CN110871109B - 三聚氰胺间苯二酚甲醛聚合物修饰的石墨相氮化碳催化剂、制备方法及其应用 - Google Patents

三聚氰胺间苯二酚甲醛聚合物修饰的石墨相氮化碳催化剂、制备方法及其应用 Download PDF

Info

Publication number
CN110871109B
CN110871109B CN201810999916.0A CN201810999916A CN110871109B CN 110871109 B CN110871109 B CN 110871109B CN 201810999916 A CN201810999916 A CN 201810999916A CN 110871109 B CN110871109 B CN 110871109B
Authority
CN
China
Prior art keywords
melamine
resorcinol
carbon nitride
catalyst
phase carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810999916.0A
Other languages
English (en)
Other versions
CN110871109A (zh
Inventor
钟秦
顾浩
丁杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201810999916.0A priority Critical patent/CN110871109B/zh
Publication of CN110871109A publication Critical patent/CN110871109A/zh
Application granted granted Critical
Publication of CN110871109B publication Critical patent/CN110871109B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/62Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种三聚氰胺间苯二酚甲醛聚合物修饰的石墨相氮化碳催化剂、制备方法及其应用。所述方法先将类石墨相氮化碳、间苯二酚、甲醛和三聚氰胺混合溶于水中得到澄清溶液后,在120~140℃下水热反应,制得三聚氰胺间苯二酚甲醛聚合物修饰的石墨相氮化碳催化剂。本发明的三聚氰胺间苯二酚甲醛聚合物修饰的石墨相氮化碳催化剂采用一步水热法制备,方法简单,其光催化活性比g‑C3N4和MRF的总光催化活性高出6倍之多,而且10次循环近100h后性能依然稳定,环境友好,成本低廉,适用于光催化二氧化碳制甲醇领域。

Description

三聚氰胺间苯二酚甲醛聚合物修饰的石墨相氮化碳催化剂、 制备方法及其应用
技术领域
本发明属于光催化二氧化碳制甲醇技术领域,涉及一种修饰类石墨相氮化碳催化剂,具体涉及一种三聚氰胺间苯二酚甲醛聚合物修饰的石墨相氮化碳催化剂 (g-C3N4@MRF)、制备方法及其在光催化二氧化碳制甲醇中的应用。
背景技术
化石燃料的燃烧在过去几十年显著增加,导致了二氧化碳的大量排放和全球气候变暖。CO2利用的方向之一是将温室气体转化为甲醇液体燃料,可以通过热催化、电催化和光催化转化为甲醇。在这些反应中,光催化CO2制甲醇是最有前途的,因为太阳能是可再生的,这实现了温室气体向可再生能源甲醇的转变。目前,许多研究小组研究了各种半导体(包括Zn2GeO4、ZnGaO4、NaNbO3和CaFe2O4)的光催化机理和CO2还原。然而,这些半导体光催化剂表现并不令人满意。更重要的是,这些半导体光催化剂的制备会释放有害气体,而且成本很高。因此,需开发具有高效、环保、低成本的催化剂。
研究表明,g-C3N4基催化剂的开发有助于解决上述问题。文献1将g-C3N4与Ag3PO4半导体偶联构建异质结复合材料,通过Z型反应促进电子与空穴的分离,极大地改善了 CO2还原的光催化活性。但是此种半导体偶联催化剂原料昂贵,且制备过程污染环境(Y. He,etal.,Environmental Science&Technology 49(2015)649-656;L.Liu,et al.,AppliedCatalysis B Environmental 183(2016)133-141.)。
三聚氰胺间苯二酚甲醛聚合物(MFR)常被用于CO2吸附,是一种具有较大表面积的聚合物,易于大量生产,环境友好,具有良好的再生性能以及能够快速吸附CO2(M. Wang,etal.,RSC Advances 4(2014)61456-61464;H.Zhou,et al.,Chem.Commun 49(2013) 3763-3765.)。
发明内容
针对现有半导体光催化剂环境不友好、成本高、活性低的问题,本发明提供一种三聚氰胺间苯二酚甲醛聚合物修饰的石墨相氮化碳催化剂、制备方法及其在光催化二氧化碳制甲醇中的应用。该催化剂兼具二氧化碳的吸附能力和光催化能力,光催化CO2还原制备CH3OH的活性显著提升。
本发明的技术方案如下:
三聚氰胺间苯二酚甲醛聚合物修饰的石墨相氮化碳催化剂的制备方法,具体步骤如下:
将间苯二酚、甲醛、类石墨相氮化碳和三聚氰胺依次溶解在水里,溶解过程中,加热并搅拌,得到澄清溶液后,在120~140℃下水热反应24~48h,离心,干燥,得到三聚氰胺间苯二酚甲醛聚合物修饰的氮化碳催化剂(g-C3N4@MRF),其中,所述的类石墨相氮化碳、间苯二酚、甲醛、三聚氰胺和水的用量比为200~400:40~70:200:40~70:50~80, mg:mmol:mmol:mmol:mL,间苯二酚和三聚氰胺的总摩尔量与甲醛的摩尔比为 0.4~0.6:1。
优选地,所述的类石墨相氮化碳、间苯二酚、甲醛、三聚氰胺和水的用量比为 300:50:200:50:70,mg:mmol:mmol:mmol:mL。
优选地,所述的间苯二酚和三聚氰胺的总摩尔量与甲醛的摩尔比为0.5~0.6:1。
进一步地,本发明提供上述制备方法制得的三聚氰胺间苯二酚甲醛聚合物修饰的石墨相氮化碳催化剂。
更进一步地,本发明提供上述三聚氰胺间苯二酚甲醛聚合物修饰的石墨相氮化碳催化剂在光催化二氧化碳制甲醇中的应用。
与现有技术相比,本发明具有以下优点:
(1)采用一步水热法,从前驱体一步制备催化剂,方法简单,通过控制三聚氰胺间苯二酚甲醛聚合物(MRF)与氮化碳(g-C3N4)的比例,使得二者结合稳定,催化剂在经过10次循环(近100h)后性能依然稳定;
(2)相比于广泛研究的各种半导体(包括Zn2GeO4、ZnGaO4、NaNbO3和CaFe2O4) 的光催剂,本发明的石墨相氮化碳催化剂由C和N组成,地球资源丰富,成本低廉,不存在重金属污染;
(3)本发明制备的石墨相氮化碳催化剂的活性比单一组分g-C3N4和MRF的总光催化活性高出6倍之多,两者有着协同促进的作用。
附图说明
图1为实施例1制备的g-C3N4(300)@MRF和对比例1制备的g-C3N4、MRF催化剂的XRD图。
图2为实施例2制备不同的间苯二酚和三聚氰胺的总摩尔量与甲醛的摩尔比(记为M+F/R)的g-C3N4(300)@MRF催化剂活性对比图。
图3为实施例1制备的g-C3N4(300)@MRF和对比例1制备的g-C3N4、MRF催化剂的催化活性对比图。
图4为实施例1制备的g-C3N4(100)@MRF、g-C3N4(200)@MRF、g-C3N4(300)@MRF、和g-C3N4(400)@MRF催化剂催化活性对比图。
图5为实施例1制备的g-C3N4(300)@MRF催化剂的光催化稳定性图。
具体实施方式
下面结合实施例和附图对本发明做进一步详细阐述。
实施例1
将50mmol间苯二酚、200mmol甲醛分别和100mg、200mg、300mg和400mg类石墨相氮化碳溶解在70mL去离子水里,再加入50mmol三聚氰胺,溶解过程中,升温至70℃,不断搅拌,得到澄清溶液后,冷却至35℃,倒入反应釜中,120℃反应24h, 4000r/min离心,110℃真空干燥24h,依次得到g-C3N4(100)@MRF、g-C3N4(200)@MRF、 g-C3N4(300)@MRF和g-C3N4(400)@MRF催化剂。
实施例2
本实施例与实施例1基本相同,不同的是分别制备间苯二酚和三聚氰胺的总摩尔量与甲醛的摩尔比为0.2、0.3、0.4、0.5、0.6、0.7和0.8的g-C3N4@MRF催化剂。
对比例1
将尿素粉末在马弗炉里煅烧,煅烧温度550℃,升温速率为0.5℃/min,恒温时间为3h,然后冷却至室温后得到g-C3N4
三聚氰胺间苯二酚甲醛聚合物(MRF)采用水热法制备,将50mmol间苯二酚、200mmol甲醛和50mmol三聚氰胺依次溶解在70mL去离子水里,溶解过程中,升温至 70℃,不断搅拌,得到澄清溶液后,冷却至35℃,倒入反应釜中,120℃反应24h, 4000r/min离心,110℃真空干燥24h,得到MRF催化剂。
实施例3
将实施例1制备的催化剂进行催化性能测试,并进行XRD分析。
催化剂性能测试条件为:在光催化活性测试中,将100mg的样品分散在15mL水中。把悬浮液放入体积为200mL的圆柱形钢反应器中,采用300W Xe弧光灯作为模拟日光的光源,配有420nm截止滤光片。先在反应装置中反复通入高纯度CO2气体以排除空气,然后填充CO2在CO2/H2O体系中平衡1h。在平衡之后,反应装置中的压力达到0.5MPa,反应温度控制在60℃,然后打开光源。照射7h后,用气质联用(GC-MS) 对反应装置中的气体进行甲醇浓度的分析。甲醇的产率可以通过外标法进行计算。
图1为实施例1制备的g-C3N4(300)@MRF和对比例1制备的g-C3N4、MRF催化剂的XRD图。图2为实施例2制备不同的间苯二酚和三聚氰胺的总摩尔量与甲醛的摩尔比(记为M+F/R)的g-C3N4(300)@MRF催化剂活性对比图。从图2可知间苯二酚和三聚氰胺的总摩尔量与甲醛的摩尔比对催化剂的活性影响很大,M+F/R=0.4~0.6时,催化剂活性较好,其中M+F/R=0.5最好。催化剂的催化性能如图3所示,g-C3N4@MRF的活性比g-C3N4和MRF的总光催化活性高出6倍之多,说明g-C3N4与MRF二者有着协同促进的作用。图4为实施例1制备的g-C3N4(100)@MRF、g-C3N4(200)@MRF、 g-C3N4(300)@MRF、和g-C3N4(400)@MRF催化剂的催化活性对比图。从图4可知,加入(100mg)g-C3N4效果并没有明显的提高,协同促进作用不明显,而加入g-C3N4在 200mg~400mg时,效果明显提高,协同促进作用明显。图5为实施例1制备的 g-C3N4(300)@MRF催化剂的光催化稳定性图。从图5可知,g-C3N4(300)@MRF光催化剂在经过10次循环(近100h)后,性能依然稳定,催化剂具有良好的光催化稳定性。

Claims (5)

1.三聚氰胺间苯二酚甲醛聚合物修饰的石墨相氮化碳催化剂的制备方法,其特征在于,具体步骤如下:
将间苯二酚、甲醛、类石墨相氮化碳和三聚氰胺依次溶解在水里,溶解过程中,加热并搅拌,得到前驱体溶液后,在120~140℃下水热反应24~48h,离心,干燥,得到三聚氰胺间苯二酚甲醛聚合物修饰的氮化碳催化剂,其中,所述的类石墨相氮化碳、间苯二酚、甲醛、三聚氰胺和水的用量比为200~400:40~70:200:40~70:50~80,mg:mmol:mmol:mmol:mL,间苯二酚和三聚氰胺的总摩尔量与甲醛的摩尔比为0.4~0.6:1。
2.根据权利要求1所述的制备方法,其特征在于,所述的类石墨相氮化碳、间苯二酚、甲醛、三聚氰胺和水的用量比为300:50:200:50:70,mg:mmol:mmol:mmol:mL。
3.根据权利要求1所述的制备方法,其特征在于,所述的间苯二酚和三聚氰胺的总摩尔量与甲醛的摩尔比为0.5~0.6:1。
4.根据权利要求1至3任一所述的制备方法制得的三聚氰胺间苯二酚甲醛聚合物修饰的石墨相氮化碳催化剂。
5.根据权利要求4所述的三聚氰胺间苯二酚甲醛聚合物修饰的石墨相氮化碳催化剂在光催化二氧化碳制甲醇中的应用。
CN201810999916.0A 2018-08-30 2018-08-30 三聚氰胺间苯二酚甲醛聚合物修饰的石墨相氮化碳催化剂、制备方法及其应用 Active CN110871109B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810999916.0A CN110871109B (zh) 2018-08-30 2018-08-30 三聚氰胺间苯二酚甲醛聚合物修饰的石墨相氮化碳催化剂、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810999916.0A CN110871109B (zh) 2018-08-30 2018-08-30 三聚氰胺间苯二酚甲醛聚合物修饰的石墨相氮化碳催化剂、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN110871109A CN110871109A (zh) 2020-03-10
CN110871109B true CN110871109B (zh) 2022-09-27

Family

ID=69715097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810999916.0A Active CN110871109B (zh) 2018-08-30 2018-08-30 三聚氰胺间苯二酚甲醛聚合物修饰的石墨相氮化碳催化剂、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN110871109B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305842A (en) * 1979-02-10 1981-12-15 Mitsubishi Gas Chemical Company, Inc. Preparation of improved catalyst composition
SU1297900A1 (ru) * 1985-07-24 1987-03-23 Центральный Научно-Исследовательский Институт Фанеры Научно-Производственного Объединения "Научфанпром" Катализатор дл поликонденсации фенолформальдегидных смол
CN103985875A (zh) * 2014-05-21 2014-08-13 南京理工大学 一种石墨烯-氮化碳复合材料的应用
CN104587957A (zh) * 2015-01-23 2015-05-06 福建农林大学 一种Pt/g-C3N4/AC功能性炭吸附材料及其制备方法和应用
CN105148903A (zh) * 2015-08-14 2015-12-16 南昌航空大学 一种Bi2WxMo1-XO6固溶体催化材料在可见光条件下光催化还原CO2制备甲醇和乙醇的方法
KR20160080379A (ko) * 2014-12-29 2016-07-08 한국화학연구원 카보닐화 반응에 의한 초산 제조용 Rh-C3N4 불균일 촉매
WO2017197167A1 (en) * 2016-05-11 2017-11-16 William Marsh Rice University Metal-free catalysts for converting carbon dioxide into hydrocarbons and oxygenates

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1008133A3 (nl) * 1994-03-15 1996-01-23 Dsm Nv Werkwijze voor de afscheiding van verontreinigingen uit een heet synthesegasmengsel bij de melaminebereiding.
US5606056A (en) * 1994-05-24 1997-02-25 Arizona Board Of Regents Carbon nitride and its synthesis
CN109788760B (zh) * 2016-07-28 2021-12-14 艾克森实验室有限公司 包含有机和无机多结复合材料的抗微生物光反应性组合物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305842A (en) * 1979-02-10 1981-12-15 Mitsubishi Gas Chemical Company, Inc. Preparation of improved catalyst composition
SU1297900A1 (ru) * 1985-07-24 1987-03-23 Центральный Научно-Исследовательский Институт Фанеры Научно-Производственного Объединения "Научфанпром" Катализатор дл поликонденсации фенолформальдегидных смол
CN103985875A (zh) * 2014-05-21 2014-08-13 南京理工大学 一种石墨烯-氮化碳复合材料的应用
KR20160080379A (ko) * 2014-12-29 2016-07-08 한국화학연구원 카보닐화 반응에 의한 초산 제조용 Rh-C3N4 불균일 촉매
CN104587957A (zh) * 2015-01-23 2015-05-06 福建农林大学 一种Pt/g-C3N4/AC功能性炭吸附材料及其制备方法和应用
CN105148903A (zh) * 2015-08-14 2015-12-16 南昌航空大学 一种Bi2WxMo1-XO6固溶体催化材料在可见光条件下光催化还原CO2制备甲醇和乙醇的方法
WO2017197167A1 (en) * 2016-05-11 2017-11-16 William Marsh Rice University Metal-free catalysts for converting carbon dioxide into hydrocarbons and oxygenates

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Facile preparation and ultra-microporous structure of melamine–resorcinol–formaldehyde polymeric microspheres";Huanhuan Zhou et al.;《ChemComm》;20130313;第49卷;第3765页右栏第2段、补充材料第1.2节 *
"Photocatalytic conversion of CO2 into methanol using graphitic carbon nitride under solar, UV laser and broadband radiations";M. A. Gondal et al.;《INTERNATIONAL JOURNAL OF ENERGY RESEARCH》;20170627;第41卷;第2.1节、第2.2节 *
"类石墨相氮化碳的制备及光催化还原CO2性能";邵啸 等;《精细化工》;20170115;第34卷(第1期);第74-79页 *

Also Published As

Publication number Publication date
CN110871109A (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
US8889585B2 (en) Mesoporous carbon supported tungsten carbide catalysts, preparation and applications thereof
CN106076383A (zh) 一种镍/类石墨烯碳氮化合物复合催化剂的简便制备方法
CN108246339B (zh) 一种共价有机骨架/氮化碳复合材料的制备方法及其应用
CN113289653A (zh) 一种负载金属单原子的g-C3N4光催化剂的制备方法
CN105381812B (zh) 一种制备具有介孔结构的复合半导体材料的方法
CN115591582B (zh) 一种MOF-303/g-C3N4异质结材料及其制备方法与应用
CN113457657A (zh) 一种碳基甲醇制氢催化剂及其制备方法和应用
CN111250092B (zh) 一种生物质蜂窝状半焦负载镍-铁纳米颗粒催化剂的制备方法及应用
CN115646546B (zh) 用于二氧化碳加氢产甲酸的碳基双金属位点催化材料的制备方法
CN111389405A (zh) 一种预活化甲烷水蒸气制氢催化剂的方法
CN110871109B (zh) 三聚氰胺间苯二酚甲醛聚合物修饰的石墨相氮化碳催化剂、制备方法及其应用
CN113546659A (zh) 采用配位法的高分散CeCN-urea-N2材料及其制备方法和应用
CN112588297A (zh) 钯铜双金属纳米合金负载四氧化三钴复合材料的制备方法
Ren et al. M x Co3O4/g-C3N4 Derived from Bimetallic MOFs/g-C3N4 Composites for Styrene Epoxidation by Synergistic Photothermal Catalysis
CN114713264B (zh) 氯酚和二氧化碳在氮化碳纳米管上的光催化羧基化转化
CN108620133B (zh) 一种二维横向聚合物异质结可见光响应催化产氢材料的制备方法及其应用
CN114471612B (zh) 一种非晶氧化铁纳米片复合材料、其制备方法及其应用
CN113522273B (zh) 一种富含氧空位三氧化钨的制备方法及其在光催化反应中的应用
Cui et al. Nitrogen-Doped and Pt–Pd-Decorated Porous Carbon Catalyst Derived from Biotar for 2, 5-Furandicarboxylic Acid Production from Selective Oxidation of 5-Hydroxymethylfurfural in an Alkali-Free Environment
CN112007687B (zh) 一种用于提高生物质催化热解烃类产率的催化剂改性方法
CN115945186A (zh) 一种木质素基介孔碳/氧化镁复合材料的制备及其在微波辅助催化葡萄糖异构化中的应用
CN114950561A (zh) 一种co2光还原催化剂的制备方法
CN112403505A (zh) 一种CoP-g-C3N4电子集流体光催化剂及其制备方法和应用
CN105413670A (zh) 一种用于正丁醇脱水制备丁烯的固体酸催化剂及其制备方法
CN115430446B (zh) 一种CePO4/g-C3N4异质结材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant