流来检测解剖特征的位置。
在实施方案中,该方法还可包括血管是蝶腭动脉或静脉。
在实施方案中,该方法还可包括冷冻消融元件,并且其中冷冻消融目标治疗位点包括通过可扩张结构内的低温流体的蒸发来将可扩张结构膨胀。
在实施方案中,该方法还可包括具有内腔的可扩张结构,并且其中将冷冻消融元件前进包括经内腔滑动探针轴。
在实施方案中,该方法还可包括所检测的解剖特征和目标治疗位点位置之间的距离对应于蝶腭动脉或静脉和至少一个鼻神经之间的距离。
实施方案包括基于用超声测量的组织特征来评估患者的鼻腔内的治疗操作的方法。该方法包括用鼻腔的第一超声扫描来评估治疗前组织特征,在鼻腔内进行治疗操作,用鼻腔的第二超声扫描来评估治疗后组织特征,和评估治疗前组织特征和治疗后组织特征之间的变化以评估治疗操作的有效性。
在实施方案中,该方法还可包括,进行治疗操作包括冷冻消融至少一个鼻神经以减少至少一种鼻炎症状。治疗前组织特征和治疗后特征可以是粘膜组织厚度、水肿或体液(fluid)含量。
在实施方案中,该方法还可包括通过考虑(accounting for)由超声换能器施加到鼻腔壁的接触力或超声束的入射角来评估治疗前组织特征和治疗后组织特征之间的变化。
在实施方案中,该方法还可包括,第一和第二超声扫描包括粘膜组织的回声反射性测量、弹性成像测量或弹性测量。
在实施方案中,该方法还可包括响应于治疗前组织特征和治疗后组织特征之间的变化的评估来再次治疗鼻腔。
在实施方案中,该方法还可包括,进行治疗操作包括机械、化学、电或热治疗鼻腔。
实施方案包括用于治疗患者的鼻炎的外科探针,该外科探针包括具有近端和远端的细长探针轴、联接到近端的手柄、联接到探针轴的超声换能器和联接到探针轴的冷冻消融元件。超声换能器可被构造为确定患者的鼻腔内的目标治疗位点的位置。冷冻消融元件可被构造为定位在目标治疗位点位置处以冷冻消融目标治疗位点,以便消融至少一个鼻神经以减少至少一种鼻炎症状。
在实施方案中,外科探针还可包括被构造为检测鼻腔中的粘膜组织的相对厚度以识别与目标治疗位点的位置相关的解剖标志的超声换能器。
在实施方案中,外科探针还可包括被构造为通过检测鼻腔中的腭骨或蝶骨的相对厚度以识别与目标治疗位点的位置相关的解剖标志来确定目标治疗位点的位置的超声换能器。
在实施方案中,外科探针还可包括被构造为通过检测鼻腔中的两个骨之间的或鼻腔中的骨和软骨之间的相对边界或过渡以识别与目标治疗位点的位置相关的解剖标志来确定目标治疗位点的位置的超声换能器。该过渡可包括与用于识别腭骨的垂直项的1-3mm的骨相邻的0.5-1mm的软骨。
在实施方案中,外科探针还可包括联接到探针轴的第二超声换能器,其中超声换能器相对于探针轴的远端和冷冻消融元件的远侧联接到探针轴,并且其中第二超声换能器相对于探针轴的近端和冷冻消融元件的近侧联接到探针轴,并且其中超声换能器和第二超声换能器被构造为通过用两者检测组织性质来确定目标治疗位点的位置。
在实施方案中,外科探针还可包括被构造为检测组织性质以通过识别相对粘膜组织厚度来确定目标治疗位点的位置的超声换能器和第二超声换能器,该相对粘膜组织厚度指示冷冻消融元件被定位在接近目标治疗位点的位置。
在实施方案中,外科探针还可包括被构造为检测组织性质以通过识别相对骨厚度来确定目标治疗位点的位置的超声换能器和第二超声换能器,该相对骨厚度指示冷冻消融元件被定位在接近目标治疗位点的位置。相对骨厚度可指示超声换能器检测到蝶骨,并且第二超声换能器检测到腭骨。
在实施方案中,外科探针还可包括以相对于彼此的预定距离联接到探针轴的冷冻消融元件和超声换能器。预定距离可对应于用超声换能器可检测的解剖特征和至少一个鼻神经之间的距离。超声换能器可被构造为通过定位解剖特征来确定目标治疗位点的位置。冷冻消融元件可被构造为在超声换能器检测到指示超声换能器接近解剖特征的信号时,通过消融至少一个鼻神经来冷冻消融目标治疗位点。解剖特征可以是血管。
在实施方案中,外科探针还可包括被构造为通过检测鼻腔中的中鼻甲来确定外科探针正前进通过中鼻道的超声换能器。
在实施方案中,外科探针还可包括包括被构造为便于超声换能器相对于冷冻消融元件的铰接的铰接接头的探针轴,并且其中超声换能器被构造为通过将超声换能器与铰接接头铰接以扫描鼻腔内的组织区域来确定目标治疗位点的位置。
在实施方案中,外科探针还可包括联接到探针轴的发光元件。发光元件可被构造为当目标治疗位点的位置被确定时在鼻腔内发出视觉指示。
在实施方案中,外科探针还可包括触觉反馈元件,该触觉反馈元件联接到手柄并且被构造为当目标治疗位点的位置被确定时发出触觉指示。
在实施方案中,外科探针还可包括包括可扩张结构的冷冻消融元件。可扩张结构被构造为通过可扩张结构内的低温流体的蒸发而膨胀,以冷冻消融目标治疗。
在实施方案中,外科探针还可包括被构造为监测在冷冻消融目标治疗位点时形成的冰球的尺寸的超声换能器。超声换能器可以被构造为以相对于探针轴的纵向轴线的角度发射超声束,以便横穿鼻腔中形成冰球处的组织。
在实施方案中,外科探针还可包括被构造为当冰球的尺寸达到预定尺寸范围时终止冷冻消融的冷冻消融元件。
在实施方案中,外科探针还可包括可滑动地联接到探针轴的冷冻消融元件。冷冻消融元件可被构造为在用超声换能器确定目标治疗位点的位置之后将冷冻消融元件通过沿着轴朝向外科探针轴的远端滑动到目标治疗位点而前进到鼻腔中。
实施方案可包括用于治疗患者的鼻炎的外科探针,该外科探针包括具有近端和远端的细长探针轴、联接到近端的手柄、联接在探针轴的远端的超声换能器和可滑动地联接到探针轴的冷冻消融元件。超声换能器可被构造为检测鼻腔内的解剖特征以便确定目标治疗位点的位置。冷冻消融元件可被构造为在超声换能器定位在接近所检测的解剖特征时朝向远端前进到所确定的目标治疗位点位置,并且在超声换能器定位在接近所检测的解剖特征时冷冻消融目标治疗位点,以便消融至少一个鼻神经以减少至少一种鼻炎症状。解剖特征可以是血管,并且超声换能器可被构造为通过检测血管中的血流来检测解剖特征的位置。血管可以是蝶腭动脉或静脉。
在实施方案中,外科探针还可包括包括可扩张结构的冷冻消融元件。冷冻消融元件可被构造为通过可扩张结构内的低温流体的蒸发将可扩张结构膨胀来冷冻消融目标治疗位点。可扩张结构可具有内腔。冷冻消融元件可被构造为通过经内腔滑动探针轴而前进。
在实施方案中,外科探针还可被构造为使得所检测的解剖特征和目标治疗位点位置之间的距离对应于蝶腭动脉或静脉和至少一个鼻神经之间的距离。
附图简述
将仅通过实例并参考附图来描述本发明的更多细节、方面和实施方案。在附图中,类似的参考编号用于标识类似或功能相似的元件。附图中的元件是为了简单和清楚而示出,并且不一定按比例绘制。
图1示出鼻管中的神经的解剖结构。
图2示出鼻管中的血管的解剖结构。
图3-5示出检测多普勒信号的图示。
图6示出A模式扫描,y轴表示反射信号强度,x轴表示信号发射与信号检测时间之间的时间。
图7A示出A模式和B模式扫描,其示出背部/脊柱中的组织界面和它们相关的超声回声。
图7B示出A模式扫描,其示出眼中的组织界面和它们相关的超声回声。
图8示出超声探针的实施方案。
图9A-C示出超声探针的实施方案。
图10A-B示出使用超声和多普勒信号来定位SPA的方法。
图11A示出具有多个超声单元的超声探针的实施方案。
图11B-C示出使用图11A的探针来定位SPA。
图12A-F示出使用图11A的探针来定位SPA。
图13A和13B示出具有可滑动超声换能器的超声探针的实施方案。
图14示出具有视觉指示器的超声探针的实施方案。
图15A和15B示出具有多个视觉指示器的超声探针的实施方案。
图16A和16B示出提供超声信号强度的视觉指示的实施方案。
图17A-D示出集成探针的实施方案。
图18示出集成探针的实施方案。
图19A-C示出集成探针的实施方案。
图20-22示出集成探针的实施方案。
图23A-D示出在超声换能器和冷冻消融元件之间具有固定距离的集成探针的实施方案。
图24A-B示出用于检测骨厚度的集成探针的实施方案。
图25A-C示出集成探针的实施方案。
图26A-D示出具有可滑动联接的冷冻消融元件的集成探针的实施方案。
图27A-C示出用于监测冰球形成的集成探针的实施方案。
图28A和28B示出安装在单轴接头上的超声换能器以便于与组织表面的垂直对准。
图28C和28D示出安装在球接头上的超声换能器以便于与组织表面的垂直对准。
图29示出自对准超声换能器。
图30示出具有声学耦合球囊的组合的消融和感测探针的实施方案。
图31A-C示出利用鼻甲来引导消融探针在组织区域中的放置的实施方案。
图32A-C示出使用机械传感器来引导定位的实施方案。
图33A、33B、33C和34-36示出光学感测系统的实施方案。
发明详述
在以下描述中,会描述本技术的各种实施方案。出于解释的目的,阐述了具体的构造和细节以提供对实施方案的透彻理解。然而,对于本领域技术人员还会显而易见的是,可以在没有这些具体细节的情况下实践本技术。此外,为了不使所描述的实施方案模糊,可以省略或简化公知的特征。
在实施方案中,超声换能器可用于检测指示血管的存在的多普勒信号。例如,在实施方案中,可定位蝶腭动脉(SPA)。此外,在实施方案中,可定位其他血管,例如,SPA或筛前动脉的分支。所定位的血管可用于确定目标消融位点以治疗可基于血管的位置定位的神经,并且还可使用血管的位置以避免对所定位的血管的损伤。例如,在实施方案中,可定位SPA,并且SPA的位置可用来确定用于治疗PNN同时避免消融和损伤SPA的目标消融位点。在实施方案中,所定位的血管然后可用于确定可选择性地损伤SPA或其它血管的目标消融位点。
图3和图4示出使用被传送通过含有运动粒子的流体的多个脉冲的方法,并且示出脉冲的检测到的反射为时移的回声。时移方法是一种机制,通过该机制可使用超声和其他成像方式来估计组织运动和/或速度。其它机制包括频移分析和相移估计器。如本文所使用的,术语“测量多普勒频移”、“测量多普勒信号”或类似的语言是指使用任何这些所述方法或相关方法用于估计组织运动。
图5示出换能器和血管的布置,并且提供可用于确定血流速度的方程。所示方程基于声波,例如超声,然而也可以用其它形式的能量例如可见光、IR或其它声波或电磁波来观察多普勒频移以检测血流。这些形式的能量可从发射器发射,然后反射信号可由接收器接收并用于检测组织中具有血流的身体区域。可以采用类似的方法来确定其它类型的组织运动或移动。能量被发射和接收的感测区域可以是小的,并且通过将用于检测多普勒频移的传感器在较大组织区域周围穿过,如会在下面更详细地讨论的,可确定包括血流并因此是血管的特定组织区域。
在实施方案中,超声探针还可用于使用与血流无关的脉管系统的其他特性来检测SPA的位置,所述其他特征包括与周围组织相比通过血管壁和腔内空间的超声反射和速度变化。
在实施方案中,如下面更详细地讨论的,血管(例如,SPA)可使用超声探针来定位。然后,所确定的位置可用于通知操作者以确定目标治疗位点。然后可以进行在目标治疗位点处的消融治疗以提供对鼻炎症状的治疗,同时避免可能需要修复的对SPA及其分支的损伤水平。如会在下文更详细地讨论的,在实施方案中,系统可包括超声探针和消融探针,例如,如U.S.14/503,060中公开的消融探针,其援引加入本文。
除了通过检测多普勒频移使用超声信号来检测血流之外,还可使用超声信号来检测解剖特征,诸如包括骨和粘膜厚度的组织厚度,以及不同类型或不同厚度的组织之间的过渡。该检测可例如使用A模式或B模式超声来进行。解剖特征的检测可用于确定用于消融的目标治疗位点的位置。例如,骨性隆起的位置和变化的粘膜厚度的区域可对应于鼻腔中的目标神经的位置。识别解剖特征可用于确定目标治疗位点的位置以消融目标神经。
A模式(振幅模式)超声是其中超声脉冲被发射到组织中并且信号的反射分量随时间被测量的模式。组织声阻抗是组织硬度和该组织中的声速的函数。传播的超声波在具有不同声阻抗的组织之间的界面处被反射,信号反射的程度随着差异的增加而增加。小的差异产生小的回声,并且大的差异产生较大的回声。
超声信号发射和反射信号的检测之间的时间是组织中的声速和信号被反射处的深度的函数。在A模式扫描期间,其经一段时间记录来自传送的超声脉冲的接收的回声的振幅,从较深组织反射的信号会晚于更浅地反射的信号出现在记录中。下表显示不同常见组织中的声速。
为了将回声延迟(超声脉冲的传送与对应回声的检测之间流逝的时间)转换为深度,可使用平均声速。在软组织中,声速通常被认为是恒定的并且认为值为1540m/s。
深度(m)=平均声速(m/s)*1/2*延迟(s)
在上述关系中,因子(1/2)是由于回声延迟由超声脉冲的往返行进时间(即,超声波到达反射表面的深度所花费的时间加上该波从该反射点行进回到换能器所花费的时间)构成的事实。
组织类型 | 声速(m/s) |
皮肤 | 1600 |
脂肪 | 1400 |
肌肉 | 1600 |
骨 | 3500 |
表1.常见组织中的声速
下表显示在不同组织之间的边界处反射的入射信号的百分比。
表2:超声在边界处的百分比反射:来自Aldrich:Crit Care Med,Volume 35(5)Suppl.May 2007.S131-S137
图6和7A-B示出A模式扫描的实例。在图6中,y轴表示反射信号强度,x轴表示信号发射与信号检测时间之间的时间。在图6中,尖峰A和B表示明显不同的声阻抗的组织之间的界面。尖峰A表示比尖峰B更浅的界面,并且其中组织之间的声阻抗的差异大于尖峰B。可通过将组织中的平均声速乘以信号发射和相关反射的检测之间的延迟的1/2来估计由尖峰A和B表示的组织界面的深度。
在实施方案中,可使用A模式扫描来确定粘膜组织的深度、骨的深度、鼻腔中的骨的厚度和不同组织厚度和密度之间的过渡。在实施方案中,与具有明显不同声阻抗的组织的界面相对应的A模式轨迹上的可检测尖峰可用于估计粘膜组织的浅和深的边界。根据这些估计,可以进行厚度测量。例如,在实施方案中,可检测到对应于耦合球囊和浅粘膜壁的界面的大A模式尖峰,并且可产生对应于深粘膜组织和骨组织的界面的第二大A模式尖峰。使用时间延迟和估计的超声传播速度计算的这些尖峰之间的距离允许计算粘膜组织的厚度。在实施方案中,可不直接测量粘膜组织厚度,并且可替代地识别骨性标志。在识别骨性标志的实施方案中,A模式超声可用于通过确定哪里存在骨性标志(包括骨厚度变化的区域)来定位治疗区域。
图7A示出实例A模式和B模式扫描,其示出背部/脊柱中的组织界面和它们相关的超声回声。图7B示出A模式扫描,其示出眼中的组织界面和他们相关的超声回声。鼻腔内的A模式和B模式扫描会显示由于各种组织类型的界面引起的类似尖峰。
在实施方案中,超声技术诸如A模式和B模式扫描可用于定位骨性标志,诸如孔,并且更具体地蝶腭孔。蝶腭孔是骨中的开口,SPA和鼻后神经行进穿过该开口。例如,如上所述,A模式信号可用于显示围绕孔的腭骨和蝶骨的厚度和/或反射振幅测量,并且当超声束瞄准孔时可显示不同的信号特性。例如,可以有与孔相关联的减小的声阴影和/或反射。
在实施方案中,超声可用于检测软骨和骨之间的差异。软骨和粘膜组织之间的阻抗差异小于骨和粘膜组织之间的阻抗差异,并且来自下层软骨区域的回声的A模式测量导致比在下层骨区域中的测量更低的振幅信号。信号振幅的这些差异可用于在区域之间区分或定位区域之间的过渡。
在实施方案中,可在治疗之前使用A模式超声来测量粘膜组织厚度。这些测量可用于指导操作者施用减充血药。组织厚度信息也可在治疗之前使用以确定治疗剂量,包括消融构件目标温度和治疗持续时间,并且在多周期治疗模型中,确定周期次数或治疗时间。例如,与较薄的粘膜组织相比,较厚的粘膜组织可能需要更长的治疗时间、更低的温度和/或更多的治疗周期。可使用组织厚度和组织穿透率来制定治疗时间。
超声测量可在治疗期间使用以检测与冷冻相关联的组织性质的变化,或者可在治疗后使用以评估由于消融治疗而产生的任何组织变化。例如,在治疗期间和治疗后,超声信号可检测组织声阻抗的变化(如由目标区域的回声反射性的变化所指示的)。
可在治疗之前在治疗位点处进行超声测量,以测量要治疗的组织的基线特征。这些特征可包括组织厚度、回声反射性、弹性、局部血流、或所测量的运动程度或类型(生理的或其它方面)。
在实施方案中,增益补偿可用于补偿会存在于由较深组织区域产生的回声中的超声信号强度的已知损失。当超声波传播穿过组织时,由于散射和吸收两者,其强度随着深度而呈指数减小。这种强度损失与所使用的超声频率成比例,并且取决于所询问的组织的性质。衰减系数通常以dB/cm/MHz为单位来具体说明,其中dB指的是分贝。在软组织中,衰减系数通常为0.5至1.0的范围,但其在血液中较低(~0.2)并且在骨中高得多(~10+)。可通过估计在关注深度上预期的信号强度损失并在数学上调整所测量的信号来进行增益补偿以进行补偿。在实施方案中,这可有助于组织界面的比较,例如通过允许几乎相同的组织界面来产生类似的A模式振幅,即使这些界面出现在与换能器有明显差异的深度处。
使用与以上所述的那些类似的技术,A模式超声可用于测量骨厚度、区分软骨和骨或区分不同厚度的骨。A模式超声也可用于识别软骨和骨之间或不同厚度的骨之间的过渡。
蝶腭动脉和鼻后神经通过其进入鼻腔的蝶腭孔在腭骨和厚得多的蝶骨的交汇处,高于上颌窦的后囱。A模式超声可检测在接近这些骨和囟的区域中的粘膜厚度的差异,其中相比蝶骨粘膜组织更厚地覆盖在腭骨上。还可通过检查各位置中的粘膜厚度并搜索过渡来确定这些骨和软骨之间的界面。在实施方案中,可使用两个或更多个换能器的阵列并且比较所测量的粘膜厚度来定位过渡,如会在下面更详细地讨论。在实施方案中,通过将一个或多个换能器横跨关注区域机械地扫描、在该区域内的点处进行多个粘膜厚度测量并且当厚度变化超过对应于过渡的预定阈值时(实时地或回顾性地)向操作者指示来定位过渡。例如,该指示器可以是LED,如会在下面更详细地讨论的,其在测量的粘膜厚度改变以指示换能器已经从在蝶骨上方移动到在腭骨上方时(或反之亦然)进行照明。在实施方案中,还可以使用超声扫描来近似估计由SPF在下方分支的神经和通过腭骨而神经支配的神经的路径。腭骨的垂直板向前与非常薄的蛋壳软骨相接并连接,该非常薄的蛋壳软骨是上颌窦的内侧壁。该区域中的软骨小于.8mm厚,腭骨是~2mm厚。使用超声,可检测该过渡并向用户提供他们已经到达鼻后神经的目标区域的反馈。A模式或B模式超声测量可用于检测腭骨和蝶骨的厚度或以其他方式识别这两个骨之间的过渡。在实施方案中,超声可用于检测由薄的腭骨和厚的蝶骨反射的信号的振幅的差异。更多的能量可穿过腭骨,导致更低的振幅反射。相反地,蝶骨可反射更多信号,从而导致检测更大振幅的回声。
在实施方案中,传播超过骨界面的超声能量的量可用于识别鼻腔中的两个骨之间的过渡。例如,与腭骨相比,蝶骨相对较厚,并且与较薄的腭骨相比,会导致超声束的经由吸收、散射和/或反射的增加的衰减,并且导致增加的声阴影(即较深区域中的非常低的回声强度)。如通过在超过骨界面的深度处检测的A模式信号强度(由A模式轨迹中的尖峰指示)所测量的声阴影的相对程度可用于指示换能器是否瞄准薄或厚的骨结构,例如腭骨或蝶骨。通过将换能器询问区横跨关注区域扫描或通过使用超声换能器阵列,如会在下文中更详细地讨论的,可识别这两个骨之间的过渡。
从超声换能器发射的超声束的轴线相对于组织表面的角度可影响超声厚度和多普勒流量两者的测量。为了在A模式超声扫描期间提供准确的组织厚度测量,需要换能器面与组织表面垂直。测量误差随偏离垂直90°角的角度增加而按正比增加。多普勒频率fd与运动粒子的速度V和其运动方向和超声能量轴之间的角度θ两者相关。该关系描述在以下方程中:
1.1.1.f_d=(2*f_t*V*cosθ)/c
1.1.2.其中:
1.1.2.1.ft是超声信号的频率
1.1.2.2.c是组织中的声速
当角度θ接近90°时,因子cosθ接近零。当多普勒换能器与血流方向垂直时,信号减小并且流动可能变得不可检测。由于该原因,保持换能器相对于组织表面的方向是重要的。由于蝶腭动脉穿过蝶腭孔,血管几乎90°笔直向下转向以穿过鼻腔的壁。在该过渡中,血管和血流的方向变化。通过检测与该过渡相关联的信号的变化,用户能够定位蝶腭孔并使用该标志来指导治疗布置。例如,当换能器沿着血管朝向该孔移动时,由换能器测量的多普勒信号可以从有意义的信号变为可忽略的信号,这表明对于换能器束角血管可能变得更加垂直。这可用作孔在附近的指示,从而提供解剖标志,该解剖标志可以允许探针在预期的消融区域中的更快速和/或准确的放置。
以上讨论的超声扫描(包括多普勒、A模式、B模式和M模式)可使用包括一个或多个超声单元(也称为超声换能器)的各种装置来进行,每个超声换能器包括用于产生信号的超声发射器和超声接收器,该信号被处理单元处理以生成多普勒、A模式、B模式和M模式的扫描信号。在实施方案中,单个部件充当超声发射器和接收器。如上所述,这些信号可用于确定鼻腔中的脉管系统的位置、鼻腔中的神经支配、鼻腔中的组织和骨厚度、骨性标志和不同密度的组织之间的边界。
在实施方案中,超声探针800可包括轴802和联接到轴的远端806的超声换能器804,例如如图8所示。轴802可为直的或可在远端806和联接到手柄810的近端808之间具有一个或多个弯曲部807。轴中的弯曲部可被构造为满足鼻腔内的骨结构,以便于插入到鼻腔中和超声换能器和组织表面之间的接触。弯曲部可以在轴的远端和近端之间形成范围为30°-90°的角度。轴的远侧部分端可以在5mm和20mm之间。
在实施方案中,超声换能器相对于轴的远侧尖端的纵向轴线的角度可以基于探针旨在利用的超声的形式。例如,因为血流方向与能量传送轴线之间的入射角可影响检测的多普勒信号的大小,所以超声换能器安装到探针的远端的角度可使得换能器的传送路径与远侧臂的轴线对准。或者,可安装换能器使得换能器探针的轴线相对于臂的轴线成某个非平行角度。换能器探针轴线相对于远侧臂的方向可以是固定的。在实施方案中,超声换能器的扫描位置可在使用期间通过改变轴的远端相对于轴的近端的角度或通过改变整个设备在鼻腔内的位置来移动。在实施方案中,换能器探针轴线相对于臂的方向可以是可变的。在实施方案中,超声单元的扫描位置可独立于改变远侧臂和轴之间的角度或移动整个设备而改变。
在实施方案中,联接到超声换能器的臂的远侧部分与臂的近侧部分之间的角度可以变化。例如,如图9A-C所示,外科探针900的轴902可包括在轴的近端906与包括超声换能器910的轴的远端908之间的铰接接头904。虽然超声探针的远侧部分908定位在可能进行消融的鼻腔的一般区域内,但铰接接头904可用于使位于远侧尖端处的超声换能器910穿过鼻腔的粘膜表面。在鼻腔中的各个点处,或连续地在超声换能器在鼻腔内穿过时,处理单元指示超声发射器发射输出信号并进一步接收来自超声接收器的检测的信号。超声输出信号穿过组织并且可依据组织的超声特性而被内部组织结构吸收、透射或反射。被反射的超声能量被接收为检测的信号,并且可用于识别解剖特征,如以上所讨论。
在实施方案中,血管的尺寸可通过用超声信号扫描鼻腔表面并估计检测到阈值多普勒信号的距离来测量。在实施方案中,血管的尺寸可通过物理地移动包含固定位置超声换能器的设备(例如如图8所示),或者相对于设备的其余部分移动具有超声换能器的设备部分(如图9A-C所示)来测量。此外,在实施方案中,操纵的超声束(例如用相控阵)可用于扫描扫描区域。在实施方案中,在不同深度使用脉冲多普勒技术来估计血管在平行于波束传送轴线的方向上的厚度。
处理单元可具有对应于目标血管(例如,SPA)中的典型血流的预定多普勒信号阈值集,以便确定是否检测到的血流是来自关注的血管。壁滤波器和其他处理可以被实施以将血流与低速杂波信号分离,这改善了当划分血管边界时处理单元的性能。
在实施方案中,超声探针可沿着预期定位SPA的表面穿过。例如,如图10A所示,超声探针1000可从第一位置1001穿到第二位置1002,在该实例中,该第一位置和第二位置在SPA 1003的任一侧上。当这种扫描发生时,多普勒信号在第一位置和第二位置之间的位置处具有峰值振幅,如图10B所示。当处理单元检测到如图10B所示的峰时,可执行音频或视觉或触感/触觉指示形式的警报,以通知操作者血管(例如SPA)被定位。在实施方案中,一旦多普勒信号超过对应于与被搜索的血流的预期血流相关联的阈值的先前设定的阈值,就立即提供警报。在实施方案中,从第一位置到第二位置的完全扫描发生,来自完整扫描的峰被识别,并且当超声探针将其路径重新追踪回朝向第一位置时提供警报。
在实施方案中,类似于图10A中所示的那些的扫描方法可用构造为以A模式或B模式操作的换能器来进行,并且可用于检测软组织或骨的最大厚度、最小厚度或过渡厚度,以便识别用于消融的治疗位点。
在实施方案中,超声探针可包括在超声探针的不同部分处附接的多于一个超声发射器和/或多于一个超声接收器。在多个超声换能器的实施方案中,对应于探针的不同位置的多个超声信号可由处理单元处理以确定解剖特征(诸如SPA或孔)相对于探针上的多个位置的位置。超声换能器可以被布置成使得在它们之间存在固定距离。超声换能器可以按线性方式布置,例如如图11A所示。如所示的,探针1100包括三个超声换能器1102,包括在探针的远端处的横杆1104上排成一行的左1102-1、中1102-2和右1102-3。横杆1104垂直于探针的轴1106的纵向轴线。在实施方案中,左右超声换能器的角度位置是固定的,并且移动被限于改变换能器相对于中心换能器的接近度的位置偏移。在实施方案中,换能器的声照射角可以伴随或不伴随总体位置变化而改变。在实施方案中,超声换能器可布置成矩形阵列或圆形阵列。在实施方案中,可使用包括任何数量的超声换能器的其他空间构造,例如,在探针轴的远端面向相反方向的呈圆形模式的四个换能器,和具有沿着探针轴的纵向轴线排成一行的五个换能器的构造,其中每个换能器面向相同的方向。超声换能器的阵列具有允许同时扫描更大区域以及提供解剖特征相对于探针的不同部分的更准确定位的优点。
在包括多普勒扫描的实施方案中,当将多超声换能器探针放置在血管附近时,仅发射入射到血流的信号的超声换能器会检测多普勒频移信号,而阵列中的其他超声换能器不会检测。因此,可基于在单个时间点期间或在扫描期间检测或没有检测多普勒频移来确定血管的位置和/或方向。例如,如图11B所示,探针1100可放置在SPA1108所位于的一般区域的鼻腔中。可将探针1100穿过直到超声换能器1102中的一个或多个检测到指示与SPA1108相关联的血流的多普勒频移为止。例如,如图11B所示,仅左超声换能器1102-1通过SPA 1108入射到血流。因此,如图11C所示,仅左超声换能器检测到有意义的多普勒信号,而中和右换能器没有检测到。
在扫描期间检测多普勒信号的换能器的模式可用于估计血管的位置、血管的方向或估计血管尺寸。检测血管(诸如SPA)相对于多个传感器的位置有利于允许解剖标志的更精确和更快定位。多个传感器可同时询问更宽范围的组织,并因此还允许超声探针的更小穿过以使用多普勒、A模式或B模式扫描来确定解剖特征的位置。例如,如图12A-12F所示,探针1100的横杆可在鼻腔内穿过,并且处理单元可经一段时间分析来自每个换能器的多普勒信号,以便确定每个换能器的峰信号并确定SPA 1108的位置。
在实施方案中,超声单元可定位在从探针的主轴分出的可独立操纵的臂上。在实施方案中,阵列中的超声换能器1302可沿着探针1300的横杆1304移动,如图13A和13B所示。如所示,左1302-1和右1302-3换能器位于探针1300的横杆1304部分内的凹陷轨道中。左1302-1和右1302-3超声换能器单元的位置可串联地或独立地改变,并且中心换能器1302-2可在固定位置处联接到横杆1304。在实施方案中,使用位于探针的近侧手柄端处的按钮、开关、滑块和/或拨盘来改变换能器的位置。
在实施方案中,外科探针可包括视觉指示器,该视觉指示器指示关于由超声换能器检测的解剖特征的位置的信息。例如,视觉指示器可提供用于调整用于定位SPA的探针的方向的反馈。视觉指示可用LCD(或其他类型的显示屏)、单个LED或两个或更多个LED的阵列来显示。关于位置的信息可通过不同强度、不同颜色、或开/关模式(即闪烁模式)和/或多个LED的颜色来相关。在实施方案中,LED可以是多色LED,并且处理单元控制LED以基于对应于不同的检测的厚度或距离的超声的预定阈值来显示不同的颜色。
在实施方案中,例如如图14所示,超声探针1400可包括在远侧尖端接近超声换能器1404处的LED 1402。在探针1400在SPA 1406附近穿过时,例如如关于图10A所公开的,当超声换能器检测到由SPA中的血流产生的多普勒频移时,LED 1402提供指示。在实施方案中,LED可以以不同的速率或模式闪烁以指示超声信号的强度以定位解剖特征。在探针上包括LED的实施方案中,操作者可以直接地或通过鼻腔内部的相机成像器视觉地观察LED,以接收由LED指示的方向信息,以确定解剖特征相对于探针的位置。在实施方案中,在使用装置时,对应于超声单元的LED可以在鼻腔外部。
在实施方案中,探针可包括对应于多个超声换能器的多个视觉指示器。图15A和15B示出与图11A的探针类似的探针1500。探针包括对应于每个超声换能器1502-1、1502-2和1503-3的LED 1503-1、1503-2和1503-3。LED位于对应的超声换能器附近。操作者可将探针在鼻腔内穿过,并且处理单元会调节每个LED的强度以对应于由对应的超声换能器测量的超声信号振幅。
在实施方案中,LED的强度可基于如图16A所示的超声信号连续地变化,或者基于如图16B所示的超声信号的预设阈值而不连续地变化。在实施方案中,LED的强度可基于到高反射性组织界面(诸如蝶骨)的距离的飞行时间脉冲回声超声测量而变化。此外,在实施方案中,处理单元可在显示器上显示超声单元的振幅。在实施方案中,处理单元可显示指示解剖特征(例如SPA)的位置的图像。
在实施方案中,超声换能器和探针,例如如以上所公开的,可以是包括消融元件(特别是冷冻消融元件)的外科探针的一部分。图17A-17D示出包括可在目标治疗位点被定位时使用的可扩张膜结构的外科探针(特别是消融探针)的实施方案的远端的视图。所示的消融探针是实例,并且其他冷冻消融探针以及其他类型的消融探针可用于本文公开的所公开的超声技术。消融探针被构造为具有用作液体冷冻剂蒸发室的可扩张膜结构。液体冷冻剂进入可扩张膜结构的内部。蒸发的冷冻剂气体通过探针轴145的远端146中的开窗147离开可扩张膜结构的内部,并向近侧离开进入房间中。
如图17A所示,结构或构件83形成为具有弓形边缘的环状且细长的结构以呈现防损伤表面。结构83可由相对刚性的线材或类似弹簧的材料形成,该材料在压在组织表面上时保持其构造。结构83可形成连续结构,其限定穿过其中的开口,诸如通过环而开口的环状或细长环状构件。结构83可完全包含在可扩张结构81内,可扩张结构81可形成为具有预定形状,该预定形状在通过冷冻剂膨胀时可膨胀或不可膨胀。此外,可扩张结构81可形成为完全围绕结构83,而不被结构83本身支撑或附接到结构83本身。这样的结构83可提供构造,该构造在装置前进到鼻腔中并穿过鼻腔并且在鼻鼻甲组织之间时呈现小轮廓(low-profile)。然而,由于结构83的相对扁平的形状和刚性和完整性,结构83可用于操纵、移动或以其它方式分离鼻腔的组织,而不必依赖于可扩张结构81。另外,小轮廓使得结构83能够被期望地定位在狭窄范围内,例如接近鼻后神经的盲管。当可扩张结构81处于其收缩状态时,其可形成扁平形状,并且当膨胀时,可扩张结构81可膨胀成保持未被结构83支撑或附接到结构83的构造。因为结构83可由沿其长度为实心的构件形成,所以冷冻剂可通过在探针轴145中限定的远侧开口直接引入到可扩张结构81中。
在实施方案中,结构83可由中空管状构件形成,该中空管状构件本身形成为连续或环状形状。在这样的实施方案中,冷冻剂可任选地通过中空管状构件引入并通过可沿管状构件限定的一个或多个开口分散在可扩张结构81的内部中。在又一替代方案中,结构83可形成为扁平形状而非环状形状。在该构造中,结构可以是实心的或中空的,使得该冷冻剂可通过该结构引入并且经由沿着该结构限定的一个或多个开口进入可扩张结构81的内部。
结构83可延伸并保持附接到探针轴145,但在可扩张结构81内延伸的结构83的其余部分可保持未附接或未连接到可扩张结构81的任何部分。因此,一旦可扩张结构81通过冷冻剂膨胀,就可以通过相对于可扩张结构81的内部操纵探针轴145将结构83调节到位或移动,以在与可扩张结构81的外表面接触时实现组织区域的目标定位和冷却。例如,结构83可以横向压在下层组织的特定区域上,以使接触的组织区域拉伸或变薄以便于冷冻治疗。当结构83相对于可扩张结构81调整到位时,可扩张结构81可抵靠接触的组织区域保持在静止位置,从而允许结构83在其内的有限重新定位。
在实施方案中,结构83可沿着可扩张结构81的内部在结构83的特定部分处部分地附接或沿着整个结构83附接。例如,结构83可整体附接、粘附或以其他方式联接到可扩张结构81,而在其他变型中,结构83的远侧部分可附接、粘附或以其他方式联接到可扩张结构81的远侧部分,而在其他变型中,结构83的部分可沿着其侧部附接、粘附或以其他方式联接到可扩张结构81。根据结构83、可扩张结构81和待治疗的下层组织区域之间的期望相互作用和治疗,可任选地利用这些变型中的任一种。
在实施方案中,用于将冷冻剂引入到可扩张结构81的内部的内腔84可延伸超过探针轴的远端,使得冷冻剂在内部中在更远的位置处被释放。如所示,冷冻剂内腔84可沿着结构83例如经由延伸横过结构83的杆或构件85被支撑。该特定变型可允许冷冻剂被引入到可扩张构件81内部的远侧部分中。根据需要,可利用该变型或从探针轴的开口释放冷冻剂的变型。
图17B示出图17A的实施方案的侧视图,其示出了结构83可以如何由相对于膨胀的可扩张结构81的相对平坦的构造形成。由于结构83的结构完整性和其相对平坦的轮廓,当被装置接触时,结构83可提供用于组织的靶向治疗。图17C示出当膨胀的可扩张结构81在纵向方向上通过其远侧尖端压在下层组织表面S上时膨胀的可扩张结构81的侧视图。结构83的相对强度提供将装置压在组织表面上的能力,使得可扩张结构81的其余部分可保持其膨胀的构造以潜在地隔离其他周围组织区域。图17D类似地示出当结构83沿着其侧部横向压在组织表面S上使得结构83平放时的装置。接触的组织区域可以被治疗,而周围组织的剩余部分潜在地被扩张的结构81隔离。在2014年9月30日提交的U.S.14/503,060和2016年10月17日提交的U.S.62/408,920中描述了用于本发明的其它示例性消融装置,其内容用于所有目的整体援引加入本文。
在实施方案中,超声换能器可以附接至球囊内的支撑构件,如图17A所示。在实施方案中,可用声学耦合剂(诸如凝胶或流体)来选择性地填充和排空该球囊。在实施方案中,球囊用流体填充以允许在超声感测和定位期间更好的声学耦合,然后一旦装置就位则排出流体,并期望进行消融,例如通过将冷冻剂释放到由球囊包围的区域中,。在实施方案中,超声换能器1702安装在如图17A和图18所示的环状支撑结构83上,并且可用于扫描鼻腔内的组织,如本文所讨论的。
在实施方案中,超声探针和消融探针可被集成到具有单个轴的单个探针中。例如,如图19A所示,探针1900的轴1902可包括在远端处的超声换能器1904和消融元件部分1906,例如沿着探针的轴的冷冻球囊。在实施方案中,例如如图19B和19C所示,轴可包括铰接接头1908,其可用于在冷冻消融元件保持静止或需要相对于超声换能器移动更少时用超声探针进行扫描。
在实施方案中,集成探针可包括多个超声换能器,该多个超声换能器用于定位解剖特征,诸如如上所公开的SPA或骨性标志。超声换能器可定位在沿着探针的纵向轴、冷冻消融元件或包括横杆的辅助轴的任何位置处。例如,如图20所示,集成探针2000包括在远端具有三组超声换能器2004的横杆2002,和沿着轴2008的消融构件2006。此外,在实施方案中,超声换能器可附接到冷冻消融元件的球囊。例如,如图21所示,探针2100的轴2108的远端处的球囊2106可包括在远端处的超声换能器2104和沿着围绕探针轴的纵向轴线的边界的超声换能器2104。作为另一实例,如图22中所示,球囊2206可包括沿着围绕垂直于探针轴的纵向轴线的轴线的平面边界的超声换能器2204。图21和22示出安装到球囊的外表面的超声换能器,然而在实施方案中,超声换能器中的一个或多个或全部可被安装到球囊的内表面,或者以其他方式被包围在球囊的内部。将超声换能器定位在球囊内部的优点是使用附加的声学耦合机构(诸如本公开中其它地方所描述的那些)的能力。
如上所公开的,可通过处理单元使用多个超声单元来更精确地和/或更快速地定位SPA或其他血管或解剖特征。例如,处理单元可从每个独立超声单元获取信号并分析信号以生成关于SPA相对于冷冻消融元件的位置的方向信息。在实施方案中,来自单个超声换能器的信号可在处理之前被组合或平均。例如,在A模式扫描或B模式成像期间,多元件传送和接收阵列可提供包括改善横向图像分辨率的益处。
当基于与检测的解剖特征的位置的相关性用集成探针的一个或多个超声换能器来确定目标治疗位点时,可将探针定位在目标治疗位点处,并且可进行PNN的消融以治疗鼻炎。在实施方案中,可在消融之前和/或期间连续地进行解剖特征(例如SPA)的检测,以在进行消融时提供相对于探针的实时目标治疗位点检测的优点。
在实施方案中,例如如图23A所示,超声换能器2302可从冷冻消融元件2304的中心2303和消融的中心偏移,使得当超声换能器定位在血管2305(例如SPA)上方时可进行消融,并且因此防止对SPA的直接治疗。例如,超声换能器可从消融探针的中心和治疗中心偏移距离“d”,其中该距离对应于要避免的血管和待治疗的神经之间的距离。超声换能器2302可如图23A所示在横向方向或如图23B-23D所示在远侧方向偏移。在消融操作期间,外科探针可前进到鼻腔中,并且偏移的超声换能器可如上所公开地扫描组织,以便定位血管。换能器在血管(例如如图23A-D所示的SPA)上方,冷冻消融元件则不会在SPA上方。将超声换能器保持静止并继续检测SPA的血流,确保SPA不处于消融区的中心并且不会接收直接治疗,进行冷冻消融。
在利用集成超声和消融外科探针的实施方案中,超声换能器相对于消融探针的相对位置可以是固定的或者可以是可变的。在超声换能器与冷冻消融元件之间具有可变距离的实施方案中,在任何时间的距离可以例如用传感器测量,并且由控制系统使用来改变消融参数。在实施方案中,如果检测的可变距离不足够大以避免SPA区域中的组织损伤,则探针可以提供指示。
图24A和24B示出组合的消融和超声感测探针2400的实施方案,其被构造为询问后囟、腭骨2402和蝶骨2403以及周围组织。如上所公开的,A模式超声扫描可反映允许区分不同厚度的粘膜组织、骨以及骨和软骨边界的信号。例如,可检测囟的薄软骨和薄腭骨和/或厚蝶骨之间的区别。信号可以区分的一种方式可以是反射信号的振幅。在实施方案中,多个超声换能器2406可在冷冻消融元件2410的更远侧和冷冻消融元件2410的更近侧两者联接到探针轴2408,例如如图24A所示。两个超声换能器可用于在冷冻消融元件的任一侧检测解剖特征。例如,超声换能器可用于检测与神经的目标治疗位点相对应的组织2405的不同厚度或组成。为了检测这种差异,探针2400前进到鼻腔中并沿着鼻腔内的组织扫描,直到远侧换能器检测到一种组织构造的信号特征,并且近侧换能器检测到不同组织构造的信号特征。例如,在定位薄腭骨和厚蝶骨之间的过渡时,装置前进到一个点,在该点,远侧换能器检测到厚的骨的反射信号特征,而近侧换能器检测到薄的骨或软骨的反射信号特征。一旦确定了该位置,操作者就会具有关于消融探针被定位在鼻腔内多深的信心,并且可以根据需要从那个点进一步操纵探针进入用于治疗的期望区域(例如,在PNN的区域中)并且开始消融。在实施方案中,探针2400可用于检测粘膜厚度以确定给药时间。例如,治疗区域周围的组织可以是1-5mm厚。如果组织小于3mm厚,则冷冻消融元件中蒸发的冷冻液体的流量或排放时间可以减小,以确保消融不会穿透过深并损伤不在目标治疗区域中的组织。在实施方案中,骨/软组织改变被用作治疗位点的位置的指示。到1-3mm厚的骨的0.5-1mm厚的软骨的过渡可指示探针已到达腭骨的垂直板(在这里神经支配鼻腔),并且该过渡可用于确定目标治疗位点。在实施方案中,腭骨和蝶骨之间的骨到骨过渡可以通过从1-3mm的骨厚度到>4mm的骨厚度的过渡来检测。在实施方案中,可以确定腭管的位置,以便避免对腭管内的神经的治疗。在实施方案中,例如如图24B所示,探针2400的单个超声晶体管2406可用来检测骨和组织厚度和过渡,如关于图24A所讨论的。
在实施方案中,例如如图25A-C中所示,超声换能器24被构造为在消融探针的横向侧上成一阵列,超声换能器被定位成与消融区的中心相距距离r并且彼此以角度α远离以限定消融区内的区域,如果在该区域内识别出动脉,则该装置提供不消融的通知或会防止消融被启动。半径可限定在1-8mm,优选6mm。换能器之间的角度可以为5-180度,优选45-90度。换能器的数量可以是2-10。图25A示出实施方案的横向面。探针10包括具有嵌入的超声换能器24的集成感测元件23和附连到套管21的消融元件22。感测元件23与横向平面的垂直轴线成一直线附连到套管21的底部或顶部,以使水平轴线中的轮廓保持尽可能低。电或花线(flex)电路沿套管的长度走向从超声传感器到机头或盒子内的控制器。图25B示出处于收缩构造的探针10的俯视图。在将探针插入鼻腔中之前,一层凝胶状物质23围绕换能器润滑至少探针的横向侧,以产生声学友好的环境并且使粘膜上的平移更容易。该构造被设计成允许用户将探针前进到鼻腔中并将消融元件22定位在目标区域中。一旦探针10在目标区域的区域中,例如,中鼻道的后1/3,则消融元件22扩张以将换能器24压到鼻腔的侧壁上。图25C示出探针10的扩张状态。一旦换能器与壁接触,就通过听觉、视觉或触觉信号提供指示消融探针放置适当并且摆脱SPA的主分支。如果使用可见指示器,则指示器会沿着套管21附连,使得使用刚性内镜其可以在鼻腔内可视化,该刚性内镜用于使目标区域可视化。如果放置是正确且安全的,则实施方案会通知用户并且用户会启动消融。如果检测到存在动脉,则探针会通知用户并且消融可能不允许被启动。在这种情况下,用户会向前或向后平移,直到消融元件摆脱脉管系统,用户会被通知,消融会被允许。
在实施方案中,冷冻消融元件可以可滑动地联接到超声探针的探针轴,例如如图26A-D所示。如图26A所示,超声探针2600包括具有设置在远端的超声换能器2604的轴2602。超声探针2600可插入到鼻腔中,冷冻消融元件2606保持在鼻腔外部。超声探针2600在鼻腔内,超声换能器2604可沿着鼻腔内的组织扫过,以便检测解剖特征,例如如上所讨论的血管或解剖特征(例如,组织厚度、骨厚度、过渡/边界)。可基于所确定的解剖特征的位置来确定目标治疗区域。例如,如图26B所示,解剖特征可以是SPA,并且目标治疗位点可以被确定为与SPA和PNN之间的距离相对应的距SPA的预定距离。超声换能器2604保持抵靠SPA,冷冻消融元件2608沿着超声探针的轴2602前进,例如如图26C所示。在实施方案中,冷冻消融元件可前进通过超声探针中的内腔,或者可使用超声探针的轴作为轨道。例如,冷冻消融元件2606联接到轴2608,两个都具有围绕轴2602并在轴2602上滑动的内腔。如图26C所示,冷冻消融元件可包括具有围绕超声探针的轴并沿着超声探针的轴滑动的内腔的可膨胀结构。如图26D所示,冷冻消融元件2606可从超声换能器前进到预定距离“d”,并且可在目标治疗位点处进行消融。在实施方案中,超声探针可被构造为类似柔性或刚性导丝,消融探针可经该导丝被引到消融位点。使用超声探针作为可滑动冷冻消融元件的引导是有利的,因为其允许用小的装置来定位目标治疗位点,并且与无引导装置相比进一步允许冷冻消融探针更精确地到达目标治疗位点。
在实施方案中,感测或组合的消融和感测探针可包含稳定元件。平行于超声传送角度但与血流无关的相对组织/换能器运动可使不想要的噪声添加到多普勒测量或混淆多普勒测量。例如,在进行测量的同时发生的探针位置的轻微偏移,例如由握持探针的操作者的抖动的手引起的那些偏移,可产生多普勒型效应。这可以降低定位SPA的性能,并因此延长操作时间或导致确定正确的治疗位置中的误差。在实施方案中,可膨胀球囊可附接到探针的轴并用于在进行超声扫描时稳定超声换能器。当要进行多普勒扫描时,球囊膨胀并将瞬态压力施加在附近的结构上,作为稳定探针相对于周围组织的位置的方式,从而减少与血流无关的运动并提高多普勒信号的准确度。当需要重新定位探针时,球囊可放气。当进行另外的多普勒测量时,球囊可再膨胀。对于一些多普勒测量,例如当超声探针以“扫描模式”快速地穿过鼻腔时(其中精确度不如一般信息重要),稳定球囊可不膨胀。在实施方案中,使用单个稳定球囊。在实施方案中,可使用多个球囊,例如位于超声换能器的任一侧上的稳定球囊。在具有多个换能器的实施方案中,多个球囊可接近这些换能器中的一些或全部。在实施方案中,球囊可包括超声换能器。在实施方案中,换能器可附接到球囊的外部。除了球囊之外,稳定机制还可包括抽吸、卷绕和从探针延伸的用于稳定探针位置的尖齿。
在实施方案中,超声换能器和组织之间的声学耦合的质量对于实现所有超声模式的准确测量是重要的。没有适当的声学耦合,换能器/空气界面处的大反射基本上防止超声波到达组织。用于确保质量声学耦合的一种机制是将超声换能器直接放置成与组织接触,使得不存在气隙。为了帮助确保充分的接触,可以采用抽吸。内腔可通过包含一个或多个超声换能器的超声探针的轴并入。空气可以被推动或拉动穿过该内腔。一个或多个开口可放置在探针的远端处,接近超声换能器。当超声换能器被带到接近组织时,可应用抽吸到换能器附近的开口,并且该抽吸可拉动换能器更接近组织,直到开口与组织接触并将装置锁定就位。可在超声测量期间保持抽吸以确保足够的接触以用于穿过组织-换能器界面的质量能量耦合和信号传送。消融还取决于消融构件和组织表面之间的接触。可使用上述系统和方法,其中开口接近消融构件并且其中应用抽吸以在治疗期间产生足够的接触。
在实施方案中,来自冷冻消融治疗期间的超声信号可由处理单元分析以确定是否粘膜或血管(例如SPA)在治疗期间被损伤。例如,可监测在消融期间通过SPA的血流,并且可使用检测的血流来确定消融的持续时间。如果检测到血流减小到低于预设阈值,则可终止消融。在实施方案中,目标消融位点可紧邻所确定的SPA的位置,例如1-5mm,以便避免对SPA直接冷冻。
实施方案还包括用于评估在鼻腔中进行的治疗的效果的系统和方法。例如,可使用如本文所公开的超声扫描来评估化学或药理学干预的作用,诸如类固醇、抗生素或其它物质的施用。实施方案还用于评估机械干预的影响,包括动脉结扎、神经修改手术(诸如神经切除术、神经消融术和/或选择性节后翼腭副交感神经切除术(SP3))以及其他组织重塑手术诸如鼻甲缩小术。在实施方案中,评估是作为独立的单段评估来进行的。在实施方案中,评估是在进行干预之前和之后获得的评估的比较的结果。在实施方案中,使用在干预之后经过一段时间之后采集的评估进行比较,从而允许要实现的完全治疗效果的时间和解决任何急性术后效应(诸如肿胀或炎症)。在实施方案中,该经过的时间段是干预后7-30天。在实施方案中,使用在干预之后立即或几乎立即(例如,在干预之后5到30分钟)采集的评估进行比较。
实施方案包括使用连接到导管或探针的轴并插入到鼻腔中的超声换能器。换能器可以是单个元件换能器或多个或许多元件的阵列(例如,多达72个元件)。换能器可以构造为以A模式、M模式、多普勒模式和/或B模式操作(对于仅涉及换能器阵列的实施方案)。在一些实施方案中,可以实施诸如涉及光谱分析的弹性成像成像或评估的处理技术。
在实施方案中,评估参数包括鼻腔中粘膜组织的厚度。可以在干预之前和之后评估的粘膜厚度之间进行比较,以便评估干预的效果。
从换能器发射的超声波会被组织散射、吸收和反射。反射的程度会很大程度上取决于行波遇到的组织的声阻抗的变化。骨(和软骨)和粘膜组织在声阻抗方面具有较大的差异,并且大振幅超声波反射会在骨(或软骨)和粘膜组织之间的界面处发生。因此,粘膜组织和骨之间的过渡在超声数据中是可检测的。例如,界面由A模式超声轨迹中的大振幅尖峰表示,或者表示为M模式或B模式超声图像中的明亮线性区域。实施方案会使用在8-20MHz并且优选在12-15MHz的频率下操作的换能器。
粘膜组织是柔软的,可随经由设备施加的压力而变形。因此,可通过超声换能器与鼻腔壁的接触来改变粘膜组织的厚度。实施方案会包括机制或方法步骤以确保用于比较目的的每个厚度评估是以施加到粘膜表面的相同或几乎相同程度的压力进行的。
在实施方案中,超声换能器机械地联接到力传感器,诸如压力传感器、测力板或应变仪,以帮助控制施加到粘膜组织的压力,同时进行组织厚度测量。在实施方案中,一个或多个压力传感器安装在换能器的组织接触面上。在实施方案中,一个或多个压力传感器安装在与换能器相邻的探针或导管轴上。在实施方案中,传感器适于沿着位于探针或导管轴的内腔中的传感器导线向设备的机头发送读数。软件算法编译来自传感器的信号,例如来自应变仪或测力板的电信号,并将该信息转换成压力或力。
在实施方案中,实际的力或压力读数被提供给用户。在变型实施方案中,力或压力读数不被提供给用户,而是设备为用户提供接触力在有效测量的可接受范围内的指示。例如,如果接触力过小、可接受、过大或这些范围的某种组合,则设备可提供视觉的、音频的或触觉的指示。
在实施方案中,不以任何方式向用户提供接触力或压力信息。或者,进行粘膜厚度测量的算法基于接触力自动调整计算。粘膜组织的弹性模量(杨氏模量)通常是已知的,如将接触力转化为估计的纵向应变所需的泊松比和其它材料性质。因此,实施方案可使用超声飞行时间算法来估计粘膜组织的厚度,然后通过考虑由于接触压力或力引起的变形的因子调整原始计算的厚度来改进该估计。
在实施方案中,接触力不是用传感器测量的,而是经由机械装置来控制。在实施方案中,弹簧机构位于换能器的组织接触面处或附近。弹簧的弹簧常数被选择为使得需要向粘膜组织施加一定的小范围的合适的力,以使换能器进行充分的组织接触。
在实施方案中,接触力由柔性耦合球囊(例如由硅橡胶构成的球囊)控制。球囊最初可构造为收缩状态,用于将导管或探针插入鼻腔中。当处于期望的位置以进行测量时,用户可例如通过用输注穿过导管或探针的轴中的内腔的流体或凝胶状物质填充球囊来扩张球囊。在一个实施方案中,包含流体的注射器可连接到设备的机头上的鲁尔型界面,其中压下注射器上的柱塞迫使流体沿着设备的内腔进入球囊,从而使其扩张。当球囊扩张时,其与粘膜组织接触。由于球囊的柔性性质,球囊的形状会塑造成粘膜组织的形状,而不施加足以使组织压缩变形的力。在实施方案中,换能器保持远离粘膜壁的小的距离(例如1-5mm),以确保不施加接触力。用于扩张球囊的流体或凝胶提供足够的声学耦合,使得超声波可适当地询问粘膜组织。
在实施方案中,该设备包括通过移除流体或凝胶来使球囊收缩的机构,从而允许设备的远侧部分返回到其原始的纤细轮廓,这会便于从鼻腔移除。流体或凝胶可通过将真空或抽吸施加到先前已用于将流体或凝胶输送到球囊中的设备机头上的口而移除。施加负压,流体或凝胶会通过递送内腔朝向机头被抽回,并允许球囊收缩。在实施方案中,多个内腔用于向球囊递送流体或凝胶和/或从球囊移除流体或凝胶。
在换能器被定位成与粘膜的前缘相距小距离的实施方案中,例如在利用耦合球囊的实施方案中,用于确定粘膜厚度的算法可被改进以解决源自流体/凝胶/球囊-粘膜边界之间的界面的附加回声。预期该边界处的声阻抗的差异远低于在粘膜-骨/软骨边界处的差异,因此反射会具有相对较小的振幅并可易于从在与骨或软骨的界面处产生的较大反射辨别。在这些实施方案中,可使用接收的超声信号中的这两个尖峰的检测之间的时间差来估计粘膜厚度。
粘膜组织的厚度测量取决于超声束的入射角。对于给定的粘膜区域,垂直对准的换能器产生相对于当换能器倾斜地对准(因此具有穿过组织的较长路径)时相同区域中的估计更小的厚度估计。虽然如果入射角是已知的,这种差异可以被控制,但是这样预计是具有挑战性和低准确度的任务。因此,期望以主动的方式考虑入射角变化。
在实施方案中,换能器被安装在可移动轴线上,例如在枢轴接头或球形接头上,使得其变得“自对准”,例如如图28A-D和29所示。也就是说,每当换能器被压在表面上时,换能器的位置沿着轴线移动,使得其自然地以垂直的方式对准。在一些实施方案中,接触传感器(例如,电阻抗传感器或力传感器)可在换能器面上或附近的一个或多个位置处使用以确保垂直接触。
在实施方案中,换能器被构造为通过一定范围的入射角扫描。例如,在相控阵中,单独元件之间的传送延迟被调整以控制得到的超声束通过多个角度,收集每个角度的数据。或者,在单个元件换能器或由线性阵列组成的换能器中,换能器可机械地扫过一定范围的角度,例如-45度到+45度,收集该范围内的多个角度的数据。可进行粘膜厚度的多个计算,并且可选择最小厚度作为代表垂直入射角的金标准测量。在实施方案中,可分析最大厚度,或者以所询问的角度进行的各种厚度测量的一些组合。
实施方案可包括回声反射性的检测和分析。鼻腔干预的一个影响可能是粘膜组织中水肿或流体的水平的变化。水肿、流体和/或肿胀水平的变化可指示症状缓解,并因此指示干预的治疗效果。粘膜组织的这些性质的变化可用超声来评估,从而对于医师和患者是有用的。
可用超声通过检查粘膜组织的回声反射性进行粘膜评估。在本上下文中,回声反射性是组织的特征,其描述其如何响应超声询问,即其如何吸收、散射和反射入射超声能量。例如,亮度(在B模式中)或反射信号强度(在A模式中)会指示回声反射性。由超声束采集的其它组织特征,例如散斑纹理(speckle texture)、光谱能量含量和衰减常数(与吸收系数有内在关联),也可用于询问组织。
本领域技术人员已知,组织水肿/水含量的变化改变了组织的超声特性,例如声速和吸收系数。
在实施方案中,一个或多个超声信号被传送到粘膜组织中并且相应的回声被接收。所接收的射频数据可被处理以便提取亮度数据,例如与正交解调、包络检波、整流相关的算法和/或涉及希尔伯特变换的算法可用于更好地提取亮度数据。在实施方案中,在检测到粘膜的窗口上(例如,在由分别表示球囊/粘膜和粘膜/骨界面的大反射尖峰界定的区域中)评估所得亮度数据。在收集二维B模式数据的实施方案中,可在跨越由换能器阵列的尺寸确定的深度和宽度两者的组织窗口上评估亮度数据。在实施方案中,在鼻腔干预之前和之后采集的测量之间进行比较,以便评估变化。
在实施方案中,谱分析可检查返回回声的频率含量以评估变化。例如,粘膜中的流体含量减少可以以导致由换能器测量的声后向散射的频率含量偏移的方式改变组织的吸收性质。在实施方案中,所接收的射频数据可使用诸如快速傅里叶变换(FFT)的技术被转换到频域中,并被分析以确定频率含量的功率密度。例如,在存在中度或重度粘膜水肿下,可降低衰减系数。超声的衰减系数是频率相关的,并因此功率密度的谱偏移可能发生。
在实施方案中,超声阵列可被构造为使用弹性成像(elastography)或弹性成像(elasticity imaging)(例如振动弹性成像、声辐射力脉冲成像或剪切波弹性成像)来估计组织的机械性质。由于鼻腔中的干预可影响程度或水肿或影响组织的剪切或弹性模量的其它组织特征,机械性质研究可产生用于评估干预功效的实用且有价值的方式。
在实施方案中,由单个元件的阵列组成的超声换能器安装在探针或导管的轴上并插入到鼻腔中。当就位时,获取该区域的初始超声扫描。此后,阵列在激发模式下操作,将高强度聚焦的超声脉冲发送到粘膜中。该脉冲使用辐射力置换(displace)聚焦区中的组织并产生剪切波,该剪切波会以与组织的剪切模量成正比的速度远离激发位点行进。在激发脉冲之后,换能器被构造为在与激发脉冲的位置相邻的位置中递送一系列后续的跟踪脉冲。这些跟踪脉冲与标准B模式超声脉冲类似或相同。使用涉及散斑跟踪的算法,例如互相关算法或相移估计器,这些跟踪脉冲可用来监测诱导的剪切波在组织中的传播。通过计算剪切波传播的速度,可以确定粘膜的剪切模量并因此最终确定粘膜的弹性模量。通过比较在干预已经发生之前和之后的弹性模量的测量,可获得对干预的影响的洞察。
在利用冷冻消融探针的实施方案中,可在治疗期间进行超声测量以检测与组织冷冻相关联的组织特征的变化。这些测量可用于检测目标组织的状态。可在治疗期间使用组织的状态来调节治疗剂量参数,包括治疗时间或冻融循环的次数。例如,在冷冻消融期间形成的冰晶可增加治疗区域中的超声波的散射和/或反射。使用B模式超声可视化,由于冰球界面处的强反射和相关声阴影,冷冻消融治疗区域的近侧边缘可表现出高回声(亮),大的低回声(暗)区域距离换能器更远。一定尺寸的区域上的回声反射性(接收到的回声的强度)的变化可表示治疗是足够的并且该操作可以结束。作为实例,至少5mm宽的声阴影可被视为指示足够的冷冻。在其他实例中,不同尺寸的区域,例如2mm或10mm宽,可被视为更适合表示已经发生了充分的冷冻。在实施方案中,使用在A模式超声扫描期间测量的信号的强度来测量这些变化。在已经发生充分冷冻时或之后不久停止治疗的一个益处是其降低了在预期治疗区域之外的区域中不希望的附带组织损伤的风险。
在实施方案中,换能器被构建到探针轴中,以评估在冷冻消融期间产生的冰球的横向生长。在冷冻消融治疗期间,冷冻消融元件冷冻粘膜组织的区域以形成在轮廓形状上可以是椭球形的冰球,并且治疗区域的深度可与冷冻区域的宽度相关。在实施方案中,监测冷冻区域随时间的横向生长用于确定冷冻区域的深度,其进而被用于确定治疗的长度。在实施方案中,多个换能器安装在探针轴上以便询问在距离消融构件固定横向距离处的组织,例如在距离构件5mm、10mm和15mm处。在实施方案中,单个换能器可沿着轴中的凹陷路径滑动(类似于图23中所示),以便在距离消融构件不同距离处询问组织。在实施方案中,可在固定距离处使用单个换能器。
在实施方案中,直接测量组织的冷冻区域的深度。由于治疗区域中的声阴影可阻止冰球穿透的直接方向(straight-on)测量,所以使用倾斜询问方法。在图27A-C中描绘了利用治疗深度的倾斜测量的示例性实施方案。如所示,组合的消融和感测探针102包含消融元件103和位于消融元件远侧距离r1的超声换能器104。换能器相对于探针轴的纵向轴线成角度θ,并瞄准在冷冻消融期间预期形成冰球的方向。在消融期间,意图产生会达到距离消融元件103的接触表面距离r的冷冻区域108。在治疗之前和治疗的早期阶段,探针102定位在中鼻甲101和下鼻甲107之间,超声换能器104例如使用A模式成像技术扫描组织,并接收与软组织扫描相关联的回声信号的正常模式。当组织105中的冷冻区域108中的冰球生长时,其进入超声束110的路径并改变所接收的回声模式。例如,新的回声模式的特征可在于在冰球的边界处的高回声区域,随后是与声阴影相关联的低回声区域。探针上的超声传感器的远侧位置的优点是其允许从中鼻甲101的后侧开始的询问路径,其可限制或消除与骨性隆起106相关联的回声干扰。在实施方案中,超声传感器可比消融元件定位在探针轴上的更近侧。
在一些实施方案中,超声换能器的波束的轴线相对于探针轴的远端的轴线的角度θ可由用户调整。当已知消融区域(r)的期望深度时,可利用几何相切来计算换能器的角度θ,假定r1是固定的。可使用拨盘、旋钮、按钮,用低功率电机/机器人控制或使用其他方法来调节换能器角度。在实施方案中,角度θ是固定的,但是距离r1是可调节的。在实施方案中,θ和r1都是固定的。
超声可进一步用于在治疗期间主动地监测组织厚度变化。冷冻消融期间的冰晶形成导致组织在被治疗时扩张。尽管扩张量较小,但其在超声成像技术的可测量分辨率内。在组织已经扩张了一定量(例如,其基线厚度的一定百分比(例如,20%))或扩张到某一预先计算的程度(例如,1mm)之后,检测到的扩张被用作治疗足够并且该操作可结束的指示。在实施方案中,A模式或M模式超声技术可用于实时评估该扩张,例如通过使用本公开中先前描述的技术确定粘膜组织厚度的变化。尽管声阴影可混淆在治疗区域中的组织厚度的直接评估,但紧邻区域中的扩张可提供指导治疗的信息。
可在治疗后进行超声测量以检测与组织解冻相关的组织性质的变化。这些测量可用于确定何时可安全地移除装置。例如,在治疗期间测量的变化,诸如回声反射性、厚度或其它特征的改变,可在解冻期间开始自身逆转并接近基线值。在包括多个循环的治疗模型中,这些测量还可用于确定下一冷冻循环应何时开始。
可在治疗后进行超声测量以检测与冷冻消融损伤相关的组织特征的变化。例如,组织损伤可与使用超声可测量的密度的变化或弹性的变化相关联。这些测量可用于证实目标组织已被治疗。
在治疗之前、期间或之后,可获取M模式超声测量以评估组织和/或由消融治疗引起的组织变化。M模式(运动模式)成像沿着同一询问区域获取连续扫描(即,连续A模式成像线),并因此可记录结构如何随时间朝向或远离换能器运动。在基线处,可检测到组织与当冷冻时不同地运动,并且可检测到治疗和随后解冻的组织与冷冻组织或未治疗组织不同地运动。因此,M模式技术可用于治疗后短期和长期评估治疗。
在实施方案中,M模式成像被用于跟踪自然发生的组织运动,例如与动脉血管的博动关联的生理运动。在实施方案中,M模式可用于跟踪响应于外部刺激而发生的组织运动,例如从换能器发射的声辐射力的脉冲或振动活塞振荡器的应用。
在实施方案中,先进的处理技术(诸如散斑跟踪算法)可应用于M模式数据以从扫描提取定量信息,例如关于纵向组织运动的确切程度的信息。
在实施方案中,超声换能器壳体可通过能够在一个或多个方向上弯曲或旋转的接头附接到探针。当换能器壳体以不同于90°的角度接触时,沿界面的不均匀压力或力使壳体自身被动地定向,使得壳体和组织表面更接近平行。图28A和图28B示出安装在单轴接头2803上便于与组织表面2804的垂直对准的超声换能器2802。图28C和28D示出安装在球形接头2805上便于与组织表面2804的垂直对准的超声换能器2802。为了更好地实现期望的角度,超声换能器可被安置,使得换能器的轴线和壳体的轴线彼此成0°和90°之间的固定角度。当壳体的表面平行于组织表面时,换能器的轴线与组织大致处于与壳体表面一样相同的角度。该概念在图29中示出。图29示出以期望的角度安装在壳体2904中的超声换能器2902,壳体的表面与组织接触。当壳体表面平行于组织表面并与组织表面接触时,超声束会与组织表面成期望的角度。壳体被构造为使得换能器和组织之间的材料具有适合于使超声能量传送最大化的声阻抗。以这种方式,传送的超声信号可被定向以提供与针对平行或接近平行于组织表面延伸的血管进行的多普勒测量有关的增加的准确度。
在实施方案中,探针的轴上的传感器用于通过检测鼻腔内的鼻甲并使用鼻腔内的鼻甲作为引导标志来辅助探针定位。在实施方案中,冷冻消融治疗的期望位置是中鼻道的后1/3,其可通常由鼻甲的相对位置来识别。更具体地,下鼻甲和中鼻甲可用作用于定位用于治疗的期望区域或缩小治疗的期望区域的搜索区域的标志。下鼻甲和中鼻甲可使用内镜引导或其它方法在鼻腔内定位,因此使用这些特征作为导航辅助的定位技术简单、方便并且允许较短的操作时间。在一个实施方案中,探针包含测量探针相对于中鼻甲和下鼻甲的相对位置的传感器。探针可以是超声探针或组合的消融/超声探针,如以上所公开的。传感器本质上可以是声学的、光学的、电磁的或机械的。例如,光学(例如激光)或更一般的电磁(例如雷达、红外)传感器可安装到探针轴并使用飞行时间测量来测量从轴到反射表面(诸如鼻甲)的距离。在实施方案中,超声传感器可与允许信号声学地耦合到鼻甲壁的耦合机构结合使用。例如,超声传感器可被封装在可膨胀耦合球囊中,该可膨胀耦合球囊填充有从轴向外扩张并使得与鼻甲壁接触的凝胶、水或另外的耦合物质。在图30中示出使用耦合球囊的实施方案的实例,耦合球囊1010用作用于将超声能量从传感器和鼻甲来回声学耦合的机构。图中的解剖结构可能不是按比例的,而是仅作为可视化辅助来提供。图30示出利用声学耦合球囊的组合的消融和感测探针。图31A-C示出利用鼻甲来引导消融探针在组织区域中的放置的实施方案。图示出非超声传感器的使用,然而在实施方案中,超声传感器可以代替所示的传感器或是所示的传感器的补充。图中描绘的解剖特征不是按比例绘制的,并且可不精确地一起定位,并且仅被包括作为上下文视觉辅助。如图31A所示,组合的感测和消融探针1001位于鼻腔中,在下鼻甲1002和中鼻甲1003之间的一般区域中。在实施方案中,探针包含接头1005,例如单轴接头或球形接头,该接头允许包含消融构件1004的探针的远端相对于轴的近端铰接。探针包含用于分别询问中鼻甲和下鼻甲的探针的上面和下面上的传感器1006。在实施方案中,传感器仅试图确定,鼻甲存在于传感器信号的路径内,或者替代地存在于传感器的某个距离d内。作为说明性实例,感测协议在本质上可以是二进制的,并且试图确定只有当鼻甲位于轴的2mm内,如果该条件为真,则照亮LED。在实施方案中,传感器使用飞行时间或其他技术来测量到每个鼻甲的距离。一些实施方案可利用在附加位置中的附加传感器,例如在用于询问横向鼻腔壁的探针轴的横向面上的传感器。如图31A所示,探针位于鼻腔中,使得探针轴上的传感器位于由鼻甲上下界定的中鼻道的部分内。因此由传感器产生的信号与鼻甲交互并通知操作者可期望在开始治疗之前使探针更向后前进。如图31B所示,探针被前进,使得轴的下侧上的传感器超过下鼻甲的近侧边界,并因此传感器信号以操作者可以确定该解剖标志已被完全穿过的这样的方式改变。例如,传感器可确定到最接近的反射组织的距离超过指示下鼻甲的存在的距离d。考虑该位置信息,探针可被确定为处于用于消融的适当位置,或者可以基于该解剖标志确定如何进一步调整探针位置,以准备探针处于用于消融的适当位置。
在实施方案中,一旦探针已经前进从而超过一个或两个鼻甲的后边界,将可以将探针的远端围绕接头1005铰接,以便更好地将消融构件定位在关注的期望区域中。在实施方案中,通过调整位于装置的接近手柄的一端上的拨盘,可以例如在0至30度的范围内以一度的增量选择性地改变探针角。在实施方案中,探针角可经由使用拨盘或开关在两个或更多个预定的可用角度之间转换。具有可变探针角度的实施方案的图示在图31C中示出。
在实施方案中,导轨型传感器可直接接触下鼻甲和中鼻甲的表面,以帮助将消融元件定位在关注区域中。导轨由基于弹簧的或以其他方式可扩张/可压缩的杆构成,该杆顶端有球体或另外的可在保持接触的同时沿着组织平滑地滑动的合适的结构。如图32A所示,展开的导轨1008从探针的上面和下面发出并在探针穿过中鼻道的区域中的鼻腔时保持与鼻甲的接触。随着探针的个面变得更靠近相应的鼻甲,力被施加在相应的球体上,相应的导轨被压缩,如图32B所示。在实施方案中,不是被压缩,导轨可以被弯曲或移动到更锐的角度。随着探针的一面远离鼻甲移动,或者探针穿过鼻甲的后边界,相应的导轨长度扩张或变直和/或更垂直于探针表面成角度。装置中的传感器测量导轨位置并且可以确定鼻甲的存在,并且在实施方案中确定到鼻甲的距离。该信息用于将探针引导到用于消融的期望区域。在实施方案中,导轨可以收缩到探针轴的主体中,以便在不使用时不增加轴的宽度。这可允许探针保持最佳的可操纵性。图32C示出包括可收缩导轨的实施方案,其中包含基于弹簧的主体1009的导轨1008可收缩到探针轴1007的凹陷区域中。
传感器可置于超声换能器上或周围,以向用户提供关于组织接触的存在或质量的反馈。传感器可包括用于检测探针和组织表面之间的接触力的力传感器。传感器可包括可通过导电率确定接触的电阻抗传感器/电极。如果传感器测量非常高的阻抗(类似于“开路”状况),则其会指示没有与组织进行有效的接触。如果阻抗高于预期,例如2000欧姆或更高,则这可提示仅进行部分接触。在实施方案中,不同的阻抗值(例如500欧姆或5000欧姆)可指示部分接触。如果阻抗在与粘膜组织接触的预期范围内,例如500欧姆或更小,则可推断传感器与组织进行质量接触。传感器还可包括非接触传感器,诸如不需要直接接触组织来起作用的光传感器或磁传感器。在实施方案中,基于光的距离传感器被定位在安装在探针上的超声换能器的近侧和远侧两者。每个光传感器计算从传感器到粘膜组织壁的距离。为了便于引导换能器面与粘膜壁质量接触,所测量的距离以及由两个传感器测量的距离的差异可用于通知操作者如何最佳地操纵探针的位置以便建立质量换能器接触。在实施方案中,可利用一个或多个传感器。
在实施方案中,相同的一个或多个换能器可以以不同的超声模式交替地使用。例如,换能器可被构造为以多普勒或A模式运行,并且可基于目标组织测量在模式之间转换。例如,超声换能器可首先用于用多普勒扫描来定位血管,如上所述,然后可用于用A模式扫描来检测骨性标志。此外,例如,多普勒扫描可用于在治疗之前定位SPA以确定目标治疗位点,然后在治疗期间,相同的超声换能器可用A模式扫描来使用以监测与冷冻相关联的组织厚度或反射变化,如上所述。此外,在转换到A模式扫描之后,超声换能器然后可被转换回多普勒扫描以监测通过SPA的流量。在另一实例中,超声换能器可在治疗之前以A模式使用,以定位蝶腭孔或腭骨和蝶骨之间的过渡,它们是可通过其定位SPA的标志。然后,在进行冷冻消融治疗时,使用多普勒模式扫描来监测通过SPA的流量。如上所述,在实施方案中,超声换能器相对于探针轴的角度可以是可调节的,并且可在使用时被调节。如上所述,换能器相对于组织的理想角度可在A模式和多普勒扫描之间不同,并且在转换超声扫描模式的实施方案中,换能器相对于组织的角度可根据在使用中的是哪种模式而在每种的理想值之间来回调节。
本公开中的实施方案可能已被描述为使用超声传感器、基于光的传感器或机械传感器。然而,可实施其他类型的成像或感测方式。例如,IR传感器、热传感器、热应变成像和光声成像都是允许对鼻腔解剖结构的各种特征进行评估的机构,并因此有助于探针引导以及治疗计划和/或监测。在实施方案中,探针可包括被构造为检测可听血流的传声器阵列。在实施方案中,探针可包括被构造为评估探针和组织接触以及检测来自动脉血流的博动的压力传感器阵列。
在实施方案中,当定位解剖特征(例如,SPA)的位置时,超声探针、集成探针或单独的工具中的一种可用于沉积指示SPA的位置或基于SPA的位置的目标消融位置的外科墨水。用该方法,可在视觉上确认消融构件在开始消融操作之前被正确定位。在实施方案中,SPA位置相对于可见标志在视觉上被标记。在实施方案中,使用3D磁性跟踪系统来标记SPA位置,该3D磁性跟踪系统包括产生包含术野的磁场的外科跟踪系统,并利用那些场和外科工具上的有源或无源磁性标记之间的测量的相互作用来跟踪术野中的工具的位置和方向并记录那些相对于患者解剖结构的位置。
在实施方案中,SPA的位置可使用组织对于红外光或可见光的光学(特别是吸收的、透射的和反射的)性质由处理单元来定位。不同的组织在不同程度上吸收、反射和透射不同频率的光。例如,含氧和脱氧的血液有差别地吸收和透射IR(波长范围为700-1M nm)和近IR或nIR(波长范围为650-1350nm)光,如图36所示。使用这些性质,处理单元可基于IR吸收和反射来区分身体中携带含氧血液的动脉和其他血管和组织。在实施方案中,探针可包括光源和检测器,操作者可将探针放置在鼻腔内并将IR光或可见光引导到组织中,并且处理单元测量反射的光谱。光源和反射器可彼此成角度地放置,并且传送能量的部分可由处理单元来测量。通过相对于观察者以一定角度将可见光引入到组织中(内镜或摄像机),具有更高可见光透射系数的组织可显得更半透明,而具有更高吸收或反射系数的组织可显得更暗。以这种方式,大血管可以在视觉上与周围组织区分开并由操作者或处理单元定位。
在实施方案中,探针可包括消融构件3302和光感测单元3304,如图33A-C所示。光感测单元包括彼此相邻的光源3306和光检测器3308。光源可将IR光或可见光引导到组织中,并且处理单元测量反射的光谱。处理单元分析与从其他组织反射的光相比从动脉反射的不同光的光谱。基于该区分,处理单元可确定SPA的位置。如上所讨论的,包括用以检测SPA位置的元件和消融构件的集成探针可用于实时定位SPA,并且可用于在消融目标处相对于SPA定向集成探针,然后消融该消融目标以消融PNN以治疗鼻炎。
在实施方案中,探针可包括被构造为远离组织或在组织后面定位的光源和被定位为测量穿过组织的透射光光谱的测量单元,如图34所示。鼻腔的解剖结构不利于将光源和反射器垂直于组织表面3406彼此相对地放置,其中组织位于它们之间,因此如所示,光源3402和检测器(IR摄像机3404)可彼此成角度地放置,可测量来自血管3408的传送能量的部分。如图34所示,光源3402可在来自接收器的单独的探针上,该接收器可以是内镜或IR摄像机3404。
在实施方案中,探针可使用IR光3502照明组织并使用能够检测IR波长的数字摄像机3504观察反射所发射的光的组织3506(包括血管3508),如图35所示。
在实施方案中,为了改善超声探针与正被询问的组织之间的能量耦合,超声探针可包括内部凝胶递送内腔,其中凝胶被递送到接近超声单元,以便改善组织和超声单元之间的耦合。在实施方案中,可使用其它方法和装置来改善超声能量与鼻腔内的组织的耦合。例如,在实施方案中,超声换能器可设置在包含凝胶、水浴或其他合适的耦合剂的球囊或袋中,并且可在成像之前被填充。在使用期间,耦合球囊位于超声换能器和鼻组织之间,并且用作允许能量更有效地流入组织的声阻抗匹配区。这是有用的,因为它允许换能器不直接接触(或者甚至在紧邻组织时)意在用超声来询问的组织。在实施方案中,耦合球囊可被填充和排空和再填充,因为当其在球囊排空的情况下处于更小的收缩几何形状时,超声探针可更容易导航进入和离开并通过鼻腔。在实施方案中,耦合球囊被填充一定量,例如最大容量的40%或70%。在实施方案中,球囊填充的程度由装置自动控制,例如,球囊可响应于诸如检测到球囊的外部开始与鼻腔壁接触的事件而停止填充。在实施方案中,耦合球囊可填充鼻腔的整个部分,并且具有或不具有消融元件的换能器可在填充的腔内自由移动以识别鼻腔的关键位置。耦合球囊可用作锚定装置并且允许能量更有效地流入组织中。
在实施方案中,系统可包括导航系统,该导航系统检测在坐标系中超声探针的部分的位置并制图检测的解剖特征(诸如SPA和/或其他血管)的位置。该制图可用于将消融构件定位在消融目标位点处以消融PNN。例如,制图系统识别SPA的路径(其标识神经的邻近),消融探针放置成恰好与SPA相邻,以允许消融周围区域而不直接消融大血管的顶部。
在实施方案中,感测探针是类似但不限于尿烷球囊的柔性体积填充构件。在探针的外表面上,超声换能器固定或围绕在被限制在可扩张网中的表面。感测探针附接至可延展刚性轴,该轴允许探针前进至鼻腔的后侧,同时允许用户从鼻腔外部操纵探针。一旦感测探针就位,探针就被扩张,使得探针符合解剖结构并将换能器或换能器中的至少一个压在侧壁上。一旦换能器接触壁,就利用它们来生成该区域中的血管的图像,例如A模式、B模式或M模式图像,该图像在控制台的显示器上限定了与可见解剖标志相关的目标区域。一旦限定了目标区域,则感测探针收缩并从鼻腔移除。然后,使用由感测探针限定的血管图像的帮助,消融探针会前进到目标区域。在实施方案中,这通过认识到图像上的血管显示距离充当标志的骨性隆起一定距离d,并知道目标治疗区域例如大约在该跨度的中点处(即,距离标志d/2的距离),并且相应地调整消融探针的位置来完成。一旦就位,就启动消融。
本文提供的技术的教导可应用于其他系统,包括援引加入的申请中公开的系统、方法和装置。以上描述的和援引加入的专利和申请中描述的各种实例的元件和行为可被组合以提供本技术的进一步的实施方式。本技术的一些替代实施方式可不仅包括上述那些实施方式的附加元件,而且还可包括更少的元件。进一步地,本文所述的任何具体数字仅为示例;替代实施方式可采用不同的值或范围,并且可适应在这样的范围的边界内和边界处的值的各种增量和梯度。此外,本技术以及援引加入的申请中公开的技术所描述的特征、优点和特征可以以任何合适的方式在一个或多个实施方案中组合。相关领域的技术人员会认识到,可以在没有特定实施方案的一个或多个具体特征或优点的情况下实践本技术。在其他情况下,在本技术的某些实施方案中可认识到附加的特征和优点。
Claims (25)
1.用于治疗患者的鼻炎的外科探针,其包括:
具有近端和远端的细长探针轴;
联接到所述近端的手柄;
联接到所述探针轴的超声换能器;和
联接到所述探针轴的冷冻消融元件,
其中所述超声换能器被构造为确定所述患者的鼻腔内的目标治疗位点的位置,
其中所述冷冻消融元件被构造为定位在所述目标治疗位点位置处以冷冻消融所述目标治疗位点,以便消融至少一个鼻神经以减少至少一种鼻炎症状,所述冷冻消融元件沿着所述探针轴设置,并且所述超声换能器相对于所述探针轴的远端和所述冷冻消融元件的远侧设置,并且其中所述探针轴包括铰接接头,所述铰接接头被构造为便于所述超声换能器相对于所述冷冻消融元件铰接,并且允许所述超声换能器在一定的角度范围内扫描。
2.根据权利要求1所述的外科探针,其中所述超声换能器被构造为检测所述鼻腔中的粘膜组织的相对厚度以识别与所述目标治疗位点的位置相关的解剖标志。
3.根据权利要求1或2中任一项所述的外科探针,其中所述超声换能器被构造为通过检测所述鼻腔中的腭骨或蝶骨的相对厚度以识别与所述目标治疗位点的位置相关的解剖标志来确定所述目标治疗位点的位置。
4.根据权利要求1-2中任一项所述的外科探针,其中所述超声换能器被构造为通过检测所述鼻腔中的两个骨之间的或所述鼻腔中的骨和软骨之间的相对边界或过渡以识别与所述目标治疗位点的位置相关的解剖标志来确定所述目标治疗位点的位置。
5.根据权利要求4所述的外科探针,其中所述过渡包括与用于识别腭骨的垂直板的1-3mm的骨相邻的0.5-1mm的软骨。
6.根据权利要求1-2中任一项所述的外科探针,其还包括联接到所述探针轴的第二超声换能器,
其中所述第二超声换能器相对于所述探针轴的近端和所述冷冻消融元件的近侧联接到所述探针轴,并且
其中所述超声换能器和所述第二超声换能器被构造为通过用两者检测组织性质来确定所述目标治疗位点的位置。
7.根据权利要求6所述的外科探针,其中所述超声换能器和所述第二超声换能器被构造为检测组织性质以通过识别相对粘膜组织厚度来确定所述目标治疗位点的位置,所述相对粘膜组织厚度指示所述冷冻消融元件被定位在接近所述目标治疗位点的位置。
8.根据权利要求6所述的外科探针,其中所述超声换能器和所述第二超声换能器被构造为检测组织性质以通过识别相对骨厚度来确定所述目标治疗位点的位置,所述相对骨厚度指示所述冷冻消融元件被定位在接近所述目标治疗位点的位置。
9.根据权利要求8所述的外科探针,其中所述相对骨厚度指示所述超声换能器检测到蝶骨,并且所述第二超声换能器检测到腭骨。
10.根据权利要求1-2中任一项所述的外科探针,其中所述冷冻消融元件和所述超声换能器以相对于彼此的预定距离联接到所述探针轴,
其中所述预定距离对应于用所述超声换能器可检测的解剖特征和所述至少一个鼻神经之间的距离,
其中所述超声换能器被构造为通过定位所述解剖特征来确定所述目标治疗位点的位置,并且
其中所述冷冻消融元件被构造为在所述超声换能器检测到指示所述超声换能器接近所述解剖特征的信号时,通过消融所述至少一个鼻神经来冷冻消融所述目标治疗位点。
11.根据权利要求10所述的外科探针,其中所述解剖特征是血管。
12.根据权利要求1-2中任一项所述的外科探针,其中所述超声换能器被构造为通过检测所述鼻腔中的中鼻甲来确定所述外科探针正前进通过中鼻道。
13.根据权利要求1-2中任一项所述的外科探针,其中所述超声换能器被构造为通过将所述超声换能器与所述铰接接头铰接以扫描所述鼻腔内的组织区域来确定所述目标治疗位点的位置。
14.根据权利要求1-2中任一项所述的外科探针,其还包括发光元件,所述发光元件联接到所述探针轴,并且被构造为当所述目标治疗位点的位置被确定时在所述鼻腔内发出视觉指示。
15.根据权利要求1-2中任一项所述的外科探针,其还包括触觉反馈元件,所述触觉反馈元件联接到所述手柄,并且被构造为当所述目标治疗位点的位置被确定时发出触觉指示。
16.根据权利要求1-2中任一项所述的外科探针,其中所述冷冻消融元件包括可扩张结构,并且被构造为通过所述可扩张结构内的低温流体的蒸发来膨胀以冷冻消融所述目标治疗。
17.根据权利要求1-2中任一项所述的外科探针,其中所述超声换能器被构造为监测在冷冻消融所述目标治疗位点时形成的冰球的尺寸,并且
其中所述超声换能器被构造为以相对于所述探针轴的纵向轴线的角度发射超声束,以便横穿所述鼻腔中形成所述冰球处的组织。
18.根据权利要求17所述的外科探针,其中所述冷冻消融元件被构造为当所述冰球的尺寸达到预定尺寸范围时终止冷冻消融。
19.根据权利要求1-2中任一项所述的外科探针,其中所述冷冻消融元件可滑动地联接到所述探针轴,
其中所述冷冻消融元件被构造为在用所述超声换能器确定所述目标治疗位点的位置之后将所述冷冻消融元件通过沿着所述轴朝向所述外科探针轴的远端滑动到所述目标治疗位点而前进到所述鼻腔中。
20.用于治疗患者的鼻炎的外科探针,其包括:
具有近端和远端的细长探针轴;
联接到所述近端的手柄;
联接到所述探针轴的超声换能器;和
可滑动地联接到所述探针轴的冷冻消融元件;
其中所述超声换能器被构造为检测鼻腔内的解剖特征以便确定目标治疗位点的位置,所述冷冻消融元件沿着所述探针轴设置,并且所述超声换能器联结到所述探针轴的远端并且设置于所述冷冻消融元件的远侧,其中所述探针轴包括铰接接头,所述铰接接头被构造为便于所述超声换能器相对于所述冷冻消融元件铰接,并且允许所述超声换能器在一定的角度范围内扫描,并且
其中所述冷冻消融元件被构造为在所述超声换能器定位在接近所检测的解剖特征时朝向所述远端前进到所确定的目标治疗位点位置,并且在所述超声换能器定位在接近所检测的解剖特征时冷冻消融所述目标治疗位点,以便消融至少一个鼻神经以减少至少一种鼻炎症状。
21.根据权利要求20所述的外科探针,其中所述解剖特征是血管,并且
其中所述超声换能器被构造为通过检测所述血管中的血流来检测所述解剖特征的位置。
22.根据权利要求21所述的外科探针,其中所述血管是蝶腭动脉或静脉。
23.根据权利要求20-22中任一项所述的外科探针,其中所述冷冻消融元件包括可扩张结构,并且
其中所述冷冻消融元件被构造为通过所述可扩张结构内的低温流体的蒸发将所述可扩张结构膨胀来冷冻消融所述目标治疗位点。
24.根据权利要求23所述的外科探针,其中所述可扩张结构具有内腔,并且
其中所述冷冻消融元件被构造为通过经所述内腔滑动所述探针轴而前进。
25.根据权利要求20-22中任一项所述的外科探针,其中所述检测的解剖特征和所述目标治疗位点位置之间的距离对应于蝶腭动脉和所述至少一个鼻神经之间的距离,或对应于静脉和所述至少一个鼻神经之间的距离。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762492074P | 2017-04-28 | 2017-04-28 | |
US62/492,074 | 2017-04-28 | ||
PCT/US2018/030324 WO2018201158A1 (en) | 2017-04-28 | 2018-04-30 | Systems and methods for locating blood vessels in the treatment of rhinitis |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110891507A CN110891507A (zh) | 2020-03-17 |
CN110891507B true CN110891507B (zh) | 2023-06-23 |
Family
ID=63918801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880043774.9A Active CN110891507B (zh) | 2017-04-28 | 2018-04-30 | 用于在鼻炎的治疗中定位血管的系统和方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11278356B2 (zh) |
EP (1) | EP3614940A4 (zh) |
JP (1) | JP7300999B2 (zh) |
CN (1) | CN110891507B (zh) |
AU (1) | AU2018256964B2 (zh) |
CA (1) | CA3061352A1 (zh) |
WO (1) | WO2018201158A1 (zh) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016183337A2 (en) | 2015-05-12 | 2016-11-17 | National University Of Ireland Galway | Devices for therapeutic nasal neuromodulation and associated methods and systems |
AU2017359338B2 (en) | 2016-11-11 | 2022-09-08 | Gynesonics, Inc. | Controlled treatment of tissue and dynamic interaction with, and comparison of, tissue and/or treatment data |
KR20200004362A (ko) * | 2017-05-04 | 2020-01-13 | 지네소닉스, 인크. | 도플러 초음파에 의한 절제 프로세스 감시 방법 |
CN112334085B (zh) * | 2018-06-26 | 2024-09-10 | 阿里内克斯股份有限公司 | 用于治疗鼻病的系统、装置和方法 |
WO2020018999A2 (en) | 2018-07-20 | 2020-01-23 | Arrinex, Inc. | Systems and methods for improved treatment of headache |
US10898151B2 (en) * | 2018-10-31 | 2021-01-26 | Medtronic Inc. | Real-time rendering and referencing for medical procedures |
US11666378B2 (en) | 2018-12-11 | 2023-06-06 | Neurent Medical Limited | Systems and methods for therapeutic nasal neuromodulation |
US11464567B2 (en) | 2019-06-07 | 2022-10-11 | Valam Corporation | Device and methods of laser treatment for rhinitis |
US11317970B2 (en) | 2019-06-07 | 2022-05-03 | Valam Corporation | Device and methods of laser treatment for rhinitis |
US20200405383A1 (en) * | 2019-06-28 | 2020-12-31 | Neurent Medical Limited | Systems and methods for treating at least one of rhinitis, congestion, and rhinorrhea |
WO2021205229A1 (en) | 2020-04-09 | 2021-10-14 | Neurent Medical Limited | Systems and methods for improving sleep with therapeutic nasal treatment |
US11896818B2 (en) | 2020-04-09 | 2024-02-13 | Neurent Medical Limited | Systems and methods for therapeutic nasal treatment |
US11861856B2 (en) * | 2020-06-27 | 2024-01-02 | Shanghai United Imaging Healthcare Co., Ltd. | Systems and methods for image processing |
CN113101551A (zh) * | 2021-05-12 | 2021-07-13 | 北京小超科技有限公司 | 用于乳腺肿瘤的超声治疗探头及包括其的装置 |
US12004821B2 (en) | 2022-02-03 | 2024-06-11 | Medtronic Navigation, Inc. | Systems, methods, and devices for generating a hybrid image |
CN115177210A (zh) * | 2022-07-05 | 2022-10-14 | 重庆医科大学 | 一种光声断层成像系统及方法 |
CN115998408B (zh) * | 2023-03-24 | 2023-07-14 | 中日友好医院(中日友好临床医学研究所) | 用于支气管迷走神经阻断术的冷冻消融探头及手术设备 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105228545A (zh) * | 2013-03-15 | 2016-01-06 | 美敦力阿迪安卢森堡有限公司 | 利用压力元件的多电极对合判断 |
Family Cites Families (292)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4582067A (en) | 1983-02-14 | 1986-04-15 | Washington Research Foundation | Method for endoscopic blood flow detection by the use of ultrasonic energy |
US4887605A (en) | 1988-02-18 | 1989-12-19 | Angelsen Bjorn A J | Laser catheter delivery system for controlled atheroma ablation combining laser angioplasty and intra-arterial ultrasonic imagining |
US5533499A (en) | 1991-06-10 | 1996-07-09 | Creative Integration & Design, Inc. | Nasal dilator |
US5353793A (en) | 1991-11-25 | 1994-10-11 | Oishi-Kogyo Company | Sensor apparatus |
US6109268A (en) | 1995-06-07 | 2000-08-29 | Arthrocare Corporation | Systems and methods for electrosurgical endoscopic sinus surgery |
US6053172A (en) | 1995-06-07 | 2000-04-25 | Arthrocare Corporation | Systems and methods for electrosurgical sinus surgery |
US6063079A (en) | 1995-06-07 | 2000-05-16 | Arthrocare Corporation | Methods for electrosurgical treatment of turbinates |
US5542916A (en) | 1992-08-12 | 1996-08-06 | Vidamed, Inc. | Dual-channel RF power delivery system |
US5514131A (en) | 1992-08-12 | 1996-05-07 | Stuart D. Edwards | Method for the ablation treatment of the uvula |
US5807306A (en) | 1992-11-09 | 1998-09-15 | Cortrak Medical, Inc. | Polymer matrix drug delivery apparatus |
US6832996B2 (en) | 1995-06-07 | 2004-12-21 | Arthrocare Corporation | Electrosurgical systems and methods for treating tissue |
US5730719A (en) | 1994-05-09 | 1998-03-24 | Somnus Medical Technologies, Inc. | Method and apparatus for cosmetically remodeling a body structure |
US5817049A (en) | 1994-05-09 | 1998-10-06 | Somnus Medical Technologies, Inc. | Method for treatment of airway obstructions |
US5843021A (en) | 1994-05-09 | 1998-12-01 | Somnus Medical Technologies, Inc. | Cell necrosis apparatus |
US5743870A (en) | 1994-05-09 | 1998-04-28 | Somnus Medical Technologies, Inc. | Ablation apparatus and system for removal of soft palate tissue |
US6152143A (en) | 1994-05-09 | 2000-11-28 | Somnus Medical Technologies, Inc. | Method for treatment of air way obstructions |
US5674191A (en) | 1994-05-09 | 1997-10-07 | Somnus Medical Technologies, Inc. | Ablation apparatus and system for removal of soft palate tissue |
US5728094A (en) | 1996-02-23 | 1998-03-17 | Somnus Medical Technologies, Inc. | Method and apparatus for treatment of air way obstructions |
US5707349A (en) | 1994-05-09 | 1998-01-13 | Somnus Medical Technologies, Inc. | Method for treatment of air way obstructions |
US5827277A (en) | 1994-06-24 | 1998-10-27 | Somnus Medical Technologies, Inc. | Minimally invasive apparatus for internal ablation of turbinates |
US5843077A (en) | 1994-06-24 | 1998-12-01 | Somnus Medical Technologies, Inc. | Minimally invasive apparatus for internal ablation of turbinates with surface cooling |
US5746224A (en) | 1994-06-24 | 1998-05-05 | Somnus Medical Technologies, Inc. | Method for ablating turbinates |
US5823197A (en) | 1994-06-24 | 1998-10-20 | Somnus Medical Technologies, Inc. | Method for internal ablation of turbinates |
FR2723305B1 (fr) | 1994-08-04 | 1996-11-22 | Kamami Yves Victor | Piece a main pour dispositif de chirurgie du nez par laser |
US5527351A (en) | 1994-09-21 | 1996-06-18 | Friedman; Mark H. | Treatment of vascular and tension headache atypical facial pain allergic rhinitis and cervical muscle hyperactivity |
US6176842B1 (en) * | 1995-03-08 | 2001-01-23 | Ekos Corporation | Ultrasound assembly for use with light activated drugs |
US6575969B1 (en) | 1995-05-04 | 2003-06-10 | Sherwood Services Ag | Cool-tip radiofrequency thermosurgery electrode system for tumor ablation |
US5570692A (en) | 1995-05-19 | 1996-11-05 | Hayashi Denki Co. Ltd. | Ultrasonic doppler blood flow detector for hemorrhoid artery ligation |
US6149620A (en) | 1995-11-22 | 2000-11-21 | Arthrocare Corporation | System and methods for electrosurgical tissue treatment in the presence of electrically conductive fluid |
US5624439A (en) | 1995-08-18 | 1997-04-29 | Somnus Medical Technologies, Inc. | Method and apparatus for treatment of air way obstructions |
US5733280A (en) | 1995-11-15 | 1998-03-31 | Avitall; Boaz | Cryogenic epicardial mapping and ablation |
US6805130B2 (en) | 1995-11-22 | 2004-10-19 | Arthrocare Corporation | Methods for electrosurgical tendon vascularization |
US5738114A (en) | 1996-02-23 | 1998-04-14 | Somnus Medical Technologies, Inc. | Method and apparatus for treatment of air way obstructions |
US5879349A (en) | 1996-02-23 | 1999-03-09 | Somnus Medical Technologies, Inc. | Apparatus for treatment of air way obstructions |
US5820580A (en) | 1996-02-23 | 1998-10-13 | Somnus Medical Technologies, Inc. | Method for ablating interior sections of the tongue |
US6126657A (en) | 1996-02-23 | 2000-10-03 | Somnus Medical Technologies, Inc. | Apparatus for treatment of air way obstructions |
US5743904A (en) | 1996-05-06 | 1998-04-28 | Somnus Medical Technologies, Inc. | Precision placement of ablation apparatus |
JP2002515801A (ja) | 1997-02-12 | 2002-05-28 | オーレイテック インターヴェンションズ インコーポレイテッド | 関節鏡による手術のための凹状探針 |
US5899898A (en) | 1997-02-27 | 1999-05-04 | Cryocath Technologies Inc. | Cryosurgical linear ablation |
ATE234042T1 (de) | 1997-03-25 | 2003-03-15 | Dwl Elektron Systeme Gmbh | Vorrichtung für die beobachtung von gefässen, insbesondere blutgefässen |
US6634363B1 (en) | 1997-04-07 | 2003-10-21 | Broncus Technologies, Inc. | Methods of treating lungs having reversible obstructive pulmonary disease |
US5846235A (en) | 1997-04-14 | 1998-12-08 | Johns Hopkins University | Endoscopic cryospray device |
US5792140A (en) | 1997-05-15 | 1998-08-11 | Irvine Biomedical, Inc. | Catheter having cooled multiple-needle electrode |
US6027499A (en) | 1997-05-23 | 2000-02-22 | Fiber-Tech Medical, Inc. (Assignee Of Jennifer B. Cartledge) | Method and apparatus for cryogenic spray ablation of gastrointestinal mucosa |
US5902299A (en) | 1997-07-29 | 1999-05-11 | Jayaraman; Swaminathan | Cryotherapy method for reducing tissue injury after balloon angioplasty or stent implantation |
US6102907A (en) | 1997-08-15 | 2000-08-15 | Somnus Medical Technologies, Inc. | Apparatus and device for use therein and method for ablation of tissue |
US5816095A (en) | 1997-09-30 | 1998-10-06 | Somnus Medical Technologies, Inc. | Bending tool |
US6045549A (en) | 1997-09-30 | 2000-04-04 | Somnus Medical Technologies, Inc. | Tissue ablation apparatus and device for use therein and method |
US6231569B1 (en) | 1997-10-06 | 2001-05-15 | Somnus Medical Technologies, Inc. | Dual processor architecture for electro generator |
DE69838555T2 (de) | 1997-10-23 | 2008-07-24 | ArthroCare Corp., Austin | Systeme zur geweberesektion, -ablation und -absaugung |
US5971979A (en) | 1997-12-02 | 1999-10-26 | Odyssey Technologies, Inc. | Method for cryogenic inhibition of hyperplasia |
EP1039862B1 (en) | 1997-12-15 | 2008-05-21 | ArthroCare Corporation | Systems for electrosurgical treatment of the head and neck |
US7001378B2 (en) | 1998-03-31 | 2006-02-21 | Innercool Therapies, Inc. | Method and device for performing cooling or cryo-therapies, for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection |
US6602276B2 (en) | 1998-03-31 | 2003-08-05 | Innercool Therapies, Inc. | Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation |
US6685732B2 (en) | 1998-03-31 | 2004-02-03 | Innercool Therapies, Inc. | Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon |
US7291144B2 (en) | 1998-03-31 | 2007-11-06 | Innercool Therapies, Inc. | Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation |
US6905494B2 (en) | 1998-03-31 | 2005-06-14 | Innercool Therapies, Inc. | Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection |
US6106518A (en) | 1998-04-09 | 2000-08-22 | Cryocath Technologies, Inc. | Variable geometry tip for a cryosurgical ablation device |
US6131579A (en) | 1998-04-21 | 2000-10-17 | Somnus Medical Technologies, Inc. | Wire based temperature sensing electrode |
US6096033A (en) | 1998-07-20 | 2000-08-01 | Tu; Hosheng | Medical device having ultrasonic ablation capability |
US6522906B1 (en) * | 1998-12-08 | 2003-02-18 | Intuitive Surgical, Inc. | Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure |
AU2679799A (en) | 1999-02-10 | 2000-08-29 | Swaminathan Jayaraman | Balloon catheter for cryotherapy and method of using same |
US6428534B1 (en) | 1999-02-24 | 2002-08-06 | Cryovascular Systems, Inc. | Cryogenic angioplasty catheter |
US6432102B2 (en) | 1999-03-15 | 2002-08-13 | Cryovascular Systems, Inc. | Cryosurgical fluid supply |
US6648879B2 (en) | 1999-02-24 | 2003-11-18 | Cryovascular Systems, Inc. | Safety cryotherapy catheter |
US6514245B1 (en) | 1999-03-15 | 2003-02-04 | Cryovascular Systems, Inc. | Safety cryotherapy catheter |
US6468297B1 (en) | 1999-02-24 | 2002-10-22 | Cryovascular Systems, Inc. | Cryogenically enhanced intravascular interventions |
US6270476B1 (en) | 1999-04-23 | 2001-08-07 | Cryocath Technologies, Inc. | Catheter |
US7416550B2 (en) | 2003-01-21 | 2008-08-26 | The Regents Of The University Of California | Method and apparatus for the control and monitoring of shape change in tissue |
US7935108B2 (en) | 1999-07-14 | 2011-05-03 | Cardiofocus, Inc. | Deflectable sheath catheters |
US6283959B1 (en) | 1999-08-23 | 2001-09-04 | Cyrocath Technologies, Inc. | Endovascular cryotreatment catheter |
US6575966B2 (en) | 1999-08-23 | 2003-06-10 | Cryocath Technologies Inc. | Endovascular cryotreatment catheter |
US7527622B2 (en) | 1999-08-23 | 2009-05-05 | Cryocath Technologies Inc. | Endovascular cryotreatment catheter |
US20020087155A1 (en) | 1999-08-30 | 2002-07-04 | Underwood Ronald A. | Systems and methods for intradermal collagen stimulation |
US6431174B1 (en) | 2000-08-10 | 2002-08-13 | Pi Medical, Inc. | Method and apparatus to treat conditions of the naso-pharyngeal area |
US6502574B2 (en) | 1999-09-17 | 2003-01-07 | Pi Medical, Inc. | Lateral stiffening snoring treatment |
EP1229849A1 (en) | 1999-11-16 | 2002-08-14 | Robert A. Ganz | System and method of treating abnormal tissue in the human esophagus |
WO2001043653A1 (en) | 1999-12-15 | 2001-06-21 | Edwards Stuart D | Treatment of eustachian tube dysfunction by application of radiofrequency energy |
US6451013B1 (en) | 2000-01-19 | 2002-09-17 | Medtronic Xomed, Inc. | Methods of tonsil reduction using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US6361531B1 (en) | 2000-01-21 | 2002-03-26 | Medtronic Xomed, Inc. | Focused ultrasound ablation devices having malleable handle shafts and methods of using the same |
US6589235B2 (en) | 2000-01-21 | 2003-07-08 | The Regents Of The University Of California | Method and apparatus for cartilage reshaping by radiofrequency heating |
US6425151B2 (en) | 2000-01-27 | 2002-07-30 | Somnus Company, L.L.P. | Cabinet having a fold-away bed |
AU2001243374B2 (en) | 2000-03-01 | 2005-02-03 | Zoll Circulation, Inc. | Cooling therapies/device for angioplasty with restenosis |
US8517923B2 (en) | 2000-04-03 | 2013-08-27 | Intuitive Surgical Operations, Inc. | Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities |
US7117033B2 (en) | 2000-05-08 | 2006-10-03 | Brainsgate, Ltd. | Stimulation for acute conditions |
US6375654B1 (en) | 2000-05-19 | 2002-04-23 | Cardiofocus, Inc. | Catheter system with working portion radially expandable upon rotation |
US6526318B1 (en) | 2000-06-16 | 2003-02-25 | Mehdi M. Ansarinia | Stimulation method for the sphenopalatine ganglia, sphenopalatine nerve, or vidian nerve for treatment of medical conditions |
CA2413529C (en) | 2000-06-23 | 2008-12-02 | Cryocath Technologies, Inc. | Cryotreatment device and method |
US6537271B1 (en) | 2000-07-06 | 2003-03-25 | Cryogen, Inc. | Balloon cryogenic catheter |
US6945981B2 (en) | 2000-10-20 | 2005-09-20 | Ethicon-Endo Surgery, Inc. | Finger operated switch for controlling a surgical handpiece |
US6673066B2 (en) | 2000-11-10 | 2004-01-06 | Cardiostream, Inc. | Apparatus and method to diagnose and treat vulnerable plaque |
US6666858B2 (en) | 2001-04-12 | 2003-12-23 | Scimed Life Systems, Inc. | Cryo balloon for atrial ablation |
HU224941B1 (en) | 2001-08-10 | 2006-04-28 | Bgi Innovacios Kft | Phototerapy apparatus |
WO2004000092A2 (en) | 2001-08-13 | 2003-12-31 | Cryovascular Systems, Inc. | Cryotherapy methods for treating vessel dissections and side branch occlusion |
US6786900B2 (en) | 2001-08-13 | 2004-09-07 | Cryovascular Systems, Inc. | Cryotherapy methods for treating vessel dissections and side branch occlusion |
AU2002326548A1 (en) | 2001-08-17 | 2003-04-14 | Innercool Therapies, Inc. | Preparation of working fluid for use in cryotherapies |
US6506157B1 (en) | 2001-09-05 | 2003-01-14 | Jack Teigman | Dual doppler artery ligation and hemorrhoid treatment system |
US6736809B2 (en) | 2001-09-26 | 2004-05-18 | Cryocath Technologies Inc. | Method and device for treatment of aneurysms |
US20040260328A1 (en) | 2001-09-27 | 2004-12-23 | Roni Zvuloni | Cryoplasty apparatus and method |
WO2003028542A2 (en) | 2001-10-02 | 2003-04-10 | Arthrocare Corporation | Apparatus and methods for electrosurgical removal and digestion of tissue |
US6562036B1 (en) | 2001-12-10 | 2003-05-13 | Ellman Alan G | Electrosurgical electrode for rhinoplasty |
US6709431B2 (en) | 2001-12-18 | 2004-03-23 | Scimed Life Systems, Inc. | Cryo-temperature monitoring |
US7479139B2 (en) * | 2002-01-04 | 2009-01-20 | Galil Medical Ltd. | Apparatus and method for protecting tissues during cryoablation |
US7017582B2 (en) | 2002-02-04 | 2006-03-28 | Restore Medical Inc. | Stiffening pharyngeal wall treatment |
EP1474203B1 (en) | 2002-02-13 | 2016-06-15 | ArthroCare Corporation | Electrosurgical apparatus for treating joint tissue |
US8840608B2 (en) | 2002-03-15 | 2014-09-23 | The General Hospital Corporation | Methods and devices for selective disruption of fatty tissue by controlled cooling |
US7620451B2 (en) | 2005-12-29 | 2009-11-17 | Ardian, Inc. | Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach |
US8347891B2 (en) | 2002-04-08 | 2013-01-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen |
US7853333B2 (en) | 2002-04-08 | 2010-12-14 | Ardian, Inc. | Methods and apparatus for multi-vessel renal neuromodulation |
US8145317B2 (en) | 2002-04-08 | 2012-03-27 | Ardian, Inc. | Methods for renal neuromodulation |
US7617005B2 (en) | 2002-04-08 | 2009-11-10 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
US7653438B2 (en) | 2002-04-08 | 2010-01-26 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
US20070129761A1 (en) | 2002-04-08 | 2007-06-07 | Ardian, Inc. | Methods for treating heart arrhythmia |
US7162303B2 (en) | 2002-04-08 | 2007-01-09 | Ardian, Inc. | Renal nerve stimulation method and apparatus for treatment of patients |
US6989009B2 (en) | 2002-04-19 | 2006-01-24 | Scimed Life Systems, Inc. | Cryo balloon |
US6921385B2 (en) | 2002-08-05 | 2005-07-26 | Alcon, Inc. | Apparatus for delivery of fluid to opthalmic surgical handpiece |
JP2006515999A (ja) * | 2002-11-14 | 2006-06-15 | ブレインズゲート リミティド | 刺激のための外科用ツール及び技法 |
US7060062B2 (en) | 2003-06-04 | 2006-06-13 | Cryo Vascular Systems, Inc. | Controllable pressure cryogenic balloon treatment system and method |
JP4231743B2 (ja) | 2003-07-07 | 2009-03-04 | オリンパス株式会社 | 生体組織切除装置 |
US7104984B2 (en) | 2003-08-22 | 2006-09-12 | Cryocor, Inc. | Reshapeable tip for a cryoprobe |
RU2372117C2 (ru) | 2003-09-18 | 2009-11-10 | Аркюо Медикал, Инк. | Способ опто-термо-механического воздействия на биологическую ткань и устройство для его осуществления |
US20050075702A1 (en) | 2003-10-01 | 2005-04-07 | Medtronic, Inc. | Device and method for inhibiting release of pro-inflammatory mediator |
US7418292B2 (en) | 2003-10-01 | 2008-08-26 | Medtronic, Inc. | Device and method for attenuating an immune response |
US7435252B2 (en) | 2003-10-15 | 2008-10-14 | Valam Corporation | Control of microorganisms in the sino-nasal tract |
US8206304B1 (en) | 2003-12-16 | 2012-06-26 | Vascular Technology Incorporated | Doppler transceiver and probe for use in minimally invasive procedures |
US8491636B2 (en) | 2004-03-23 | 2013-07-23 | Medtronic Cryopath LP | Method and apparatus for inflating and deflating balloon catheters |
US9555223B2 (en) | 2004-03-23 | 2017-01-31 | Medtronic Cryocath Lp | Method and apparatus for inflating and deflating balloon catheters |
US7727228B2 (en) | 2004-03-23 | 2010-06-01 | Medtronic Cryocath Lp | Method and apparatus for inflating and deflating balloon catheters |
US7491200B2 (en) | 2004-03-26 | 2009-02-17 | Arthrocare Corporation | Method for treating obstructive sleep disorder includes removing tissue from base of tongue |
EP1742588B1 (en) | 2004-04-01 | 2016-10-19 | The General Hospital Corporation | Apparatus for dermatological treatment and tissue reshaping |
US20080082090A1 (en) | 2004-04-01 | 2008-04-03 | The General Hospital Corporation | Method and apparatus for dermatological treatment and tissue reshaping |
US7654997B2 (en) | 2004-04-21 | 2010-02-02 | Acclarent, Inc. | Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat |
US20060063973A1 (en) | 2004-04-21 | 2006-03-23 | Acclarent, Inc. | Methods and apparatus for treating disorders of the ear, nose and throat |
US7114495B2 (en) | 2004-05-05 | 2006-10-03 | Silver Eagle Labs Inc. | Nasal strip with variable spring rate |
US7582083B2 (en) | 2004-05-10 | 2009-09-01 | Boston Scientific Scimed, Inc. | Probe based low temperature lesion formation apparatus, systems and methods |
US8177779B2 (en) | 2004-06-02 | 2012-05-15 | Boston Scientific Scimed, Inc. | Controllable pressure cryogenic balloon treatment system and method |
US7892230B2 (en) | 2004-06-24 | 2011-02-22 | Arthrocare Corporation | Electrosurgical device having planar vertical electrode and related methods |
EP2532383A3 (en) | 2005-01-18 | 2013-01-02 | Acclarent, Inc. | Devices for treating disorders of a paranasal sinus |
US7055523B1 (en) | 2005-02-24 | 2006-06-06 | Brown Thomas W | Internal nasal dilator and delivery mechanism |
US6978781B1 (en) | 2005-03-11 | 2005-12-27 | John Jordan | Nasal dilator |
US8267934B2 (en) | 2005-04-13 | 2012-09-18 | Stryker Corporation | Electrosurgical tool |
US7794455B2 (en) | 2005-04-29 | 2010-09-14 | Medtronic Cryocath Lp | Wide area ablation of myocardial tissue |
US7740627B2 (en) | 2005-04-29 | 2010-06-22 | Medtronic Cryocath Lp | Surgical method and apparatus for treating atrial fibrillation |
US7442190B2 (en) | 2005-05-13 | 2008-10-28 | Cryocath Technologies Inc. | Contact assessment of balloon catheters |
US7727191B2 (en) | 2005-05-13 | 2010-06-01 | Medtronic Cryocath Lp | Compliant balloon catheter |
US7850683B2 (en) | 2005-05-20 | 2010-12-14 | Myoscience, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
US7947076B2 (en) | 2005-06-03 | 2011-05-24 | Medtronic Xomed, Inc. | Nasal valve treatment method and apparatus |
US7655243B2 (en) | 2005-07-22 | 2010-02-02 | The Foundry, Llc | Methods and systems for toxin delivery to the nasal cavity |
US9186247B2 (en) | 2005-09-22 | 2015-11-17 | E. Antonio Mangubarr | Method and system for treatment of internal nasal valves |
US20070073282A1 (en) | 2005-09-26 | 2007-03-29 | Starion Instruments Corporation | Resistive heating device and method for turbinate ablation |
US8676324B2 (en) | 2005-11-10 | 2014-03-18 | ElectroCore, LLC | Electrical and magnetic stimulators used to treat migraine/sinus headache, rhinitis, sinusitis, rhinosinusitis, and comorbid disorders |
US7842031B2 (en) | 2005-11-18 | 2010-11-30 | Medtronic Cryocath Lp | Bioimpedance measurement system and method |
US8696656B2 (en) | 2005-11-18 | 2014-04-15 | Medtronic Cryocath Lp | System and method for monitoring bioimpedance and respiration |
US9357977B2 (en) * | 2006-01-12 | 2016-06-07 | Gynesonics, Inc. | Interventional deployment and imaging system |
US7879034B2 (en) | 2006-03-02 | 2011-02-01 | Arthrocare Corporation | Internally located return electrode electrosurgical apparatus, system and method |
US20070219600A1 (en) | 2006-03-17 | 2007-09-20 | Michael Gertner | Devices and methods for targeted nasal phototherapy |
US20070244529A1 (en) * | 2006-04-18 | 2007-10-18 | Zoom Therapeutics, Inc. | Apparatus and methods for treatment of nasal tissue |
US20090318804A1 (en) | 2006-05-02 | 2009-12-24 | Galil Medical Ltd. | Cryotherapy Planning and Control System |
WO2007134005A1 (en) | 2006-05-15 | 2007-11-22 | Mayo Foundation For Medical Education And Research | Devices and methods to treat nasal passages |
US20080039746A1 (en) | 2006-05-25 | 2008-02-14 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US9211393B2 (en) | 2006-06-05 | 2015-12-15 | Medtronic Cryocath Lp | Distal cooling distribution system for a medical device |
US20070299433A1 (en) | 2006-06-27 | 2007-12-27 | C2 Therapeutics | Barrett's Esophagus Cryogenic Ablation System |
ES2928065T3 (es) | 2006-06-28 | 2022-11-15 | Medtronic Ardian Luxembourg | Sistemas de neuromodulación renal inducida térmicamente |
US9814511B2 (en) | 2006-06-28 | 2017-11-14 | Medtronic Cryocath Lp | Variable geometry cooling chamber |
US8038712B2 (en) | 2006-06-29 | 2011-10-18 | Koninklijke Philips Electronics N.V. | Methods and devices for rhinoplasty and treating internal valve stenosis |
US20080027423A1 (en) | 2006-07-25 | 2008-01-31 | Zoom Therapeutics, Inc. | Systems for treatment of nasal tissue |
US7780730B2 (en) | 2006-09-25 | 2010-08-24 | Iyad Saidi | Nasal implant introduced through a non-surgical injection technique |
US8617149B2 (en) | 2006-10-02 | 2013-12-31 | Boston Scientific Scimed, Inc. | Common bond, double-balloon catheter |
US8317782B1 (en) | 2006-10-13 | 2012-11-27 | Ellman International, Inc. | Non-ablative radio-frequency treatment of skin tissue |
WO2008051918A2 (en) | 2006-10-23 | 2008-05-02 | Allux Medical, Inc. | Methods, devices and kits for phototherapy and photodynamic therapy treatment of body cavities |
DE102006052710A1 (de) | 2006-11-08 | 2008-05-29 | Siemens Ag | Vorrichtung zur Untersuchung und zur Durchführung von Interventionen, Punktionen und Injektionen |
CN103432625B (zh) | 2007-04-12 | 2015-12-02 | 阿克伦大学 | 可注射氰基丙烯酸酯-官能化聚异丁烯 |
US20080312644A1 (en) | 2007-06-14 | 2008-12-18 | Boston Scientific Scimed, Inc. | Cryogenic balloon ablation instruments and systems |
WO2009065061A1 (en) | 2007-11-14 | 2009-05-22 | Myoscience, Inc. | Pain management using cryogenic remodeling |
US8267962B2 (en) | 2007-12-03 | 2012-09-18 | Stupak Howard D | Device for repositioning cartilage and method of use |
MX2010007282A (es) | 2007-12-31 | 2010-11-12 | Acclarent Inc | Aposito para el tejido mucoso y metodo de uso. |
WO2009089427A1 (en) | 2008-01-11 | 2009-07-16 | Boston Scientific Scimed, Inc. | Ablation devices and methods of use |
US8483831B1 (en) | 2008-02-15 | 2013-07-09 | Holaira, Inc. | System and method for bronchial dilation |
WO2009114701A1 (en) | 2008-03-13 | 2009-09-17 | Boston Scientific Scimed, Inc. | Cryo-ablation refrigerant distribution catheter |
AU2009244058B2 (en) | 2008-05-09 | 2015-07-02 | Nuvaira, Inc | Systems, assemblies, and methods for treating a bronchial tree |
US8187261B2 (en) | 2008-05-29 | 2012-05-29 | Boston Scientific Scimed, Inc. | Regulating internal pressure of a cryotherapy balloon catheter |
US8388600B1 (en) | 2008-09-04 | 2013-03-05 | Dolor Technologies | Apparatus, system, and method for treating atypical headaches |
US8414495B2 (en) | 2008-09-10 | 2013-04-09 | General Electric Company | Ultrasound patch probe with micro-motor |
US8465481B2 (en) | 2008-10-20 | 2013-06-18 | Boston Scientific Scimed, Inc. | Providing cryotherapy with a balloon catheter having a non-uniform thermal profile |
US8382746B2 (en) | 2008-11-21 | 2013-02-26 | C2 Therapeutics, Inc. | Cryogenic ablation system and method |
US20120039954A1 (en) | 2008-12-15 | 2012-02-16 | Somnus Therapeutics, Inc. | Method of treating insomnia |
WO2010077980A1 (en) | 2008-12-16 | 2010-07-08 | Aardvark Medical, Inc. | Methods and systems for delivery of fluids, aerosols and acoustic energy to tissue surfaces, cavities and obstructed passages such as intranasal ostia |
US9089287B2 (en) * | 2008-12-30 | 2015-07-28 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Image-guided ablation system and method for monitoring an ablation procedure |
US8652129B2 (en) | 2008-12-31 | 2014-02-18 | Medtronic Ardian Luxembourg S.A.R.L. | Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation |
US20100168739A1 (en) | 2008-12-31 | 2010-07-01 | Ardian, Inc. | Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation |
US8137345B2 (en) | 2009-01-05 | 2012-03-20 | Peak Surgical, Inc. | Electrosurgical devices for tonsillectomy and adenoidectomy |
WO2010083281A1 (en) | 2009-01-15 | 2010-07-22 | Boston Scientific Scimed, Inc. | Controlling depth of cryoablation |
US8764740B2 (en) | 2009-03-23 | 2014-07-01 | Boston Scientific Scimed, Inc. | Systems apparatus and methods for distributing coolant within a cryo-ablation device |
US9050019B2 (en) | 2009-05-08 | 2015-06-09 | Luiz Ferreira Maracajá Neto | Pharyngeal ultrasound guide |
US20110009737A1 (en) | 2009-06-09 | 2011-01-13 | The General Hospital Corporation | Method and apparatus for dermatological treatment and tissue reshaping |
US8591504B2 (en) | 2009-07-31 | 2013-11-26 | Boston Scientific Scimed, Inc. | Systems and methods for regulating pressure levels in an inter-expansion-element space of a cryoablation system |
AU2010282502A1 (en) | 2009-08-14 | 2012-03-01 | Boston Scientific Scimed, Inc. | Systems and methods for making and using medical ablation systems having mapping catheters with improved anchoring ability |
KR101789131B1 (ko) | 2009-10-16 | 2017-10-23 | 셰이서 인코포레이티드 | 광 기반 피부과적 치료 장치를 위한 전원 장치 |
WO2011056684A2 (en) | 2009-10-27 | 2011-05-12 | Innovative Pulmonary Solutions, Inc. | Delivery devices with coolable energy emitting assemblies |
US20110184402A1 (en) | 2009-11-02 | 2011-07-28 | Cpsi Biotech | Flexible Cryogenic Probe Tip |
US9089314B2 (en) | 2010-01-27 | 2015-07-28 | Medtronic Cryocath Lp | Partially compliant balloon device |
US8986293B2 (en) | 2010-01-27 | 2015-03-24 | Medtronic Cryocath Lp | Cryoballoon refrigerant dispersion control |
US8926602B2 (en) | 2010-01-28 | 2015-01-06 | Medtronic Cryocath Lp | Triple balloon catheter |
US9445859B2 (en) | 2010-01-29 | 2016-09-20 | Medtronic Cryocath Lp | Multifunctional ablation device |
JP2011212253A (ja) * | 2010-03-31 | 2011-10-27 | Fujifilm Corp | 超音波撮像方法および超音波撮像装置 |
US9317536B2 (en) | 2010-04-27 | 2016-04-19 | Cornell University | System and methods for mapping and searching objects in multidimensional space |
CN102858252B (zh) * | 2010-04-28 | 2015-05-20 | 皇家飞利浦电子股份有限公司 | 用于确定对象的性质的性质确定装置 |
US9931152B2 (en) | 2010-07-27 | 2018-04-03 | Medtronic Cryocath Lp | Dual injection tube cryocatheter and method for using same |
US8672930B2 (en) | 2010-07-28 | 2014-03-18 | Medtronic Cryocath Lp | Endoluminal ablation cryoballoon and method |
US8679105B2 (en) | 2010-07-28 | 2014-03-25 | Medtronic Cryocath Lp | Device and method for pulmonary vein isolation |
WO2012019156A1 (en) | 2010-08-05 | 2012-02-09 | Medtronic Ardian Luxembourg S.A.R.L. | Cryoablation apparatuses, systems, and methods for renal neuromodulation |
CN103118613A (zh) | 2010-08-26 | 2013-05-22 | 克莱米迪克斯有限责任公司 | 冷冻消融球囊导管和相关的方法 |
WO2012040557A2 (en) | 2010-09-24 | 2012-03-29 | Entrigue Surgical, Inc. | Systems, devices, and methods for providing therapy to an anatomical structure using high frequency pressure waves and/or cryogenic temperatures |
US8911434B2 (en) | 2010-10-22 | 2014-12-16 | Medtronic Cryocath Lp | Balloon catheter with deformable fluid delivery conduit |
US9060754B2 (en) | 2010-10-26 | 2015-06-23 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation cryotherapeutic devices and associated systems and methods |
US20120136344A1 (en) | 2010-10-26 | 2012-05-31 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation cryotherapeutic devices and associated systems and methods |
US9011420B2 (en) | 2010-10-27 | 2015-04-21 | Medtronic Cryocath Lp | Compatible cryogenic cooling system |
US9821159B2 (en) | 2010-11-16 | 2017-11-21 | The Board Of Trustees Of The Leland Stanford Junior University | Stimulation devices and methods |
US8827952B2 (en) | 2010-12-06 | 2014-09-09 | Boston Scientific Scimed, Inc. | Biasing mechanism for a balloon catheter |
US9168079B2 (en) | 2010-12-27 | 2015-10-27 | Medtronic Cryocath Lp | Method and system to prevent complete obstruction in catheter in case of a kink |
CN102008283B (zh) | 2010-12-30 | 2012-05-30 | 广州宝胆医疗器械科技有限公司 | 具有彩色多普勒超声扫描功能的电子支气管镜系统 |
US8747401B2 (en) | 2011-01-20 | 2014-06-10 | Arthrocare Corporation | Systems and methods for turbinate reduction |
US9125677B2 (en) | 2011-01-22 | 2015-09-08 | Arcuo Medical, Inc. | Diagnostic and feedback control system for efficacy and safety of laser application for tissue reshaping and regeneration |
WO2012106260A2 (en) | 2011-02-01 | 2012-08-09 | Channel Medsystems, Inc. | Methods and apparatus for cyrogenic treatment of a body cavity or lumen |
CN103930061B (zh) | 2011-04-25 | 2016-09-14 | 美敦力阿迪安卢森堡有限责任公司 | 用于限制导管壁低温消融的有关低温球囊限制部署的装置及方法 |
US8944052B2 (en) | 2011-05-26 | 2015-02-03 | Ivan Osorio | Apparatus and methods for delivery of therapeutic agents to mucous or serous membrane |
US20120316557A1 (en) | 2011-06-08 | 2012-12-13 | Tyco Healthcare Group Lp | Septoplasty Instrument |
US9883883B2 (en) | 2011-06-13 | 2018-02-06 | P Tech, Llc | Ultrasonic handpiece |
US8986301B2 (en) | 2012-06-13 | 2015-03-24 | Aerin Medical Inc. | Methods and devices to treat nasal airways |
SG10201607576PA (en) | 2011-06-14 | 2016-11-29 | Aerin Medical Inc | Devices for treating nasal airways |
US9415194B2 (en) | 2011-06-14 | 2016-08-16 | Aerin Medical Inc. | Post nasal drip treatment |
US20130018366A1 (en) | 2011-07-11 | 2013-01-17 | C2 Therapeutics | Focal Ablation Assembly |
US9084592B2 (en) | 2011-07-11 | 2015-07-21 | C2 Therapeutics, Inc. | Focal ablation assembly |
JP6126090B2 (ja) | 2011-07-12 | 2017-05-10 | スリーエム イノベイティブ プロパティズ カンパニー | 傷あて材アセンブリ |
WO2013035192A1 (ja) | 2011-09-09 | 2013-03-14 | 医療法人社団アドベント | 鼻炎の症状を外科的に治療するための方法及び装置 |
US10201386B2 (en) | 2011-10-05 | 2019-02-12 | Nuvaira, Inc. | Apparatus for injuring nerve tissue |
AU2013211951B2 (en) | 2012-01-26 | 2017-02-16 | Autonomix Medical, Inc. | Controlled sympathectomy and micro-ablation systems and methods |
US9220556B2 (en) | 2012-01-27 | 2015-12-29 | Medtronic Cryocath Lp | Balloon design to enhance cooling uniformity |
US20130253387A1 (en) | 2012-03-08 | 2013-09-26 | Sonitec, LLC | Vibratory energy systems and methods for occluded body cavities |
US9241752B2 (en) | 2012-04-27 | 2016-01-26 | Medtronic Ardian Luxembourg S.A.R.L. | Shafts with pressure relief in cryotherapeutic catheters and associated devices, systems, and methods |
EP4378523A3 (en) | 2012-05-18 | 2024-07-31 | Nuvaira, Inc. | Systems and apparatuses for treating tissue and controlling stenosis |
EP2854681A4 (en) | 2012-06-01 | 2016-02-17 | Cibiem Inc | PERCUTANEOUS METHODS AND DEVICES FOR CAROTIDE BODY ABLATION |
WO2013188640A1 (en) | 2012-06-14 | 2013-12-19 | Landy Toth | Devices, systems, and methods for diagnosis and treatment of overactive bladder |
US20140031726A1 (en) | 2012-07-13 | 2014-01-30 | Entrigue Surgical, Inc. | Low Frequency Ultrasound Surgical Systems for the Treatment of Soft Tissues |
WO2014022436A1 (en) * | 2012-07-30 | 2014-02-06 | Fractyl Laboratories Inc. | Electrical energy ablation systems, devices and methods for the treatment of tissue |
US9398933B2 (en) | 2012-12-27 | 2016-07-26 | Holaira, Inc. | Methods for improving drug efficacy including a combination of drug administration and nerve modulation |
US9254166B2 (en) | 2013-01-17 | 2016-02-09 | Arthrocare Corporation | Systems and methods for turbinate reduction |
US9522030B2 (en) | 2013-01-23 | 2016-12-20 | Medtronic Cryocath Lp | Purge phase for cryoablation systems |
US20140228875A1 (en) | 2013-02-08 | 2014-08-14 | Nidus Medical, Llc | Surgical device with integrated visualization and cauterization |
WO2014138709A1 (en) | 2013-03-08 | 2014-09-12 | Oculeve, Inc. | Devices and methods for treating dry eye in animals |
WO2014165124A1 (en) | 2013-03-12 | 2014-10-09 | Oculeve, Inc. | Implant delivery devices, systems, and methods |
KR102255994B1 (ko) | 2013-03-13 | 2021-05-26 | 누바이라 인코포레이티드 | 유체 전달 시스템 및 치료 방법 |
US20140276698A1 (en) | 2013-03-14 | 2014-09-18 | Medtronic Cryocath Lp | Method and apparatus for cryoadhesion |
US9084590B2 (en) | 2013-03-14 | 2015-07-21 | Medtronic Cryocath Lp | Device and method for improved safety and efficacy for cryoablation |
NZ704579A (en) | 2013-04-19 | 2018-10-26 | Oculeve Inc | Nasal stimulation devices and methods |
US20140378873A1 (en) | 2013-06-24 | 2014-12-25 | Ary S. Chernomorsky | Methods, devices and systems for increasing the effectiveness of ultrasound and other tissue treatment modalities |
CN103330578B (zh) | 2013-07-19 | 2015-05-27 | 乐普(北京)医疗器械股份有限公司 | 一种次圆周式超声消融导管 |
US20150031946A1 (en) * | 2013-07-24 | 2015-01-29 | Nidus Medical, Llc | Direct vision cryosurgical probe and methods of use |
CN103385736B (zh) | 2013-07-31 | 2015-07-29 | 深圳先进技术研究院 | 内窥式鼻咽癌超声成像装置 |
US10603059B2 (en) | 2013-09-13 | 2020-03-31 | Aerin Medical Inc. | Hyaline cartilage shaping |
US20150087975A1 (en) | 2013-09-24 | 2015-03-26 | University Of British Columbia | Elastography-based assessment of cryoablation |
US9433763B2 (en) | 2013-09-27 | 2016-09-06 | Acclarent, Inc. | Sinus wall implant |
US9687288B2 (en) | 2013-09-30 | 2017-06-27 | Arrinex, Inc. | Apparatus and methods for treating rhinitis |
US10098685B2 (en) | 2013-10-30 | 2018-10-16 | Medtronic Cryocath Lp | Feedback system for cryoablation of cardiac tissue |
CN107669332B (zh) | 2013-11-01 | 2020-09-18 | 美国宾得公司 | 低温消融导管、手柄组件以及低温球囊消融系统 |
US9993279B2 (en) | 2013-12-06 | 2018-06-12 | Medtronic Cryocath Lp | Distal balloon impedance and temperature recording to monitor pulmonary vein ablation and occlusion |
WO2015106118A1 (en) | 2014-01-09 | 2015-07-16 | Sonitec Llc | Systems and methods using ultrasound for treatment |
US10441338B2 (en) | 2014-01-14 | 2019-10-15 | Medtronic Cryocath Lp | Balloon catheter with fluid injection elements |
EP2901951A1 (en) | 2014-01-30 | 2015-08-05 | Oncotherm Kft. | Shape-adapting electrode for electromagnetic energy transfer |
US9439709B2 (en) | 2014-01-31 | 2016-09-13 | Cryofocus Medtech (Shanghai) Co., Ltd. | Cryoablation balloon catheter with guide wire lumen |
EP3689338A1 (en) | 2014-02-25 | 2020-08-05 | Oculeve, Inc. | Polymer formulations for nasolacrimal stimulation |
US10492842B2 (en) | 2014-03-07 | 2019-12-03 | Medtronic Ardian Luxembourg S.A.R.L. | Monitoring and controlling internally administered cryotherapy |
EP3116408B1 (en) * | 2014-03-12 | 2018-12-19 | Cibiem, Inc. | Ultrasound ablation catheter |
US9855089B2 (en) | 2014-03-21 | 2018-01-02 | Medtronic Cryocath Lp | Shape changing ablation balloon |
US9925359B2 (en) | 2014-03-21 | 2018-03-27 | Medtronic Cryocath Lp | Balloon design to reduce distal length |
WO2015153696A1 (en) | 2014-04-03 | 2015-10-08 | Aerin Medical Inc. | Post nasal drip treatment |
US9763743B2 (en) * | 2014-07-25 | 2017-09-19 | Arrinex, Inc. | Apparatus and method for treating rhinitis |
AU2015292278B2 (en) | 2014-07-25 | 2020-04-09 | Oculeve, Inc. | Stimulation patterns for treating dry eye |
CA2965363A1 (en) | 2014-10-22 | 2016-04-28 | Oculeve, Inc. | Implantable nasal stimulator systems and methods |
WO2016065211A1 (en) | 2014-10-22 | 2016-04-28 | Oculeve, Inc. | Contact lens for increasing tear production |
US10722301B2 (en) * | 2014-11-03 | 2020-07-28 | The George Washington University | Systems and methods for lesion assessment |
US10362965B2 (en) | 2015-04-22 | 2019-07-30 | Acclarent, Inc. | System and method to map structures of nasal cavity |
WO2016183337A2 (en) | 2015-05-12 | 2016-11-17 | National University Of Ireland Galway | Devices for therapeutic nasal neuromodulation and associated methods and systems |
US9414878B1 (en) | 2015-05-15 | 2016-08-16 | C2 Therapeutics, Inc. | Cryogenic balloon ablation system |
US10512763B2 (en) | 2015-08-25 | 2019-12-24 | Acclarent, Inc. | Dilation catheter with expandable stop element |
WO2017047543A1 (ja) | 2015-09-14 | 2017-03-23 | テルモ株式会社 | アブレーションカテーテル |
WO2017047545A1 (ja) | 2015-09-14 | 2017-03-23 | テルモ株式会社 | アブレーションカテーテル |
JP7125349B2 (ja) * | 2016-02-11 | 2022-08-24 | アリネックス, インコーポレイテッド | 画像誘導後鼻神経アブレーションの方法およびデバイス |
WO2017152061A1 (en) | 2016-03-04 | 2017-09-08 | Aerin Medical, Inc. | Eustachian tube modification |
US10646197B2 (en) | 2016-07-06 | 2020-05-12 | Biosense Webster (Israel) Ltd. | Ascertaining tissue thickness |
EP3537954B1 (en) | 2016-11-11 | 2021-07-21 | National University of Ireland, Galway | Devices, systems, and methods for specializing, monitoring, and/or evaluating therapeutic nasal neuromodulation |
MA47095A (fr) | 2016-12-22 | 2019-10-30 | Aerin Medical Inc | Traitement du palais mou |
-
2018
- 2018-04-30 JP JP2019558471A patent/JP7300999B2/ja active Active
- 2018-04-30 CA CA3061352A patent/CA3061352A1/en active Pending
- 2018-04-30 AU AU2018256964A patent/AU2018256964B2/en active Active
- 2018-04-30 CN CN201880043774.9A patent/CN110891507B/zh active Active
- 2018-04-30 EP EP18789880.4A patent/EP3614940A4/en active Pending
- 2018-04-30 US US15/967,498 patent/US11278356B2/en active Active
- 2018-04-30 WO PCT/US2018/030324 patent/WO2018201158A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105228545A (zh) * | 2013-03-15 | 2016-01-06 | 美敦力阿迪安卢森堡有限公司 | 利用压力元件的多电极对合判断 |
Also Published As
Publication number | Publication date |
---|---|
US20180344411A1 (en) | 2018-12-06 |
AU2018256964A1 (en) | 2019-11-14 |
CN110891507A (zh) | 2020-03-17 |
JP2020517383A (ja) | 2020-06-18 |
JP7300999B2 (ja) | 2023-06-30 |
EP3614940A4 (en) | 2021-01-20 |
US11278356B2 (en) | 2022-03-22 |
AU2018256964B2 (en) | 2023-11-30 |
CA3061352A1 (en) | 2018-11-01 |
EP3614940A1 (en) | 2020-03-04 |
WO2018201158A1 (en) | 2018-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110891507B (zh) | 用于在鼻炎的治疗中定位血管的系统和方法 | |
US9730672B2 (en) | System and method for detecting critical structures using ultrasound | |
US6106517A (en) | Surgical instrument with ultrasound pulse generator | |
ES2424874T3 (es) | Sistema de seguimiento de un cambio de tejido durante un tratamiento HIFU | |
US9198635B2 (en) | Method and apparatus for preparing organs and tissues for laparoscopic surgery | |
US9220488B2 (en) | System and method for treating a therapeutic site | |
US7470241B2 (en) | Controlled high efficiency lesion formation using high intensity ultrasound | |
US20070021744A1 (en) | Apparatus and method for performing ablation with imaging feedback | |
WO1996000037A9 (en) | Surgical instrument with ultrasound pulse generator | |
AU2022231648B2 (en) | Systems, devices, and methods for treatment of nasal disorders | |
EP3226773B1 (en) | Systems for lesion formation feedback |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |