CN110884389A - 动力电池管理系统跨铜排电压采样的补偿方法 - Google Patents

动力电池管理系统跨铜排电压采样的补偿方法 Download PDF

Info

Publication number
CN110884389A
CN110884389A CN201911107658.1A CN201911107658A CN110884389A CN 110884389 A CN110884389 A CN 110884389A CN 201911107658 A CN201911107658 A CN 201911107658A CN 110884389 A CN110884389 A CN 110884389A
Authority
CN
China
Prior art keywords
copper bar
management system
battery management
voltage
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911107658.1A
Other languages
English (en)
Other versions
CN110884389B (zh
Inventor
张静
刘振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhixin Control System Co ltd
Original Assignee
Dongfeng Hangsheng (wuhan) Automobile Control System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfeng Hangsheng (wuhan) Automobile Control System Co Ltd filed Critical Dongfeng Hangsheng (wuhan) Automobile Control System Co Ltd
Priority to CN201911107658.1A priority Critical patent/CN110884389B/zh
Publication of CN110884389A publication Critical patent/CN110884389A/zh
Application granted granted Critical
Publication of CN110884389B publication Critical patent/CN110884389B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)

Abstract

本发明提供了一种动力电池管理系统跨铜排电压采样的补偿方法,包括以下步骤:电池管理系统和电流传感器上电;读取待采集电芯对应的铜排的标定参数;获取铜排电连接的电流传感器的电流值;计算铜排温度;根据铜排温度和电流传感器的电流值计算需要补偿的铜排电压;将采集的电芯电压加上补偿的铜排电压,得出电芯实际电压。本发明减少了动力电池管理系统单体电压采样通道的数量,降低了系统的成本,并且提高了动力电池系统的能量密度。

Description

动力电池管理系统跨铜排电压采样的补偿方法
技术领域
本发明涉及新能源汽车动力电池管理系统技术领域,具体涉及一种动力电池管理系统跨铜排电压采样的补偿方法。
背景技术
随着新能源汽车推广应用财政补贴技术门槛进一步提高,并细化了续航里程、电池能量密度、能耗水平补贴等方面的技术指标和档位,市场竞争渐趋“白热化”,对各零部件的成本及参数要求进一步提高。
目前动力电池系统一般采用多个动力电池模组通过若干个铜排进行串联,组成一个动力电池系统。以4串动力电池模组组成96串动力电池系统为例,系统共需要24个动力电池模组、最少23个铜排进行串联。
常用的电池管理系统方案,为避免铜排在过电流时的分压对单体电压的采集造成影响,会对铜排的电压进行单独采样,再将铜排的电压剔除,这样96串的电池系统约需要119个电压采样通道去采集,极大的造成了采样通道的浪费。同时采样通道的增加,带来了系统成本的增加,电池管理系统体积和重量的增加,影响了整体动力电池系统的能量密度和成本。
也有跨铜排进行电压采样的方案,96串动力电池系统采用96个电压采样通道,不处理铜排的分压。但这种方案会导致大电流时,采样电压与实际电池电压误差较大,从而引起电池误保护、误均衡、影响SOC修正等问题。
发明内容
本发明的目的就是针对现有技术的缺陷,提供一种动力电池管理系统跨铜排电压采样的补偿方法,减少了动力电池管理系统单体电压采样通道的数量,降低了系统的成本,并且提高了动力电池系统的能量密度。
本发明提供了一种动力电池管理系统跨铜排电压采样的补偿方法,其特征在于包括以下步骤:
电池管理系统和电流传感器上电;读取待采集电芯对应的铜排的标定参数,所述标定参数为电池管理系统内部已经设定好的;获取铜排电连接的电流传感器的电流值,即待采集电芯的母线电流值;计算铜排温度;根据该铜排温度、铜排实际阻值和其对应的电流传感器的测量值计算需要补偿的铜排电压;将采集的电芯电压加上补偿的铜排电压,得出电芯实际电压。
上述技术方案中,铜排的标定参数包括电芯是否需要进行补偿、铜排的位置、铜排的电阻阻值。
上述技术方案中,包括以下步骤:
电池管理系统上电后根据铜排标定参数判断是否对铜排补偿算法使能;铜排补偿算法使能后确定待采集电芯的电压采集通道是否有铜排;判断为是后继续判断是否收到电流传感器检测到的母线的电流的电流值;判断为是后,计算铜排的温度;若上述任一步骤判断为否,不进行补偿的铜排电压的计算。
上述技术方案中,铜排补偿电压的计算公式如下:
Ut=I R1+I[R2+R2(T-20)*k]
Ut:铜排产生的补偿电压;I:母线电流;R1:铜排接触阻抗;R2:铜排20℃阻值;T:铜排温度;k:铜电阻温升系数0.00393/℃。铜排的接触阻抗和20度阻值是测量获得,电阻温升系数是产品自身的参数通过参考资料获得。
上述技术方案中,计算铜排温度包括以下步骤:
通过铜排的电阻温升系数计算铜排的初始阻值;根据铜排的初始阻值计算铜排的发热量,由发热量计算铜排的温升;根据温升计算铜排的散热量;将发热量减去散热量计算得到铜排的累积热量;根据累积温升计算铜排的实际温升;将铜排的实际温升和初始温度相加获得铜排温度。
上述技术方案中,采用下列公式计算铜排的初始阻值R0
R0=R2+R2(T0-20)*k,
其中,T0为初始温度,可通过电芯的温度传感器获取。
上述技术方案中,根据电阻发热公式Q1=I^2·R·t,通过积分的方式计算铜排的发热量Q1,单位为J;其中I为通过电流传感器检测到的铜排上的电流,单位为A;R0为铜排的初始阻值,单位为Ω;t为时间,单位为s。
上述技术方案中,根据热量计算公式Q=CM△T,分别计算得到铜排的温升和实际温升,其中,C为铜排的比热容,M为铜排的质量,单位为kg;带入铜排当前的发热量Q1至上述公式,单位为J,可计算得到铜排的温升△T1,单位为℃;带入累积热量Q3至上述公式,计算得到铜排的实际温升△T2,单位为℃。
上述技术方案中,根据散热量计算公式Q=K·F·△T·t,通过积分的方式计算铜排的散热量Q2,单位为J;
其中K为铜排的传热系数,单位为W/㎡·℃;F为铜排的散热面积(即铜排的表面积),单位为㎡;△T取铜排的温升△T1,单位为℃;t为时间,单位为s。
本发明减少了动力电池管理系统单体电压采样通道的数量,降低了系统的成本,并且提高了动力电池系统的能量密度。本发明中铜排的温度,通过累积热量的方式进行估算,解决了铜排上难以布置温度传感器的问题,降低了系统复杂度。本发明通过对铜排分压进行补偿的方式,提高了动力电池电芯单体电压的采样精度。
附图说明
图1是为本发明应用系统中的局部示意图;
图2是为本发明流程图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步的详细说明,便于清楚地了解本发明,但它们不对本发明构成限定。
图1是本发明所应用的系统的局部示意图,如图1所示,4串1个电池模组,3个电池模组使用两个铜排进行串联,B-至B12+为单体电压采样,每相邻两组采样线采集1个电芯的单体电压。其中BAT5通过B4+与B5+采集电压和BAT9的通过B8+与B9+采样电压,铜排通过电流时会产生压降,需要在采样电压的基础上补偿铜排压降。
如图2所示,本发明提供了一种动力电池管理系统跨铜排电压采样的补偿方法,包括以下步骤:
第一步,电池管理系统和电流传感器上电;
第二步,读取待采集电芯对应的铜排的标定参数,包括铜排的阻值、是否需要进行补偿、铜排的位置;
第三步,获取待采集电芯对应的铜排电连接的电流传感器的电流值;
第四步,估算铜排的温度,计算铜排温度补偿;
第五步,按公式计算当前电流下待采集电芯需要补偿的电压;
第六步,将待采集电芯的采集电压加上补偿的铜排电压,得出该电芯实际电压进行上传。
电芯实际电压的计算公式如下:
U=U1+I R1+I[R2+R2(T-20)*k]
其中,U:电芯补偿后电压;I:母线电流;U1:电芯采样电压;R1:铜排接触阻抗;R2:铜排20℃阻值;T:铜排温度;k:铜电阻温升系数0.00393/℃
在本实施例中,可以通过高精度内阻测量仪测量铜排的常温即20度时,内阻和铜排与母排的接触内阻,将测量的结果标定到电池管理系统中。
在本实施例中,通过电流传感器采集母线的电流。
在本实施例中,可以通过计算累积热量方式计算铜排温度,步骤如下。
(1)通过铜的电阻温升系数计算铜排的初始阻值,R0=R2+R2(T0-20)*k,T0为初始温度,可通过电芯的温度传感器获取。设铜排的20℃阻值R2为0.05mΩ,初始温度T0为0℃,通过公式计算R0=0.04607mΩ。
(2)根据电阻发热公式Q=I^2·R·t,通过积分的方式计算铜排的发热量Q1,单位为J。其中I为通过电流传感器检测到的铜排上的电流,单位为A;R0为铜排的初始阻值,单位为Ω;t为时间,单位为s;设电流在100A时,通过公式计算铜排1分钟的发热量Q1=27.642J。
(3)根据热量计算公式Q=CM△T,通过Q1计算铜排的温升△T1,单位为℃。其中,Q1为铜排当前的发热量,单位为J;C为铜排的比热容,已知为0.39×10^3,单位为J/(kg·℃);M为铜排的质量,单位为kg;设铜排的质量M为0.2kg,通过公式计算1分钟温升△T1≈0.354℃。
(4)根据散热量计算公式Q=K·F·△T·t,通过积分的方式计算铜排的散热量Q2,单位为J。其中K为铜排的传热系数,单位为W/㎡·℃;F为铜排的散热面积(即铜排的表面积),单位为㎡;△T取第二步计算的△T1,单位为℃;t为时间,单位为s。设铜排的传热系数K为10W/㎡·℃,散热面积F为0.01㎡,通过公式计算1分钟散热量Q2=2.124J。
(5)计算铜排的累积热量Q3,单位为J。根据第一步和第三步计算出的铜排的发热量Q1和散热量Q2,铜排的累积热量Q3=Q1-Q2=27.642-2.124=25.518J。
(6)再次根据热量计算公式Q=CM△T,通过累积热量Q3计算铜排的实际温升△T2,单位为℃。实际温升△T2=0.327℃
(7)铜排的实际温度T=△T2+T0,△T2为第六步计算,T0为初始温度。
本说明书未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (9)

1.一种动力电池管理系统跨铜排电压采样的补偿方法,其特征在于包括以下步骤:
电池管理系统和电流传感器上电;读取待采集电芯对应的铜排的标定参数;获取待采集电芯对应的铜排电连接的电流传感器的测量值;计算该铜排温度;根据该铜排温度、铜排实际阻值和其对应的电流传感器的测量值计算需要补偿的铜排电压;将待采集电芯的采集电压加上补偿的铜排电压,得出待采集电芯的实际电压。
2.根据权利要求1所述的动力电池管理系统跨铜排电压采样的补偿方法,其特征在于:铜排的标定参数包括电芯是否需要进行补偿、铜排的位置、铜排的电阻阻值。
3.根据权利要求2所述的动力电池管理系统跨铜排电压采样的补偿方法,其特征在于包括以下步骤:
电池管理系统上电后根据铜排标定参数判断是否对铜排补偿算法使能;铜排补偿算法使能后确定待采集电芯的电压采集通道是否有铜排;判断为是后继续判断是否收到电流传感器检测到的母线的电流的电流值;判断为是后,计算铜排的温度;若上述任一步骤判断为否,不进行补偿的铜排电压的计算。
4.根据权利要求3所述的动力电池管理系统跨铜排电压采样的补偿方法,其特征在于铜排补偿电压的计算公式如下:
Ut=IR1+I[R2+R2(T-20)*k]
Ut:铜排产生的补偿电压;I:铜排电连接的电流传感器的电流值;R1:铜排接触阻抗;R2:铜排20℃阻值;T:铜排温度;k:铜电阻温升系数0.00393/℃;其中铜排的接触内阻和20度阻值是通过测量获得,铜电阻温升系数是产品本身参数;电池管理系统上电之前,相关铜排的参数系数已经输入至电池管理系统。
5.根据权利要求4所述的动力电池管理系统跨铜排电压采样的补偿方法,其特征在于计算铜排温度包括以下步骤:
通过铜排的电阻温升系数计算铜排的初始阻值;根据铜排的初始阻值计算铜排的发热量,由发热量计算铜排的温升;根据温升计算铜排的散热量;将发热量减去散热量计算得到铜排的累积热量;根据累积温升计算铜排的实际温升;将铜排的实际温升和初始温度相加获得铜排温度。
6.根据权利要求5所述的动力电池管理系统跨铜排电压采样的补偿方法,其特征在于采用下列公式计算铜排的初始阻值R0
R0=R2+R2(T0-20)*k,
其中,T0为铜排的初始温度,通过电芯的温度传感器获取。
7.根据权利要求6所述的动力电池管理系统跨铜排电压采样的补偿方法,其特征在于:
根据电阻发热公式Q1=I^2·R·t,通过积分的方式计算铜排的发热量Q1,单位为J;其中I为通过电流传感器检测到的铜排上的电流,单位为A;R0为铜排的初始阻值,单位为Ω;t为时间,单位为s。
8.根据权利要求7所述的动力电池管理系统跨铜排电压采样的补偿方法,其特征在于:
根据热量计算公式Q=CM△T,分别计算得到铜排的温升和实际温升,其中,C为铜排的比热容,M为铜排的质量,单位为kg;带入铜排当前的发热量Q1至上述公式,单位为J,可计算得到铜排的温升△T1,单位为℃;带入累积热量Q3至上述公式,计算得到铜排的实际温升△T2,单位为℃。
9.根据权利要求8所述的动力电池管理系统跨铜排电压采样的补偿方法,其特征在于根据散热量计算公式Q2=K·F·△T·t,通过积分的方式计算铜排的散热量Q2,单位为J;
其中K为铜排的传热系数,单位为W/㎡·℃;F为铜排的散热面积(即铜排的表面积),单位为㎡;△T取铜排的温升△T1,单位为℃;t为时间,单位为s。
CN201911107658.1A 2019-11-13 2019-11-13 动力电池管理系统跨铜排电压采样的补偿方法 Active CN110884389B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911107658.1A CN110884389B (zh) 2019-11-13 2019-11-13 动力电池管理系统跨铜排电压采样的补偿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911107658.1A CN110884389B (zh) 2019-11-13 2019-11-13 动力电池管理系统跨铜排电压采样的补偿方法

Publications (2)

Publication Number Publication Date
CN110884389A true CN110884389A (zh) 2020-03-17
CN110884389B CN110884389B (zh) 2022-11-01

Family

ID=69747417

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911107658.1A Active CN110884389B (zh) 2019-11-13 2019-11-13 动力电池管理系统跨铜排电压采样的补偿方法

Country Status (1)

Country Link
CN (1) CN110884389B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111817256A (zh) * 2020-07-10 2020-10-23 的卢技术有限公司 一种基于精准测量的电池紧急断开系统及使用方法
CN113253127A (zh) * 2021-05-10 2021-08-13 宝能(广州)汽车研究院有限公司 一种电池包的电压采集方法和电动车
CN113820616A (zh) * 2020-06-02 2021-12-21 广州汽车集团股份有限公司 电池监控方法、系统、电池管理系统和车辆
CN113985337A (zh) * 2021-12-30 2022-01-28 宁波均胜新能源研究院有限公司 电阻式电流传感器的标定方法、装置、系统及校准方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101185005A (zh) * 2005-05-27 2008-05-21 Lg化学株式会社 检测电池组电压的装置和方法
JP2014117068A (ja) * 2012-12-10 2014-06-26 Denso Corp 電池システム
US20160233700A1 (en) * 2015-02-09 2016-08-11 Toyota Jidosha Kabushiki Kaisha Battery monitor apparatus
CN106067689A (zh) * 2016-05-11 2016-11-02 法拉第未来公司 多个电池模组的电压监视
CN107305239A (zh) * 2016-04-22 2017-10-31 宝沃汽车(中国)有限公司 电芯单体电压修正电路、方法、电池管理系统及汽车
CN107482699A (zh) * 2016-06-16 2017-12-15 宝沃汽车(中国)有限公司 电池管理方法、电池管理系统、动力电池系统及车辆
CN208140775U (zh) * 2018-04-20 2018-11-23 北京经纬恒润科技有限公司 一种电压采集电路
CN109891257A (zh) * 2016-11-02 2019-06-14 三星Sdi株式会社 电池管理系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101185005A (zh) * 2005-05-27 2008-05-21 Lg化学株式会社 检测电池组电压的装置和方法
JP2014117068A (ja) * 2012-12-10 2014-06-26 Denso Corp 電池システム
US20160233700A1 (en) * 2015-02-09 2016-08-11 Toyota Jidosha Kabushiki Kaisha Battery monitor apparatus
CN107305239A (zh) * 2016-04-22 2017-10-31 宝沃汽车(中国)有限公司 电芯单体电压修正电路、方法、电池管理系统及汽车
CN106067689A (zh) * 2016-05-11 2016-11-02 法拉第未来公司 多个电池模组的电压监视
CN107482699A (zh) * 2016-06-16 2017-12-15 宝沃汽车(中国)有限公司 电池管理方法、电池管理系统、动力电池系统及车辆
CN109891257A (zh) * 2016-11-02 2019-06-14 三星Sdi株式会社 电池管理系统
CN208140775U (zh) * 2018-04-20 2018-11-23 北京经纬恒润科技有限公司 一种电压采集电路

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820616A (zh) * 2020-06-02 2021-12-21 广州汽车集团股份有限公司 电池监控方法、系统、电池管理系统和车辆
CN111817256A (zh) * 2020-07-10 2020-10-23 的卢技术有限公司 一种基于精准测量的电池紧急断开系统及使用方法
CN111817256B (zh) * 2020-07-10 2022-09-23 的卢技术有限公司 一种基于精准测量的电池紧急断开系统及使用方法
CN113253127A (zh) * 2021-05-10 2021-08-13 宝能(广州)汽车研究院有限公司 一种电池包的电压采集方法和电动车
CN113985337A (zh) * 2021-12-30 2022-01-28 宁波均胜新能源研究院有限公司 电阻式电流传感器的标定方法、装置、系统及校准方法
CN113985337B (zh) * 2021-12-30 2022-05-13 宁波均胜新能源研究院有限公司 电阻式电流传感器的标定方法、装置、系统及校准方法

Also Published As

Publication number Publication date
CN110884389B (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
CN110884389B (zh) 动力电池管理系统跨铜排电压采样的补偿方法
CN106291378B (zh) 一种电动汽车动力电池soh的测算方法
CN107064805B (zh) 蓄电池容量测量系统和蓄电池容量测量方法
CN105116343B (zh) 最小二乘支持向量机的动力电池电荷状态估计方法及系统
KR101070339B1 (ko) 2차 전지의 충방전 전기량 추정 방법 및 장치
JP5511951B2 (ja) 充電状態推定装置
CN107290678B (zh) 一种动力电池健康状态在线监测方法
CN106443473A (zh) 一种动力锂离子电池组soc估算方法
CN107860975A (zh) 动力电池绝缘电阻检测方法、绝缘预警方法及电子设备
CN204348858U (zh) 电池箱内部温度检测装置
CN110632520A (zh) 一种动力电池soc的估算装置及其估算方法
Ceraolo et al. Luenberger-based State-Of-Charge evaluation and experimental validation with lithium cells
CN112816876B (zh) 一种用于可充电电池的低温电池剩余电量估算方法及装置
CN109061497B (zh) 一种电池剩余电量计量系统及方法
CN112327180A (zh) 一种锂离子电池自放电评价及其电压均衡调节方法
CN102472800A (zh) 电化学蓄电池的标定方法
CN102230192B (zh) 一种铝电解槽内电解质中氧化铝浓度信号的在线辨识方法
US11536773B2 (en) Digital correction algorithms to improve battery voltage measurement accuracy
CN108983109B (zh) 用于电池的电流估算芯片、估算方法及剩余电量计量系统
CN106067689B (zh) 多个电池模组的电压监视
CN109416391B (zh) 用于确定电池单体的内阻的方法、电池模块和装置
CN101210943A (zh) 测量电力直流系统对地绝缘电阻的方法
CN112557933A (zh) 一种计算电池健康状态的方法和装置
CN108614219A (zh) 双自我学习式电池估测系统及方法
CN102620849A (zh) 一种高精度无线测温终端及其测温方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 430056 No.5 workshop, No.339, zhuanyang Avenue, Wuhan Economic and Technological Development Zone, Hubei Province

Patentee after: Zhixin Control System Co.,Ltd.

Address before: 430056 No. 5 Workshop, 339 Chaoyang Avenue, Wuhan Economic and Technological Development Zone, Wuhan City, Hubei Province

Patentee before: DONGFENG HANGSHENG (WUHAN) AUTOMOTIVE CONTROL SYSTEM Co.,Ltd.

CP03 Change of name, title or address