CN110868071B - 变换装置 - Google Patents

变换装置 Download PDF

Info

Publication number
CN110868071B
CN110868071B CN201810988838.4A CN201810988838A CN110868071B CN 110868071 B CN110868071 B CN 110868071B CN 201810988838 A CN201810988838 A CN 201810988838A CN 110868071 B CN110868071 B CN 110868071B
Authority
CN
China
Prior art keywords
circuit
coupled
primary side
primary
side switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810988838.4A
Other languages
English (en)
Other versions
CN110868071A (zh
Inventor
金达
熊雅红
宿清华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Electronics Inc
Original Assignee
Delta Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Inc filed Critical Delta Electronics Inc
Priority to CN201810988838.4A priority Critical patent/CN110868071B/zh
Priority to US16/542,326 priority patent/US11283360B2/en
Priority to EP19193528.7A priority patent/EP3618249A1/en
Publication of CN110868071A publication Critical patent/CN110868071A/zh
Application granted granted Critical
Publication of CN110868071B publication Critical patent/CN110868071B/zh
Priority to US17/650,857 priority patent/US11539285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/305Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M3/315Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M3/3155Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • H02M3/3378Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current in a push-pull configuration of the parallel type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/338Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement
    • H02M3/3382Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement in a push-pull circuit arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种变换装置,其包含输入电容、一次侧开关电路、磁性元件电路、二次侧开关电路及输出电容。磁性元件电路包含变压器和电感。输入电容用以接收输入电压。一次侧开关电路耦接于输入电容。磁性元件电路耦接于一次侧开关电路。电感为变压器的漏感或耦接于变压器与一次侧开关电路间的外加电感。二次侧开关电路耦接于磁性元件电路。输出电容耦接于二次侧开关电路。输入电容与电感产生振荡电流。一次侧开关电路于振荡电流的波谷的邻近区间内进行开关切换。

Description

变换装置
技术领域
本案有关于一种电压转换装置,且特别是有关于一种变换装置。
背景技术
为提高变换系统的效率,母线变换器常常使用54V转12V的不调整方案,例如使得开关工作在占空比固定的最大占空比状态,以此来获得占空比最大,电流有效值最小,滤波器最小的优势。上述母线变换器常用的电路拓扑是一次侧全桥电路,二次侧中心抽头全波整流电路。
上述母线变换器属于传统的脉冲宽度调制(Pulse Width Modulation,PWM)开关电路拓扑,此种开关电路的开关切换损耗大,同时全波整流开关管反向恢复损耗大,导致变换器开关频率低,不能采用更高的开关频率来减小变压器尺寸,同时存在输出电感体积大的问题。此外,在传统应用中,为了减小变压器激磁电流产生的损耗,通常会尽可能地减小变压器的气隙,使得激磁电感值接近于无穷大,这就使得开通时刻开关两端的电压高,开通损耗大。
由此可见,上述现有的方式,显然仍存在不便与缺陷,而有待改进。为了解决上述问题,相关领域莫不费尽心思来谋求解决之道,以满足对变换器之高效率和高功率密度的需求。
发明内容
本发明旨在提供本揭示内容的简化摘要,以使阅读者对本揭示内容具备基本的理解。此发明内容并非本揭示内容的完整概述,且其用意并非在指出本案实施例的重要/关键元件或界定本案的范围。
为达上述目的,本案内容之一技术态样是关于一种变换装置,其包含输入电容、一次侧开关电路、磁性元件电路、二次侧开关电路及输出电容。磁性元件电路包含变压器和电感。输入电容用以接收输入电压。一次侧开关电路耦接于输入电容。磁性元件电路耦接于一次侧开关电路。电感为变压器的漏感或耦接于变压器与一次侧开关电路间的外加电感。二次侧开关电路耦接于磁性元件电路。输出电容耦接于二次侧开关电路。输入电容与电感产生振荡电流。一次侧开关电路于振荡电流的波谷之邻近区间内进行开关切换。
为达上述目的,本案内容之另一技术态样是关于一种变换装置,其包含输入电容、一次侧开关电路、磁性元件电路、二次侧开关电路及输出电容。磁性元件电路包含变压器和电感。输入电容用以接收输入电压。一次侧开关电路耦接于输入电容。磁性元件电路耦接于一次侧开关电路。电感为变压器的漏感或耦接于变压器与一次侧开关电路间的外加电感。二次侧开关电路耦接于磁性元件电路。输出电容耦接于二次侧开关电路。藉由一次侧开关电路的开通与关断,使得输入电容与电感产生振荡电流。振荡电流之振荡频率为一次侧开关电路之开关频率的n倍,n的范围介于(2m+1.5)与(2m+2.5)之间,m≥0,且m为整数。
因此,根据本案的技术内容,本案实施例藉由提供一种变换装置,藉以改善变换器之开关频率低,不能采用更高的开关频率来减小变压器尺寸,同时存在输出电感体积大的问题,并改善开通时刻开关两端的电压高,开通损耗大的问题,进而满足对变换器之高效率和高功率密度的需求。
在参阅下文实施方式后,本案所属技术领域中具有通常知识者当可轻易了解本案的基本精神及其他发明目的,以及本案所采用的技术手段与实施态样。
附图说明
为让本案的上述和其他目的、特征、优点与实施例能更明显易懂,所附图式的说明如下:
图1为依照本案一实施例绘示一种变换装置之电路方块示意图。
图2为依照本案一实施例绘示一种变换装置之电路示意图。
图3为依照本案一实施例绘示一种变换装置之驱动波形示意图。
图4为依照本案一实施例绘示一种变换装置之驱动波形示意图。
图5为依照本案一实施例绘示一种变换装置之驱动波形示意图。
图6为依照本案一实施例绘示一种变换装置之驱动波形示意图。
图7为依照本案一实施例绘示一种变换装置之电路示意图。
图8为依照本案一实施例绘示一种变换装置之电路示意图。
图9为依照本案一实施例绘示一种变换装置之电路示意图。
图10为依照本案一实施例绘示一种变换装置之驱动波形示意图。
图11为依照本案一实施例绘示一种变换装置之电路示意图。
100、100A、100B:变换装置 Lr:外加电感
110:一次侧开关电路 Lk:漏感
120、120A:磁性元件电路 Lk1~Lk2:漏感
130、130A:二次侧开关电路 M1~M12:开关
140:控制电路 T1~T6:绕组
C1:输入电容 t1~t5:期间
C2:输出电容 Vds:开关两端电压
Dri1、Dri2:驱动信号 Vin:输入电压
Dri1’、Dri2’:驱动信号 Vo:输出电压
Ip1、Ip1、Ilm、Is:电流
根据惯常的作业方式,图中各种特征与元件并未依比例绘制,其绘制方式是为了以最佳的方式呈现与本案相关的具体特征与元件。此外,在不同图式间,以相同或相似的元件符号来指称相似的元件/部件。
具体实施方式
为了使本揭示内容的叙述更加详尽与完备,下文针对了本案的实施态样与具体实施例提出了说明性的描述;但这并非实施或运用本案具体实施例的唯一形式。实施方式中涵盖了多个具体实施例的特征以及用以建构与操作这些具体实施例的方法步骤与其顺序。然而,亦可利用其他具体实施例来达成相同或均等的功能与步骤顺序。
除非本说明书另有定义,此处所用的科学与技术词汇的含义与本案所属技术领域中具有通常知识者所理解与惯用的意义相同。此外,在不和上下文冲突的情形下,本说明书所用的单数名词涵盖该名词的复数型;而所用的复数名词时亦涵盖该名词的单数型。
另外,关于本文中所使用的「耦接」,可指二或多个元件相互直接作实体或电性接触,或是相互间接作实体或电性接触,亦可指二或多个元件相互操作或动作。
图1为依照本案一实施例绘示一种变换装置100的电路方块示意图。如图所示,变换装置100包含输入电容C1、一次侧开关电路110、磁性元件电路120、二次侧开关电路130及输出电容C2。此外,上述磁性元件电路120的变压器包含电感(将于后续图式中绘示说明)。
于连接关系上,一次侧开关电路110耦接于输入电容C1。磁性元件电路120耦接于一次侧开关电路110。二次侧开关电路130耦接于磁性元件电路120。输出电容C2耦接于二次侧开关电路130。
于操作关系上,输入电容C1用以接收输入电压Vin。输入电容C1与磁性元件电路120中的电感产生振荡电流。一次侧开关电路110于振荡电流的波谷的邻近区间内进行开关切换。相关操作将配合后续图2与图3详细说明。
图2为依照本案一实施例绘示一种变换装置100之电路示意图。如图所示,在本实施例中,一次侧开关电路110以全桥开关电路来实现,二次侧开关电路130以全波整流电路来实现,此外,磁性元件电路120的变压器的至少一二次侧绕组包含至少两个绕组T2、T3,至少两个绕组T2、T3彼此串联,且至少两个绕组T2、T3的一连接点包含中心抽头,磁性元件电路120的变压器的至少一二次侧绕组与二次侧开关电路130形成中心抽头全波整流电路。再者,磁性元件电路120包含至少一电感,此电感可为磁性元件电路120的变压器的漏感Lk。在本实施例中,输入电容C1的容值会依照实际需求进行调整而能与漏感Lk一同产生振荡电流。然本案不以图2所绘式的架构为限,其仅用以例示性地说明本案的实现方式之一。
为使图2所示的变换装置100的操作易于理解,请一并参阅图3,其为依照本案一实施例绘示一种变换装置100的驱动波形示意图。如图所示,驱动信号Dri1用于驱动一次侧开关电路110的开关M1、M3和二次侧开关电路130的开关M5。驱动信号Dri2用于驱动一次侧开关电路110的开关M2、M4和二次侧开关电路130的开关M6。在本实施例中,透过减小输入电容C1的电容值,使其与漏感Lk于驱动信号Dri1、Dri2的期间t1-t2、t3-t4产生振荡电流。举例而言,在期间t1-t2,驱动信号Dri1为高位准信号,此时,开关M1、M3、M5导通,输入电容C1与漏感Lk产生振荡电流Ip1,振荡电流Ip1为流经一次侧开关电路110的开关的电流。
如图所示,当振荡电流Ip1于时间t2落至谷底A点时,进行开关切换,驱动信号Dri1切换为低位准信号,开关M1、M3、M5关断。在此时间点,亦为振荡电流Ip1邻近(接近)于变压器的激磁电感Lm的电流Ilm时,驱动信号Dri1于此时进行切换。
此外,在期间t3-t4,驱动信号Dri2为高位准信号,此时,开关M2、M4、M6导通,输入电容C1与漏感Lk产生振荡电流Ip2,振荡电流Ip2为流经一次侧开关电路110的开关的电流。当振荡电流Ip2于时间t4落至谷底B点时,进行开关切换,驱动信号Dri2切换为低位准信号,开关M2、M4、M6关断。在此时间点,亦为振荡电流Ip2邻近于变压器的激磁电感Lm的电流Ilm时,驱动信号Dri2于此时进行切换。
根据变换装置100的上述操作方法,变换装置100将于二次侧开关电路130产生如图所示的二次侧电流Is,且此二次侧电流Is为弦波,因此去除了开关切换(如开关被开通)瞬间产生的电流脉冲,有效地减小了开通损耗。再者,变换装置100无需添加输出电感即可满足实际应用的需求。同时,可于一次侧开关电路110的振荡电流Ip1、Ip2接近于激磁电感Lm的电流Ilm时,将开关关断,以使开关的关断损耗小。
在一实施例中,请参阅图2,磁性元件电路120的变压器包含至少一磁芯、至少一一次侧绕组T1、至少一二次侧绕组包含至少两个绕组T2、T3。至少一一次侧绕组T1耦接于一次侧开关电路110。至少两个绕组T2、T3耦接于二次侧开关电路130。至少一一次侧绕组T1与至少两个绕组T2、T3通过至少一磁芯耦合。
在另一实施例中,为利于理解图3所示的驱动波形,请一并参阅图1与图3,如图1所示,变换装置100更包含控制电路140。此控制电路140用以产生如图3所示的一组互补的驱动信号(如驱动信号Dri1、Dri2)而驱动一次侧开关电路110进行开关切换。上述每一该组互补的驱动信号的占空比约为50%(如驱动信号Dri1的占空比(duty cycle)约为50%)。在一实施例中,互补的驱动信号间存在死区(如期间t2-t3和t4-t5),期间t1-t5为变换装置100的一个开关周期。
于再一实施例中,本实施例通过控制输入电容C1和变压器漏感Lk的振荡电流(如电流Ip1)的振荡频率,使得振荡电流在接近于谷底(如谷底A点)时关断,也就是说,振荡电流的振荡频率为开关频率fsw的n倍(n的范围为【2m+1.5,2m+2.5】,于此,m≥0,且m为整数)。
于一实施例中,n为大于零的偶数。
输入电容C1的容值与振荡电流的振荡频率fr和变压器漏感Lk的感量之间关系如下:
Figure BDA0001780320140000061
由于在本实施例中,输入电容C1的容值有效地减小,可以与变压器漏感Lk产生所需的振荡电流。并且输入电容C1作为振荡电容,同时更发挥滤波和产生振荡电流两个作用。小容值的输入电容C1的体积小,成本低,可以进一步提高变换装置的功率密度,降低变换装置成本。此外,因为流过输入电容C1的电流为等效的负载电流与输入电流之差,因此,电容电流的有效值很小,在输入电容C1上产生的损耗相应地很小。
图4为依照本案一实施例绘示一种变换装置100的驱动波形示意图。如图所示,本实施例的变换装置100可在振荡电流Ip1振荡邻近(接近)于谷底A点时,关断开关M1、M3、M5。详细而言,可在振荡电流Ip1进入邻近于谷底A点的阴影区域里,即可关断这一组开关M1、M3、M5,而不需仅限于谷底A点才能进行切换,如此,可进一步使变换装置100的操作策略易于满足大批量生产的需求。上述代表邻近于谷底的阴影区域的持续时间为振荡周期的一半,谷底A点位于上述持续时间的中点。相似地,变换装置100亦可于振荡电流Ip2振荡邻近于谷底B点时,关断开关M2、M4、M6,而达到类似的功效。在一实施例中,如图所示,振荡电流Ip1的波谷的谷底A点位于邻近区间(如斜线阴影区间)的中点,且邻近区间的持续时间(如斜线阴影区间的持续时间)为振荡电流Ip1的振荡周期(如时间t1-t2)的一半。
图5为依照本案一实施例绘示一种变换装置100的驱动波形示意图。本实施例的变换装置100可在振荡电流Ip1振荡邻近于第二个乃至于第N个谷底A点时,关断开关M1、M3、M5。如图所示,振荡电流Ip1进入邻近于第二个谷底A点的阴影区域里,即可关断开关M1、M3、M5,详细而言,可在振荡电流Ip1进入邻近于第二个谷底A点的阴影区域里,即可关断这一组开关M1、M3、M5,而不需仅限于第二个谷底A点才能进行切换,如此,可进一步使变换装置100的操作策略易于满足大批量生产的需求。上述代表邻近于谷底的阴影区域的持续时间为振荡周期的一半,谷底A点位于上述持续时间的中点。相似地,变换装置100亦可于振荡电流Ip2振荡邻近于第二个乃至于第N个谷底B点时,关断开关M2、M4、M6,而达到类似的功效。
图6为依照本案一实施例绘示一种变换装置100的驱动波形示意图。为利于理解图6所示的驱动波形,请一并参阅图1、图2与图6,图1所示的变换装置100更包含控制电路140,此控制电路140耦接于一次侧开关电路110。当一次侧开关电路110的一开关的两端电压小于或等于输入电压Vin的一半时,控制电路140驱动一次侧开关电路110进行开关切换。举例而言,可以通过调整变压装置100的气隙,以调整如图2所示的激磁电流Ilm。如死区期间t2-t3内,由激磁电流Ilm抽取另一组开关中一次侧电路110的开关(如开关M2、M4)的寄生电容上的电荷,使得开关两端电压Vds下降,直到开关两端电压降至小于或等于输入电压Vin的一半。此时,控制电路140驱动一次侧开关电路110进行开关切换(如控制电路140产生信号Dri2以导通另一组开关M2、M4、M6)。如此一来,得以减少开关的开通损耗,提升变换装置100的能量转换效率和功率密度。于另一实施例中,当一次侧开关电路110的开关的两端电压等于零时,控制电路140驱动一次侧开关电路110进行开关切换(如控制电路140产生信号Dri2以导通另一组开关M2、M4、M6),但不限于此。
图7为依照本案一实施例绘示一种变换装置100之电路示意图。如图1的相关说明所示,磁性元件电路120包含电感,此电感可为图2所示的磁性元件电路120的变压器的漏感Lk,亦可为图7所示的磁性元件电路120A的外加电感Lr,以与输入电容C1一同产生振荡电流,此外加电感Lr串接于变压器的至少一一次侧绕组T1与一次侧开关电路110。在另一实施例中,亦可由外加电感Lr和漏感Lk共同与输入电容C1产生所需的振荡电流。于本实施例中,外加电感Lr和变压器漏感Lk共同与输入电容C1产生所需的振荡电流。此时输入电容C1的容值计算公式如下:
Figure BDA0001780320140000071
于实际应用中,在进行电路参数设计时,可以通过微调开关频率fsw使得振荡频率为开关频率的n倍,n的范围为【2m+1.5,2m+2.5】,于此,m≥0,且m为整数。另外,亦可通过微调输入电容C1,满足频率的关系,藉以达到变换装置100的最优效率。
图8为依照本案一实施例绘示一种变换装置100之电路示意图。相较于图2所示的变换装置100,图8的变换装置100的二次侧开关电路130A可由全桥整流电路来实现,其余标号相同的元件的操作与图2相同,于此不作赘述。此外,本案不以图8所示的架构为限,其仅用以例示性地说明本案的实现方式之一
图9为依照本案一实施例绘示一种变换装置100A之电路示意图。于本实施例中,是采用两个如图2所示的变换装置100,于结构配置上,两个变换装置100的一次侧开关电路110串联耦接,此外,两个变换装置100的二次侧开关电路130并联耦接。本实施例可应用于输入电压Vin为高压的场合,串联的一次侧开关电路110结构可以有效地降低一次侧开关电路110的开关的电压应力,而能使用低压开关。二次侧开关电路并联连接,则可增大变换装置100A的电流输出能力,进而增大变换装置100A的带载能力。然本案不以此为限,其仅用以例示性地说明本案的实现方式之一,在于其余实施例中,亦可依照实际需求而配置二次侧开关电路130串联耦接。
在一实施例中,两个变换装置100的输入电容C11、C12串联耦接,两输入电容C11、C12分别与相对应的变压器的漏感Lk1、Lk2或外接电感(请参阅图7的外接电感Lr)振荡,使得变换装置100A的开关的开通损耗和导通损耗降低。图9的变换装置100A的驱动波形可参阅图10。如图所示,驱动两个变换装置100的两个驱动信号可以同相抑或错相90度(如驱动信号Dri1、Dri1’错相90度)。
图11为依照本案一实施例绘示一种变换装置100B之电路示意图。于本实施例中,是采用两个如图2所示的变换装置100,于结构配置上,两个变换装置100的一次侧开关电路110并联耦接,此外,两个变换装置100的二次侧开关电路130并联耦接,如此,可以增大变换装置100B的电流输出能力,进而增大变换装置100B的带载能力,并且可以有效降低变换器尺寸的高度,适用于有高度限制的应用场合。图11的变换装置100B的驱动波形亦可采用图10所示的波形来加以驱动。如图所示,驱动两个变换装置100的两个驱动信号可以同相或者错相90度。然本案不以此为限,其仅用以例示性地说明本案的实现方式之一,在于其余实施例中,亦可依照实际需求而配置二次侧开关电路130串联耦接。
由上述本案实施方式可知,应用本案具有下列优点。本案实施例藉由提供一种变换装置,藉以改善变换器的开关频率低,不能采用更高的开关频率来减小变压器尺寸,同时存在输出电感体积大的问题,并改善开通时刻开关两端的电压高,开通损耗大的问题,进而满足对变换器的高效率和高功率密度的需求
虽然上文实施方式中揭露了本案的具体实施例,然其并非用以限定本案,本案所属技术领域中具有通常知识者,在不悖离本案的原理与精神的情形下,当可对其进行各种更动与修饰,因此本案的保护范围当以附随申请专利范围所界定者为准。

Claims (24)

1.一种变换装置,其特征在于,包含:
一输入电容,用以接收一输入电压;
一一次侧开关电路,并联耦接于该输入电容;
一磁性元件电路,耦接于该一次侧开关电路,包含:
一变压器和一电感,其中该电感为该变压器的一漏感或耦接于该变压器与该一次侧开关电路间的一外加电感;
一二次侧开关电路,耦接于该磁性元件电路;
一输出电容,耦接于该二次侧开关电路;
其中藉由该一次侧开关电路的开通与关断,使得该输入电容与该电感产生一振荡电流,其中该一次侧开关电路于该振荡电流的一波谷的一邻近区间内进行开关切换,该波谷的谷底位于该邻近区间之中点,且该邻近区间的持续时间为该振荡电流的一振荡周期的一半。
2.如权利要求1所述的变换装置,其特征在于,该一次侧开关电路于该振荡电流的该波谷处进行开关切换。
3.如权利要求1所述的变换装置,其特征在于,该磁性元件电路的该变压器包含:
至少一磁芯;
至少一一次侧绕组,耦接于该一次侧开关电路;
至少一二次侧绕组,耦接于该二次侧开关电路,其特征在于,该至少一一次侧绕组与该至少一二次侧绕组通过该至少一磁芯耦合,其中该外加电感串接于该变压器的该至少一一次侧绕组与该一次侧开关电路。
4.如权利要求1所述的变换装置,其特征在于,该一次侧开关电路包含一全桥电路。
5.如权利要求3所述的变换装置,其特征在于,该变压器的该至少一二次侧绕组包含至少两个绕组,其中该至少两个绕组彼此串联,且该至少两个绕组的一连接点包含一中心抽头,其中该变压器的该至少一二次侧绕组与该二次侧开关电路形成一中心抽头全波整流电路。
6.如权利要求1所述的变换装置,其特征在于,该二次侧开关电路包含一全桥整流电路。
7.如权利要求1所述的变换装置,其特征在于,更包含:
一控制电路,用以产生一组互补的驱动信号而驱动该一次侧开关电路进行开关切换,每一该组互补的驱动信号的占空比约为50%。
8.如权利要求7所述的变换装置,其特征在于,当该一次侧开关电路的一开关的两端电压小于或等于该输入电压的一半时,该控制电路驱动该一次侧开关电路进行开关切换。
9.如权利要求7所述的变换装置,其特征在于,当该一次侧开关电路的一开关的两端电压等于零时,该控制电路驱动该一次侧开关电路进行开关切换。
10.如权利要求1所述的变换装置,其特征在于,如权利要求1所述的该变换装置包含至少两个,其中该至少两个变换装置的该一次侧开关电路串联耦接,且该至少两个变换装置的该二次侧开关电路串联或并联耦接。
11.如权利要求1所述的变换装置,其特征在于,如权利要求1所述的该变换装置包含至少两个,其中该至少两个变换装置的该一次侧开关电路并联耦接,且该至少两个变换装置的该二次侧开关电路串联或并联耦接。
12.如权利要求10或11所述的变换装置,其特征在于,分别驱动该至少两个变换装置的至少两个驱动信号同相或错相90度。
13.一种变换装置,其特征在于,包含:
一输入电容,用以接收一输入电压;
一一次侧开关电路,并联耦接于该输入电容;
一磁性元件电路,耦接于该一次侧开关电路,包含:
一变压器和一电感,其中该电感为该变压器的一漏感或耦接于该变压器与该一次侧开关电路间的一外加电感;
一二次侧开关电路,耦接于该磁性元件电路;
一输出电容,耦接于该二次侧开关电路;
其中藉由该一次侧开关电路的开通与关断,使得该输入电容与该电感产生一振荡电流,其中该振荡电流的一振荡频率为该一次侧开关电路的一开关频率的n倍,n的范围介于(2m+1.5)与(2m+2.5)之间,m≥0,且m为整数,其中该一次侧开关电路于该振荡电流的一波谷的一邻近区间内进行开关切换,该波谷的谷底位于该邻近区间之中点,且该邻近区间的持续时间为该振荡电流的一振荡周期的一半。
14.如权利要求13所述的变换装置,其特征在于,n为大于零的偶数。
15.如权利要求13所述的变换装置,其特征在于,该磁性元件电路的该变压器包含:
至少一磁芯;
至少一一次侧绕组,耦接于该一次侧开关电路;
至少一二次侧绕组,耦接于该二次侧开关电路,其中该至少一一次侧绕组与该至少一二次侧绕组通过该至少一磁芯耦合,其中该外加电感串接于该变压器的该至少一一次侧绕组与该一次侧开关电路。
16.如权利要求13所述的变换装置,其特征在于,该一次侧开关电路包含一全桥电路。
17.如权利要求15所述的变换装置,其特征在于,该变压器的该至少一二次侧绕组包含至少两个绕组,其中该至少两个绕组彼此串联,且该至少两个绕组的一连接点包含一中心抽头,其中该变压器之该至少一二次侧绕组与该二次侧开关电路形成一中心抽头全波整流电路。
18.如权利要求13所述的变换装置,其特征在于,该二次侧开关电路包含一全桥整流电路。
19.如权利要求13所述的变换装置,其特征在于,更包含:
一控制电路,用以产生一组互补的驱动信号而驱动该一次侧开关电路进行开关切换,其中每一该组互补的驱动信号之占空比约为50%。
20.如权利要求19所述的变换装置,其特征在于,当该一次侧开关电路的一开关的两端电压小于或等于该输入电压的一半时,该控制电路驱动该一次侧开关电路进行开关切换。
21.如权利要求19所述的变换装置,其特征在于,当该一次侧开关电路的一开关的两端电压等于零时,该控制电路驱动该一次侧开关电路进行开关切换。
22.如权利要求13所述的变换装置,其特征在于,如权利要求14所述的该变换装置包含至少两个,其中该至少两个变换装置的该一次侧开关电路串联耦接,且该至少两个变换装置的该二次侧开关电路串联或并联耦接。
23.如权利要求13所述的变换装置,其特征在于,如权利要求14所述的该变换装置包含至少两个,其中该至少两个变换装置的该一次侧开关电路并联耦接,且该至少两个变换装置的该二次侧开关电路串联或并联耦接。
24.如权利要求22或22所述的变换装置,其特征在于,分别驱动该至少两个变换装置的至少两个驱动信号同相或错相90度。
CN201810988838.4A 2018-08-28 2018-08-28 变换装置 Active CN110868071B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201810988838.4A CN110868071B (zh) 2018-08-28 2018-08-28 变换装置
US16/542,326 US11283360B2 (en) 2018-08-28 2019-08-16 Converter
EP19193528.7A EP3618249A1 (en) 2018-08-28 2019-08-26 Converter
US17/650,857 US11539285B2 (en) 2018-08-28 2022-02-14 DC-to-DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810988838.4A CN110868071B (zh) 2018-08-28 2018-08-28 变换装置

Publications (2)

Publication Number Publication Date
CN110868071A CN110868071A (zh) 2020-03-06
CN110868071B true CN110868071B (zh) 2021-01-26

Family

ID=67766044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810988838.4A Active CN110868071B (zh) 2018-08-28 2018-08-28 变换装置

Country Status (3)

Country Link
US (2) US11283360B2 (zh)
EP (1) EP3618249A1 (zh)
CN (1) CN110868071B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111525802B (zh) * 2019-02-01 2021-08-06 台达电子工业股份有限公司 变换装置
US11349401B1 (en) * 2021-01-25 2022-05-31 Semiconductor Components Industries, Llc Method and system of a power converter with secondary side active clamp

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150968A (en) 1980-04-22 1981-11-21 Toshiba Corp Switching circuit of single end high frequency
US6807073B1 (en) * 2001-05-02 2004-10-19 Oltronics, Inc. Switching type power converter circuit and method for use therein
TWI313102B (en) 2005-02-21 2009-08-01 Delta Electronics Inc Llc series resonant converter and the driving method of the synchronous rectifier power switches thereof
TWI363481B (en) * 2008-03-28 2012-05-01 Delta Electronics Inc Synchronous rectifying circuit having burst mode controller and controlling method thereof
CN101399492A (zh) 2008-11-10 2009-04-01 崇贸科技股份有限公司 电源供应器的具保护电路的控制电路
US8174850B2 (en) * 2009-04-09 2012-05-08 Stmicroelectronics S.R.L. Method and circuit for avoiding hard switching in half bridge converters
JP2011072076A (ja) * 2009-09-24 2011-04-07 Sanken Electric Co Ltd 直流変換装置
JP5530212B2 (ja) 2010-02-10 2014-06-25 株式会社日立製作所 電源装置、ハードディスク装置、及び電源装置のスイッチング方法
EP2381570B1 (en) 2010-04-20 2013-01-02 DET International Holding Limited Resonant capacitor clamping circuit in resonant converter
EP2458723B1 (en) * 2010-11-24 2016-08-17 Nxp B.V. A circuit for a resonant converter
TW201246774A (en) 2011-05-02 2012-11-16 Motech Ind Inc Circuit for converting a direct current voltage to an alternating current voltage
IN2014DN03129A (zh) 2011-12-01 2015-06-26 Ericsson Telefon Ab L M
US9116488B2 (en) 2012-03-12 2015-08-25 Kabushiki Kaisha Toshiba Image processing apparatus, developer cartridge, and image forming method
TWI540822B (zh) 2012-07-03 2016-07-01 盈正豫順電子股份有限公司 雙向直流/直流轉換器之控制方法
IN2014DN10269A (zh) * 2012-07-13 2015-08-07 Ericsson Telefon Ab L M
US9240724B2 (en) * 2013-03-13 2016-01-19 Astec International Limited Multiphase DC/DC converters and control circuits for controlling converters using fixed and/or variable frequencies
KR20140116338A (ko) 2013-03-22 2014-10-02 페어차일드코리아반도체 주식회사 스위치 제어 회로, 이를 포함하는 전력 공급 장치 및 그 구동 방법
CN103312171B (zh) 2013-06-15 2016-04-20 浙江大学 隔离型软开关双管正激谐振dc/dc电路
US9461553B2 (en) * 2013-11-21 2016-10-04 Majid Pahlevaninezhad High efficiency DC/DC converter and controller
CN103887976B (zh) 2014-03-25 2017-06-16 浙江大学 电流源输入型谐振软开关dc/dc变换器
US9214862B2 (en) * 2014-04-17 2015-12-15 Philips International, B.V. Systems and methods for valley switching in a switching power converter
US9621053B1 (en) 2014-08-05 2017-04-11 Flextronics Ap, Llc Peak power control technique for primary side controller operation in continuous conduction mode
US9960664B2 (en) 2014-12-07 2018-05-01 Alpha And Omega Semiconductor Incorporated Voltage converter
CN104467443B (zh) * 2015-01-06 2017-05-31 山东鲁能智能技术有限公司 基于llc拓扑的超宽输出电压范围充电机及控制方法
US9515504B2 (en) * 2015-01-19 2016-12-06 Macau University Of Science And Technology Battery charger with power factor correction
JP6158241B2 (ja) * 2015-03-19 2017-07-05 株式会社豊田中央研究所 電力変換回路システム
KR102027802B1 (ko) * 2015-05-29 2019-10-02 엘에스산전 주식회사 전력 변환 장치 및 이의 동작 방법
US9729063B2 (en) * 2015-09-08 2017-08-08 Infineon Technologies Austria Ag Voltage adjustment system and method for parallel-stage power converter
DE102015116995A1 (de) 2015-10-06 2017-04-06 Infineon Technologies Austria Ag Schaltung zur Leistungsfaktorkorrektur und Verfahren zum Betrieb
US9843265B2 (en) 2015-12-17 2017-12-12 Dell Products L.P. Zero voltage switching flyback converter
US10243476B2 (en) * 2015-12-24 2019-03-26 Kabushiki Kaisha Yaskawa Denki Power conversion device and power conversion method
CN106998142B (zh) * 2016-01-25 2019-08-30 台达电子企业管理(上海)有限公司 多路并联的谐振变换器、电感集成磁性元件和变压器集成磁性元件
US10069427B2 (en) 2016-04-06 2018-09-04 Fuji Electric Co., Ltd. Switching power supply apparatus
CN105811779B (zh) * 2016-04-25 2018-08-28 天津大学 Cltc谐振软开关双向变换器
US9893634B2 (en) 2016-05-06 2018-02-13 Semiconductor Components Industries, Llc Hybrid control technique for power converters
CN107769563B (zh) * 2016-08-17 2020-03-24 英飞特电子(杭州)股份有限公司 一种谐振变换器
JP6593707B2 (ja) * 2016-11-15 2019-10-23 オムロン株式会社 電圧変換装置
TWI634729B (zh) * 2017-10-11 2018-09-01 群光電能科技股份有限公司 諧振轉換器
CN110957914B (zh) * 2018-09-26 2021-09-07 台达电子工业股份有限公司 变换装置
CN111525803B (zh) * 2019-02-01 2021-10-26 台达电子工业股份有限公司 变换装置

Also Published As

Publication number Publication date
CN110868071A (zh) 2020-03-06
EP3618249A1 (en) 2020-03-04
US20220166331A1 (en) 2022-05-26
US11539285B2 (en) 2022-12-27
US11283360B2 (en) 2022-03-22
US20200076316A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
US5231563A (en) Square wave converter having an improved zero voltage switching operation
Duarte et al. A family of ZVS-PWM active-clamping DC-to-DC converters: synthesis, analysis, and experimentation
CN112491269B (zh) 电源转换系统
US7869237B1 (en) Phase-shifted bridge with auxiliary circuit to maintain zero-voltage-switching
US11641164B2 (en) Power conversion circuit and power conversion apparatus with same
JPH05276751A (ja) リプル電流成分歪みを減少させ、かつゼロ電圧スイッチング能を有するパルス幅変調型直流‐直流変換器
JP4935499B2 (ja) 直流変換装置
CN113794378B (zh) 变换装置
CN114337344B (zh) 一种基于自适应混合整流多开关谐振llc变换器的控制方法
CN111525803B (zh) 变换装置
US11539285B2 (en) DC-to-DC converter
KR0119914B1 (ko) 고역률 직렬공진형 정류기
JP2017005861A (ja) 共振型双方向dc/dcコンバータ
TWI649954B (zh) 具軟切換且能降低輸入或輸出電流漣波之逆變或整流電路
CN116191893A (zh) 一种llc谐振变换器
US11527963B2 (en) Control unit for improving conversion efficiency
WO2020208936A1 (ja) 直流変換装置
EP4418517A1 (en) Totem-pole power factor corrector with zero-voltage switching
Rana et al. A Modified Soft-Switched Push-Pull Topology with Phase-shift Modulation
Vu et al. Stack multiphase asymmetrical half-bridge topology offering advance performance and efficiency
Gopi et al. Soft-switched high step-up DC-dc converter with voltage doubler
KR20230174585A (ko) Llc 공진형 컨버터용 교차 제어장치
CN117856620A (zh) 一种Buck-LLC集成模块化组合式直流变换器
Liu et al. A low output ripple DC to DC converter topology using voltage overlapping technique
Hamada et al. A saturable reactor‐assisted soft switching PWM DC‐DC converter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant