CN110867457A - Array substrate with high-capacitance structure and manufacturing method - Google Patents
Array substrate with high-capacitance structure and manufacturing method Download PDFInfo
- Publication number
- CN110867457A CN110867457A CN201911135019.6A CN201911135019A CN110867457A CN 110867457 A CN110867457 A CN 110867457A CN 201911135019 A CN201911135019 A CN 201911135019A CN 110867457 A CN110867457 A CN 110867457A
- Authority
- CN
- China
- Prior art keywords
- metal
- electrode
- layer
- insulating layer
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 46
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 239000003990 capacitor Substances 0.000 claims abstract description 91
- 239000010409 thin film Substances 0.000 claims abstract description 35
- 230000005669 field effect Effects 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 29
- 229910052751 metal Inorganic materials 0.000 claims description 216
- 239000002184 metal Substances 0.000 claims description 216
- 229920002120 photoresistant polymer Polymers 0.000 claims description 50
- 230000004888 barrier function Effects 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 17
- 238000002161 passivation Methods 0.000 claims description 15
- 238000000151 deposition Methods 0.000 claims description 14
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 12
- 238000004380 ashing Methods 0.000 claims description 6
- 230000000717 retained effect Effects 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- -1 hydrogen ions Chemical class 0.000 claims description 2
- 239000007943 implant Substances 0.000 claims description 2
- 230000008901 benefit Effects 0.000 abstract description 2
- 238000003860 storage Methods 0.000 abstract description 2
- 230000000087 stabilizing effect Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 239000002131 composite material Substances 0.000 description 15
- 229910052814 silicon oxide Inorganic materials 0.000 description 15
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 8
- 229910004205 SiNX Inorganic materials 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 229910052733 gallium Inorganic materials 0.000 description 8
- 229910052738 indium Inorganic materials 0.000 description 8
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 8
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 8
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- 238000011161 development Methods 0.000 description 7
- 229910044991 metal oxide Inorganic materials 0.000 description 7
- 150000004706 metal oxides Chemical class 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 239000011787 zinc oxide Substances 0.000 description 7
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229920001621 AMOLED Polymers 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- UMVBXBACMIOFDO-UHFFFAOYSA-N [N].[Si] Chemical compound [N].[Si] UMVBXBACMIOFDO-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
- H10D86/021—Manufacture or treatment of multiple TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/481—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs integrated with passive devices, e.g. auxiliary capacitors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/60—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
Landscapes
- Liquid Crystal (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
技术领域technical field
本发明涉及显示技术领域,尤其涉及一种高电容结构的阵列基板及制作方法。The present invention relates to the field of display technology, and in particular, to an array substrate with a high capacitance structure and a manufacturing method.
背景技术Background technique
有源矩阵有机发光二极管显示器(AMOLED)和高性能有源矩阵液晶显示器(AMLCD)中的快速发展,值得许多高分辨率和高帧速的显示器。阵列基板中为了使驱动电路具有更好的稳压效果,通常需要设置较大容量电容,但大容量的电容造成驱动电路的占用面积大,从而无法进一步缩小显示面板边框尺寸以及画素大小。因此如何设计和制备高性能且小尺寸的阵列基板结构成为越来越需要被攻克的研究课题。The rapid development in Active Matrix Organic Light Emitting Diode Displays (AMOLEDs) and High Performance Active Matrix Liquid Crystal Displays (AMLCDs) deserves many high resolution and high frame rate displays. In order to make the driving circuit in the array substrate have a better voltage regulation effect, it is usually necessary to set a large-capacity capacitor. However, the large-capacity capacitor causes the driving circuit to occupy a large area, so that the frame size and pixel size of the display panel cannot be further reduced. Therefore, how to design and fabricate high-performance and small-sized array substrate structures has become a research topic that needs to be overcome more and more.
IGZO(indium gallium zinc oxide)为铟镓锌氧化物,是一种含有铟、镓和锌的非晶氧化物,载流子迁移率是非晶硅的20至30倍,可以大大提高TFT对像素电极的充放电速率,提高像素的响应速度,具备更快的面板刷新频率,可实现超高分辨率显示面板。同时,现有的非晶硅生产线只需稍加改动即可兼容IGZO制程,因此在成本方面较低温多晶硅(LTPS)更有竞争力。IGZO (indium gallium zinc oxide) is indium gallium zinc oxide, which is an amorphous oxide containing indium, gallium and zinc. The carrier mobility is 20 to 30 times that of amorphous silicon, which can greatly improve the TFT to the pixel electrode. The higher the charging and discharging rate, the higher the pixel response speed, the faster the panel refresh rate, and the ultra-high-resolution display panel. At the same time, the existing amorphous silicon production line can be compatible with the IGZO process with only minor modifications, so lower temperature polysilicon (LTPS) is more competitive in terms of cost.
发明内容SUMMARY OF THE INVENTION
为此,需要提供一种高电容结构的阵列基板及制作方法,解决制作显示器设备时配备高电容时面积占用过大的问题。Therefore, it is necessary to provide an array substrate with a high capacitance structure and a manufacturing method, so as to solve the problem of an excessively large area when a display device is equipped with a high capacitance.
为实现上述目的,发明人提供了一种高电容结构的阵列基板的制作方法,包括如下步骤:In order to achieve the above purpose, the inventor provides a method for fabricating an array substrate with a high capacitance structure, including the following steps:
在阵列基板上制作缓冲层;making a buffer layer on the array substrate;
在缓冲层上制作孔;make holes in the buffer layer;
沉积第一层金属,在孔内形成第一电极,第一电极作为下层电容结构的极板;depositing a first layer of metal, forming a first electrode in the hole, and the first electrode is used as the electrode plate of the lower capacitor structure;
覆盖第一绝缘层后,继续沉积第二层金属,在孔内形成覆盖第一电极的第一电极绝缘层,在孔内的第一电极绝缘层上形成第二电极,第二电极作为上下层电容结构的共用极板;After covering the first insulating layer, continue to deposit a second layer of metal, forming a first electrode insulating layer covering the first electrode in the hole, forming a second electrode on the first electrode insulating layer in the hole, and the second electrode as the upper and lower layers Common plate of capacitor structure;
覆盖第二绝缘层,在孔内形成覆盖第二电极的第二电极绝缘层;covering the second insulating layer, and forming a second electrode insulating layer covering the second electrode in the hole;
沉积第三层金属,在孔内的第二绝缘层上形成第三电极,第三电极作为上层电容结构的极板;depositing a third layer of metal, forming a third electrode on the second insulating layer in the hole, and the third electrode is used as a pole plate of the upper capacitor structure;
在孔外的缓冲层上还设置有薄膜场效应晶体管。A thin film field effect transistor is also arranged on the buffer layer outside the hole.
进一步地,还包括如下步骤:Further, it also includes the following steps:
在沉积第一层金属时,延伸孔内的第一电极至缓冲层的面上;或者:在覆盖第一绝缘层后,继续沉积第二层金属时,延伸孔内的第二电极与第一电极绝缘层至孔外缓冲层的面上;或者:在覆盖第二绝缘层时,延伸孔内的第二电极绝缘层至孔外缓冲层的面上:或者:在沉积第三层金属时,延伸孔内的第三电极至孔外缓冲层的面上;或者:连接孔外缓冲层的面上的第三电极与孔外缓冲层的面上的第一电极。When depositing the first layer of metal, extend the first electrode in the hole to the surface of the buffer layer; or: after covering the first insulating layer and continue to deposit the second layer of metal, extend the second electrode in the hole to the surface of the first layer of metal. The electrode insulating layer is to the surface of the buffer layer outside the hole; or: when covering the second insulating layer, the second electrode insulating layer in the hole is extended to the surface of the buffer layer outside the hole: or: when the third layer of metal is deposited, extending the third electrode in the hole to the surface of the buffer layer outside the hole; or: connecting the third electrode on the surface of the buffer layer outside the hole and the first electrode on the surface of the buffer layer outside the hole.
进一步地,所述薄膜场效应晶体管的制作步骤为:Further, the manufacturing steps of the thin film field effect transistor are:
在沉积第一层金属后,继续沉积栅极金属,在孔外的缓冲层上形成第一金属与栅极扫描线,第一金属在孔外的缓冲层上,栅极扫描线在第一金属上;After depositing the first layer of metal, continue to deposit gate metal, and form the first metal and the gate scan line on the buffer layer outside the hole, the first metal is on the buffer layer outside the hole, and the gate scan line is on the first metal superior;
覆盖第一绝缘层后,继续沉积第二层金属,在栅极扫描线上形成栅极绝缘层,栅极绝缘层覆盖并包裹住栅极扫描线和第一金属,在栅极绝缘层上形成第二金属;After covering the first insulating layer, continue to deposit a second layer of metal to form a gate insulating layer on the gate scanning line, the gate insulating layer covers and wraps the gate scanning line and the first metal, and forms on the gate insulating layer the second metal;
在覆盖第二绝缘层时,在第二金属上形成阻挡层;forming a barrier layer on the second metal while covering the second insulating layer;
在沉积第三层金属时,在阻挡层上形成包裹第二金属和阻挡层两侧的第三金属,第三金属露出阻挡层的中心部分;When depositing the third layer of metal, a third metal wrapping the second metal and both sides of the barrier layer is formed on the barrier layer, and the third metal exposes a central portion of the barrier layer;
沉积第四层金属,在第三金属上的一侧形成源极信号线,在第三金属上的另一侧形成漏极。A fourth layer of metal is deposited, a source signal line is formed on one side of the third metal, and a drain is formed on the other side of the third metal.
进一步地,在沉积第一层金属后,继续沉积栅极金属时,还包括如下步骤:Further, when depositing the gate metal after depositing the first layer of metal, the following steps are also included:
在栅极金属上涂布光阻,利用具有半透光区域、全透光区域和全遮光区域的半色掩膜版对光阻进行图形化,对光阻显影后半透光区域对应不完全显影区,全透光区域或者全遮光区域对应完全显影区,不完全显影区对应电容结构中第一电极的区域,完全显影区对应栅极扫描线的区域;Coat the photoresist on the gate metal, pattern the photoresist with a half-color mask with semi-transparent area, fully-transparent area, and fully-shielded area, and the semi-transparent area after developing the photoresist is not completely corresponding The developing area, the fully transparent area or the fully shading area corresponds to the fully developed area, the incompletely developed area corresponds to the area of the first electrode in the capacitor structure, and the fully developed area corresponds to the area of the gate scanning line;
以光阻为掩模蚀刻完全显影区和不完全显影区之外的区域上的栅极金属和第一层金属;Using the photoresist as a mask to etch the gate metal and the first layer of metal on the areas other than the fully developed area and the incompletely developed area;
通过灰化处理去除不完全显影区中第一层金属上的光阻,保留完全显影区中栅极金属上的光阻;Remove the photoresist on the first layer of metal in the incompletely developed area by ashing treatment, and retain the photoresist on the gate metal in the fully developed area;
蚀刻不完全显影区中栅极金属至第一层金属,保留第一层金属作为第一电极,去除完全显影区上的光阻,形成第一金属与栅极扫描线。The gate metal in the incompletely developed area is etched to the first layer of metal, the first layer of metal is retained as the first electrode, and the photoresist on the fully developed area is removed to form the first metal and the gate scan line.
进一步地,在覆盖第一绝缘层后,继续沉积第二层金属时,还包括如下步骤:Further, after covering the first insulating layer, when continuing to deposit the second layer of metal, the following steps are also included:
在第二层金属上涂布光阻,利用具有半透光区域、全透光区域和全遮光区域的半色掩膜版对光阻进行图形化,对光阻显影后半透光区域对应不完全显影区,全透光区域或者全遮光区域对应完全显影区,所述不完全显影区对应电容结构中第二电极的区域的区域,所述完全显影区对应第二金属的区域;Coat photoresist on the second layer of metal, pattern the photoresist with a half-color mask with semi-transparent area, fully-transparent area and fully-shielded area. The fully developed area, the fully transparent area or the fully shading area corresponds to the fully developed area, the incompletely developed area corresponds to the area of the second electrode area in the capacitor structure, and the fully developed area corresponds to the area of the second metal;
蚀刻不完全显影区和完全显影区之外的区域上的第二层金属,通过灰化处理去除不完全显影区中第二层金属上的光阻,然后氢离子注入,去除完全显影区中第一绝缘层材料上的光阻,保留不完全显影区的第二层金属和第一绝缘层分别作为第二电极和第一电极绝缘层,保留完全显影区的第二层金属和第一绝缘层分别作为第二金属和栅极绝缘层。Etch the second layer of metal in the incompletely developed area and areas other than the fully developed area, remove the photoresist on the second layer of metal in the incompletely developed area by ashing treatment, and then implant hydrogen ions to remove the first layer of metal in the fully developed area. A photoresist on an insulating layer material, the second metal layer and the first insulating layer in the incompletely developed area are reserved as the second electrode and the first electrode insulating layer, respectively, and the second layer of metal and the first insulating layer in the fully developed area are reserved. as the second metal and gate insulating layer, respectively.
进一步地,还包括如下步骤:Further, also include the following steps:
覆盖第三绝缘层材料,在电容结构的第三电极和薄膜场效应晶体管的第三金属上形成钝化层,钝化层保护电容结构和薄膜场效应晶体管。Covering the material of the third insulating layer, a passivation layer is formed on the third electrode of the capacitor structure and the third metal of the thin film field effect transistor, and the passivation layer protects the capacitor structure and the thin film field effect transistor.
进一步地,所述第一层金属的材料为氧化铟锡。Further, the material of the first layer metal is indium tin oxide.
本发明提供了一种具有高电容结构的阵列基板,其特征在于,所述具有高电容结构的阵列基板由上述任意一项所述制作高电容结构的阵列基板的方法制得。The present invention provides an array substrate with a high-capacitance structure, characterized in that the array substrate with a high-capacitance structure is prepared by any one of the methods for fabricating an array substrate with a high-capacitance structure described above.
本发明提供一种具有高电容结构的阵列基板,包括:The present invention provides an array substrate with a high capacitance structure, comprising:
在阵列基板上设置有缓冲层,在缓冲层上设置有孔,孔外的缓冲层上设置有薄膜场效应晶体管;A buffer layer is arranged on the array substrate, a hole is arranged on the buffer layer, and a thin film field effect transistor is arranged on the buffer layer outside the hole;
在孔内及孔与孔之间缓冲层的面上依次设置有第一电极、第一电极绝缘层、第二电极、第二电极绝缘层和第三电极,第一电极作为下层电容结构的极板,第一电极绝缘层覆盖第一电极并作为下层电容结构的介质层,第二电极在第一电极绝缘层上并作为上下层电容结构的共用极板,第二电极绝缘层覆盖第二电极并作为上层电容结构的介质层,第三电极在第二电极绝缘层上并作为上层电容结构的极板。A first electrode, a first electrode insulating layer, a second electrode, a second electrode insulating layer and a third electrode are sequentially arranged in the hole and on the surface of the buffer layer between the holes, and the first electrode serves as the electrode of the lower capacitor structure. plate, the first electrode insulating layer covers the first electrode and serves as the dielectric layer of the lower capacitor structure, the second electrode is on the first electrode insulating layer and serves as the common plate of the upper and lower capacitor structures, and the second electrode insulating layer covers the second electrode And as the dielectric layer of the upper capacitor structure, the third electrode is on the second electrode insulating layer and serves as the electrode plate of the upper capacitor structure.
进一步地,所述薄膜场效应晶体管包括:Further, the thin film field effect transistor includes:
在孔外的缓冲层上设置有第一金属,在第一金属上设置有栅极扫描线;A first metal is arranged on the buffer layer outside the hole, and a gate scan line is arranged on the first metal;
在栅极扫描线上设置有栅极绝缘层,栅极绝缘层覆盖并包裹住栅极扫描线和第一金属;A gate insulating layer is provided on the gate scanning line, and the gate insulating layer covers and wraps the gate scanning line and the first metal;
在栅极绝缘层上设置有第二金属,在第二金属上设置有阻挡层;A second metal is arranged on the gate insulating layer, and a barrier layer is arranged on the second metal;
在阻挡层上设置有第三金属,第三金属包裹住第二金属和阻挡层的两侧,第三金属露出阻挡层的中心部分,在第三金属上的一侧设置有源极信号线,在第三金属上的另一侧设置有漏极。A third metal is arranged on the barrier layer, the third metal wraps the second metal and both sides of the barrier layer, the third metal exposes the central part of the barrier layer, and a source signal line is arranged on one side of the third metal, A drain is provided on the other side of the third metal.
区别于现有技术,上述技术方案制作具有高电容结构的薄膜场效应晶体管,高电容结构驱动下的电路具有更好的稳压效果,可以增大储存电容的容值同时减小电容的占用面积,也具有提高面板像素密度(ppi)与缩小面板边框尺寸的优势。Different from the prior art, the above technical scheme produces a thin film field effect transistor with a high capacitance structure, and the circuit driven by the high capacitance structure has a better voltage regulation effect, which can increase the capacitance of the storage capacitor and reduce the occupied area of the capacitor. , also has the advantage of increasing the pixel density (ppi) of the panel and reducing the size of the panel bezel.
附图说明Description of drawings
图1为本发明在阵列基板上制作缓冲层与孔的剖面结构示意图;FIG. 1 is a schematic cross-sectional structure diagram of fabricating a buffer layer and a hole on an array substrate according to the present invention;
图2为本发明在阵列基板上制作第一电极、第一金属和栅极扫描线的工艺流程图;FIG. 2 is a process flow diagram of fabricating a first electrode, a first metal and a gate scan line on an array substrate according to the present invention;
图3为本发明在阵列基板上制作第一电极绝缘层、栅极绝缘层、第二电极和第二金属的工艺流程图;FIG. 3 is a process flow diagram of fabricating a first electrode insulating layer, a gate insulating layer, a second electrode and a second metal on an array substrate according to the present invention;
图4为本发明在阵列基板上制作第二电极绝缘层和阻挡层的剖面结构示意图;FIG. 4 is a schematic cross-sectional structural diagram of fabricating a second electrode insulating layer and a barrier layer on an array substrate according to the present invention;
图5为本发明另一实施例所述的薄膜场效应晶体管的剖面结构示意图;5 is a schematic cross-sectional structure diagram of a thin film field effect transistor according to another embodiment of the present invention;
图6为本发明在阵列基板上制作第三电极、第三金属、源极信号线和漏极的剖面结构示意图;6 is a schematic cross-sectional structural diagram of fabricating a third electrode, a third metal, a source signal line and a drain on the array substrate according to the present invention;
图7为本发明在阵列基板上制作钝化层的剖面结构示意图;FIG. 7 is a schematic cross-sectional structure diagram of a passivation layer fabricated on an array substrate according to the present invention;
图8为本发明所述栅状电容结构并联的结构示意图;FIG. 8 is a schematic structural diagram of the grid capacitor structure in parallel according to the present invention;
图9为本发明所述栅状电容结构的剖面结构示意图。FIG. 9 is a schematic cross-sectional structural diagram of the gate capacitor structure according to the present invention.
附图标记说明:Description of reference numbers:
1、阵列基板;1. Array substrate;
2、缓冲层;2. Buffer layer;
201、孔;201, hole;
3、第一层金属;3. The first layer of metal;
301、第一电极;301. A first electrode;
302、第一金属;302, the first metal;
4、栅极金属;4. Gate metal;
401、栅极扫描线;401. gate scan line;
5、半色掩膜版;5. Half-color mask;
6、第一绝缘层;6. The first insulating layer;
601、第一电极绝缘层;601. A first electrode insulating layer;
602、栅极绝缘层;602. gate insulating layer;
7、第二层金属;7. The second layer of metal;
701、第二电极;701. The second electrode;
702、第二金属;702. Second metal;
8、第二绝缘层;8. The second insulating layer;
801、第二电极绝缘层;801. A second electrode insulating layer;
802、阻挡层;802. barrier layer;
9、第三层金属;9. The third layer of metal;
901、第三电极;901. third electrode;
902、第三金属;902, the third metal;
10、第四层金属;10. The fourth layer of metal;
1001、源极信号线;1001. source signal line;
1002、漏极;1002, drain;
1100、钝化层。1100. Passivation layer.
具体实施方式Detailed ways
为详细说明技术方案的技术内容、构造特征、所实现目的及效果,以下结合具体实施例并配合附图详予说明。In order to describe in detail the technical content, structural features, achieved objectives and effects of the technical solution, the following detailed description is given in conjunction with specific embodiments and accompanying drawings.
请参阅图1至图9,本实施例提供了一种高电容结构的阵列基板的制作方法,本制作方法可以在阵列基板1上进行,在阵列基板1的一侧上制作场薄膜效应晶体管,在阵列基板1的另一侧上制作电容结构,包括如下步骤:在阵列基板1上制作缓冲层2与孔201;请参阅图1,具体工艺为在阵列基板1上覆盖一层缓冲层2,缓冲层2的材料为有机光敏材料、聚酰亚胺(PI)、氧化硅复合膜(SiOx)、氮化硅复合膜(SiNx)、氧化钛中的一种或多种。缓冲层2制作完毕后,在缓冲层2上制孔201;在缓冲层2上涂布光阻,图形化光阻,即曝光显影使得要制孔201的部位开口,而后以光阻为掩模蚀刻缓冲层2得到孔,制孔完毕后清除光阻。本制作方法制得可以同时制作多个孔201,孔201的截面可以为矩形、圆形、或者其它不规则形状,比如本制作方法展示所制得横截面为矩形的孔201,且横截面的宽度自上而下逐渐减小,孔底的宽度小于孔口的宽度,从而形成条形栅状结构的孔201,在孔201内及孔201与孔201之间可以制作栅状电容结构。Referring to FIGS. 1 to 9 , this embodiment provides a method for fabricating an array substrate with a high capacitance structure. The fabrication method can be performed on the
接着在阵列基板1上一次成膜第一层金属3与栅极金属4,形成第一电极301、第一金属302和栅极扫描线401;请参阅图2,具体工艺步骤为在阵列基板1上采用电镀、蒸镀或溅镀的方式镀上第一层金属3和栅极金属4,栅极金属4覆盖在第一层金属3上,结构如图2的第一个图所示。第一层金属3的材料为氧化铟锡(ITO),氧化铟锡薄膜的厚度较薄为100埃米至1000埃米,栅极金属4的材料为铝、钼、钛、镍、铜、银、铬等导电性优良金属的一种或多种或其它合金。然后利用具有半透光区域501、全透光区域502和全遮光区域503的半色掩膜版5对栅极金属4上的光阻进行图形化,结构如图2的第二个图所示。其中半透光区域501的光线透过率为50%,全透光区域502的光线透过率为100%,全遮光区域503的光线透过率为0%,对光阻显影后半透光区域501对应不完全显影区,全透光区域502或者全遮光区域503对应完全显影区,不完全显影区对应电容结构中第一电极301的区域,完全显影区对应薄膜场效应晶体管的栅极扫描线401的区域。其中,如涂布的是负性光阻时,半透光区域501对应不完全显影区即电容结构中第一电极301的区域,全透光区域502对应完全显影区即栅极扫描线401的区域;如涂布的是正性光阻时,半透光区域501对应不完全显影区即电容结构中第一电极301的区域,全遮光区域503对应完全显影区即栅极扫描线401的区域。本制作方法在栅极金属4上涂布正性光阻,利用具有半透光区域501、全透光区域502和全遮光区域503的半色掩膜版图形化光阻,半透光区域501对应不完全显影区,不完全显影区对应电容结构中第一电极301的区域,全遮光区域503对应完全显影区,完全显影区对应薄膜场效应晶体管中栅极扫描线401的区域。对光阻显影后,不完全显影区和完全显影区之外的区域的光阻完全去除,不完全显影区的光阻相较于完全显影区的光阻会减薄,结构如图2的第三个图所示。然后以光阻与掩模蚀刻不完全显影区和完全显影区之外的区域上的栅极金属4和第一层金属3,结构如图2的第三个图所示,接着通过灰化处理去除不完全显影区中第一层金属3上的光阻,结构如图2的第四个图所示,通过蚀刻时间控制或蚀刻药液的选择性去除不完全显影区中栅极金属4,保留不完全显影区的第一层金属3并在孔201内形成第一电极301,保留完全显影区的栅极金属4和第一层金属3并在孔201外的缓冲层2上形成栅极扫描线401和第一金属302,最后金属举离和去胶清洗。第一电极301与第一金属302在缓冲层2上,第一电极301与第一金属302具有间隙,栅极扫描线401在第一金属302上。其中,第一电极301作为下层电容结构的极板一,在孔201内形成第一电极301时,一般保留有用的第一电极301,对于孔201与孔201之间的缓冲层2的面上或两侧孔201周围的缓冲层2的面上的第一层金属3也可以保留一部分作为第一电极301,一方面缓冲层2的面上的第一电极301可以作为电容结构与其它电路的连接点,比如上下层电容结构之间的并联,另一方面孔201与孔201之间的第一电极301可以连接两个孔201内的电容结构,从而进一步提高电容容量。本制作方法一次成膜第一层金属3与栅极金属4并在电容区仅保留第一层金属3作为电极,由于第一层金属3的材料为氧化铟锡,氧化铟锡较薄(100埃米至1000埃米),有利于增加条形栅状的孔的数量,进一步提高电容容量;其次以氧化铟锡作为桥接连接有源层与源极信号线1001、漏极1002可以减少欧姆接触阻值,并提高薄膜场效应晶体管的电学性能。本制作方法可以直接用金属作为电容结构的电极,可以简化工艺。Next, a first layer of
第一电极、第一金属和栅极扫描线制作完毕后,进行第一电极绝缘层601、栅极绝缘层602、第二电极701和第二金属702的制作;请参阅图3,具体工艺为在阵列基板1上覆盖第一绝缘层6,然后在第一绝缘层6上继续镀上第二金属层7,第二金属层7可以采用电镀、蒸镀、溅镀的制作方式,结构如图3的第一个图所示。第一绝缘层6为氧化硅复合膜(SiOx)、氮化硅复合膜(SiNx)、氧化钛、氧化铝等,第二层金属7为铟镓锌氧化物(IGZO)、铟锌氧化物(IZO)、IGZTO等金属氧化物等。同样利用具有半透光区域501、全透光区域502和全遮光区域503的半色掩膜版5对光阻进行图形化。其中半透光区域501的光线透过率为50%,全透光区域502的光线透过率为100%,全遮光区域503的光线透过率为0%,对光阻显影后半透光区域501对应不完全显影区,全透光区域502或者全遮光区域503对应完全显影区,不完全显影区对应电容结构中第二电极701的区域,完全显影区对应第二金属702的区域。其中,如涂布的是负性光阻时,半透光区域501对应不完全显影区即电容结构中第二电极701的区域,全透光区域502对应完全显影区即第二金属702的区域;如涂布的是正性光阻时,半透光区域501对应不完全显影区即电容结构中第二电极701的区域,全遮光区域503对应完全显影区即第二金属702的区域。请参阅图3的第二个图,在第二层金属7上涂布正性光阻,利用具有半透光区域501、全透光区域502和全遮光区域503的半色掩膜版5图形化光阻,半透光区域501对应不完全显影区,不完全显影区对应电容结构中第二电极701的区域,全遮光区域503对应完全显影区,完全显影区对应薄膜场效应晶体管的第二金属的区域。对光阻显影后,不完全显影区和完全显影区之外的区域的光阻完全去除,不完全显影区的光阻相较于完全显影区的光阻会减薄,结构如图3的第三个图所示。然后以光阻与掩模蚀刻不完全显影区和完全显影区之外的区域的第二层金属6,保留第一绝缘层6,结构如图3的第四个图所示。接着通过灰化处理去除不完全显影区中第二层金属7上的光阻,通过氢离子注入的方式使电容结构的金属氧化物导体化,以及改善薄膜场效应晶体管的氧化物与源极信号线1001、漏极1002的欧姆接触特性,减小接触电阻,结构如图3的第五个图所示。氢离子注入后保留不完全显影区的第一绝缘层6并在孔201内及孔201与孔201之间缓冲层2的面上形成覆盖第一电极301的第一电极绝缘层601,保留不完全显影区的第二层金属7并在孔201内形成第二电极701,保留完全显影区的第一绝缘层6和第二层金属7并在孔201外的缓冲层2上形成栅极绝缘层602和第二金属702,最后金属举离和去胶清洗。在孔201内形成第二电极701时,一般保留有用的第二电极701,对于孔201与孔201之间缓冲层2的面上或两侧孔201周围缓冲层2的面上的第二层金属7也保留一部分作为第二电极701,孔201与孔201之间的第二电极701可以连接两个孔201内的电容结构。本制作方法可以直接用金属作为电容结构的电极,可以简化工艺。After the first electrode, the first metal and the gate scan line are fabricated, the first
覆盖在第一电极上301的第一电极绝缘层601作为下层电容结构的介质层,第一电极绝缘层601实现下层电容结构中第一电极301和第二电极701之间的隔离,从而避免第一电极301和第二电极701之间的电连接,第二电极701在第一电极绝缘层601上,第二电极601作为上下层电容结构的共用极板;栅极绝缘层602覆盖并包裹住栅极扫描线401和第一金属302,第二金属702在栅极绝缘层上602并作为薄膜场效应晶体管的有源层。The first
然后制作第二电极绝缘层801和阻挡层802;请参阅图4,具体工艺为在阵列基板1上覆盖第二绝缘层8,第二绝缘层8与第一绝缘层6的材料相同,为氧化硅复合膜(SiOx)、氮化硅复合膜(SiNx)、氧化钛、氧化铝等。而后对第二绝缘层8进行光刻图形化,以光阻为掩模蚀刻第二绝缘层8,露出第二金属702的两侧及栅极绝缘层的两侧,在第二金属702上形成阻挡层802,以光阻为掩模蚀刻孔201外缓冲层2的面上的第二绝缘层8至第一电极301形成通孔,通孔的底部为第一电极301,在孔201内及孔201与孔201之间缓冲层2的面上的第二电极701上形成覆盖第二电极701的第二电极绝缘层801,第二电极绝缘层801作为上层电容结构的介质层,第二电极绝缘层801实现上层电容结构中第二电极701和第三电极901之间的隔离,从而避免第二电极701和第三电极901之间的电连接。通孔底部的第一电极301可以与第三电极901进行连接,从而实现上层电容结构与下层电容结构的连接。制作第二电极绝缘层801和阻挡层802完毕后清除光阻。在某些实施例中,第二金属702上的阻挡层802也可以不需要制作,可以根据需要设计为BCE结构薄膜场效应晶体管,能够可以节省一道光罩,结构如图5所示。Then, the second
第二电极绝缘层801和阻挡层802制作完毕后,进行第三电极901、第三金属903、源极信号线1001和漏极1002的制作;请参阅图6,沉积第三层金属9,在第二金属702及阻挡层802上形成第三金属902,在孔201内形成第三电极9,对于孔201与孔201之间缓冲层2的面上或两侧孔201周围缓冲层2的面上的第三层金属9也保留一部分作为第三电极901,第三电极901可以与第二电极绝缘层802在第一电极301上的通孔与第一电极301连接,第三电极901与第一电极301连接后,即实现上层电容结构与下层电容结构的并联。本制作方法可以直接用金属作为电容结构的电极,可以简化工艺。After the second
第三金属902在阻挡层802上包裹第二金属702和阻挡层802的两侧,第三金属902暴露出阻挡层802的中心部分,即第三金属902具有两个部分。第三金属902制作完毕后,沉积第四层金属10,第四层金属10为铟镓锌氧化物(IGZO)、铟锌氧化物(IZO)、IGZTO等金属氧化物,在第三金属902上的一侧形成源极信号线1001,在第三金属902上的另一侧形成漏极1002,源极信号线1001和漏极1002具有间隙,结构如图6所示。第三电极901、源极信号线1001和漏极1002制作完毕后金属举离并去胶清洗。The
为了实现对电容结构的保护,避免外部结构与电容结构、薄膜场效应晶体管的直接接触,本制作方法还进行钝化层1100的制作;请参阅图7,可以通过化学气相沉积法镀上钝化层1100,钝化层1100为氧化硅复合膜(SiOx)、氮化硅复合膜(SiNx)、氧化钛、氧化铝等材料。钝化层1100覆盖第三金属902、阻挡层802、栅极绝缘层602和第三电极901等,覆盖住后,从外部只会接触到钝化层1100,而不会接触到电容结构与薄膜场效应晶体管。In order to protect the capacitor structure and avoid the direct contact between the external structure and the capacitor structure and the thin film field effect transistor, the manufacturing method also performs the manufacture of the
请参阅图8至图9,本发明的立体栅状结构电容,相比原有平板式电容可以有效降低电容区占用面积,保持相同的容量情况下,缩小电容尺寸;通过在阵列基板电容区保留金属氧化物并导体化使之作为电容电极,改善欧姆接触特性,减小接触电阻,形成两组性能优良的并联电容,进一步增大电容容量。请参阅图8,根据并联电容公式C并=C1+C2,(C1、C2为上下电容结构)为保持容量相等的情况下,栅状电容实际占用面积较平板理论上电容面积可再进一步缩减50%;请参阅图9,其中栅状电容的电容面积S=(S1+S2+S3+S4)*n,占用面积S实=(S1′+S2+S3+S4′)*n,根据三角函数S1′=Sinα*S1,若设计S1′=S2=S3,Taperα=60°,保持容量相等的情况下,栅状电容实际占用面积较平板电容面积可缩减33%。Please refer to FIG. 8 to FIG. 9 , the three-dimensional grid structure capacitor of the present invention can effectively reduce the area occupied by the capacitor area compared with the original plate capacitor, and reduce the size of the capacitor under the condition of maintaining the same capacity; The metal oxide is made into a conductor and used as a capacitor electrode, which improves the ohmic contact characteristics, reduces the contact resistance, forms two parallel capacitors with excellent performance, and further increases the capacitance capacity. Please refer to Figure 8. According to the parallel capacitance formula C and = C1+C2, (C1 and C2 are upper and lower capacitance structures), in order to maintain the same capacitance, the actual occupied area of the grid capacitor can be further reduced by 50% compared with the theoretical capacitance area of the plate. %; please refer to Figure 9, where the capacitance area of the grid capacitor S=(S1+S2+S3+S4)*n, the occupied area S=(S1′+S2+S3+S4′)*n, according to the trigonometric function S1′=Sinα*S1, if S1′=S2=S3 and Taperα=60°, the actual occupied area of the grid capacitor can be reduced by 33% compared with the area of the plate capacitor under the condition of keeping the same capacitance.
一次成膜第一层金属与栅极金属并在电容区仅保留氧化铟锡(第一层金属的材料)作为电极,氧化铟锡较薄(100埃米至1000埃米),有利于增加条形栅状的孔的数量,进一步提高电容容量。其次,以氧化铟锡作为桥接连接有源层与源、漏极可以减少欧姆接触阻值,提高薄膜场效应晶体管的电学性能。本制作方法的电极区还可以直接用金属作为电极板,可以简化工艺。The first layer of metal and gate metal are formed at one time, and only indium tin oxide (the material of the first layer of metal) is reserved in the capacitor region as the electrode. The number of grid-shaped holes further increases the capacitance. Secondly, using indium tin oxide as a bridge to connect the active layer with the source and drain can reduce the resistance of the ohmic contact and improve the electrical performance of the thin film field effect transistor. The electrode region of the manufacturing method can also directly use metal as the electrode plate, which can simplify the process.
本发明提供了一种具有高电容结构的阵列基板,如图1、图4至图9所示,本实施例的具有高电容结构的阵列基板可以根据上面的方法制得。具有高电容结构的阵列基板包括:阵列基板1上设置有缓冲层2,缓冲层2的材料为有机光敏材料、聚酰亚胺膜(PI)、氧化硅复合膜(SiOx)、氮化硅复合膜(SiNx)、氧化钛中的一种或多种。在缓冲层2上设置有多个孔201,结构如图1所示。本发明的孔201的截面可以为矩形、圆形、或者其它不规则形状,结构如图6所示,比如条形栅状结构的孔201的横截面为矩形,且横截面的宽度自上而下逐渐减小,孔底的宽度小于孔口的宽度,在孔201内及孔201与孔201之间设置有栅状电容结构。孔201外的缓冲层2上设置有薄膜场效应晶体管。The present invention provides an array substrate with a high capacitance structure. As shown in FIG. 1 , FIG. 4 to FIG. 9 , the array substrate with a high capacitance structure in this embodiment can be manufactured according to the above method. The array substrate with a high capacitance structure includes: a
请参阅图4,在孔201内及孔201与孔201之间依次设置有第一电极301、第一电极绝缘层601和第二电极701;第一电极301作为下层电容结构的极板,第一电极绝缘层601覆盖第一电极301并作为下层电容结构的介质层,第二电极在第一电极绝缘层上并作为上下层电容结构的共用极板;第二电极绝缘层覆盖第二电极并作为上层电容结构的介质层,第一电极绝缘层601实现下层电容结构中第一电极301和第二电极701之间的隔离,从而避免第一电极301和第二电极701之间的电连接。第一电极301、第一电极绝缘层601和第二电极701组成下层电容结构。由于孔内壁两侧的第一电极301和第二电极701是栅状平面,可以大大提高金属的面积,从而可以实现较大的电容容值。同时降低了寄生电容影响和所需的半导体器件面积。请参阅图9,其中栅状电容的电容面积S=(S1+S2+S3+S4)*n,占用面积S实=(S1′+S2+S3+S4′)*n,根据三角函数S1′=Sinα*S1,若设计S1′=S2=S3,Taperα=60°,保持容量相等的情况下,栅状电容实际占用面积较传统的平板电容面积可缩减33%。Please refer to FIG. 4 , a
第一电极301为氧化铟锡,氧化铟锡较薄(100埃米至1000埃米),有利于提高第一电极301的数量,进一步提高电容容量;其次以氧化铟锡作为桥接连接有源层与源极信号线1001、漏极1002可以减少欧姆接触阻值,并提高薄膜场效应晶体管的电学性能。第一电极绝缘层601为氧化硅复合膜(SiOx)、氮化硅复合膜(SiNx)、氧化钛、氧化铝等。The
请参阅图6,在孔201内及孔201与孔201之间依次设置有第二电极绝缘层801和第三电极901;第二电极绝缘层801覆盖第二电极701并作为上层电容结构的介质层,第三电极901在第二电极绝缘层801上并作为上层电容结构的极板,缓冲层2面上的第一电极绝缘层601、第二电极绝缘层801和第二电极701露出底下的第一电极301。第二电极绝缘层801实现上层电容结构中第二电极701和第三电极901之间的隔离,从而避免第二电极701和第三电极901之间的电连接。第二电极701、第二电极绝缘层801和第三电极901组成下层电容结构。由于孔内壁两侧的第二电极701和第三电极901是栅状平面,可以大大提高金属的面积,从而可以实现较大的电容容值。缓冲层2面上的第一电极301和第三电极901相连接,可以实现上下层电容结构的并联,请参阅图8,根据并联电容公式C并=C1+C2,(C1、C2为上下电容结构)为保持容量相等的情况下,栅状电容实际占用面积较平板理论上电容面积可再进一步缩减50%。Referring to FIG. 6 , a second
请参阅图6,在孔201外的缓冲层2上设置有薄膜场效应半导体,薄膜场效应半导体包括:在孔201外的缓冲层2上设置有第一金属302,第一金属302为为氧化铟锡;在第一金属302上设置有栅极扫描线401,栅极扫描线401为铝、钼、钛、镍、铜、银、铬等导电性优良金属的一种或多种或其它合金。Please refer to FIG. 6 , a thin film field effect semiconductor is disposed on the
在栅极扫描线401上设置有栅极绝缘层602,栅极绝缘层602覆盖并包裹住栅极扫描线401和第一金属302,栅极绝缘层602为氧化硅复合膜(SiOx)、氮化硅复合膜(SiNx)、氧化钛、氧化铝等。A
在栅极绝缘层602上设置有第二金属702,第二金属702为铟镓锌氧化物(IGZO)、铟锌氧化物(IZO)、IGZTO等金属氧化物等;在第二金属702上设置有阻挡层802,第二金属702在栅极绝缘层上602并作为薄膜场效应晶体管的有源层。在某些实施例中,阻挡层也可以不设置,结构如图5所示。A
在阻挡层802上设置有第三金属902,第三金属902为铟镓锌氧化物(IGZO)、铟锌氧化物(IZO)、IGZTO等金属氧化物等,第三金属903包裹住第二金属702和阻挡层802的两侧,第三金属902露出阻挡层802的中心部分,在第三金属902上的一侧设置有源极信号线1001,在第三金属903上的另一侧设置有漏极1002,源极信号线1001和漏极1002为铟镓锌氧化物(IGZO)、铟锌氧化物(IZO)、IGZTO等金属氧化物,源极信号线1001和漏极1002具有间隙,结构如图6所示。A
为了实现对电容结构的保护,避免外部结构与电容结构、薄膜场效应晶体管的直接接触,在电容区和薄膜场效应晶体管上设置有钝化层1100,钝化层1100为氧化硅复合膜(SiOx)、氮化硅复合膜(SiNx)、氧化钛、氧化铝等材料。钝化层1100覆盖第三金属902、阻挡层802、栅极绝缘层602和第三电极901等,覆盖住后,从外部只会接触到钝化层1100,而不会接触到电容结构与薄膜场效应晶体管。In order to protect the capacitor structure and avoid direct contact between the external structure and the capacitor structure and the thin film field effect transistor, a
需要说明的是,尽管在本文中已经对上述各实施例进行了描述,但并非因此限制本发明的专利保护范围。因此,基于本发明的创新理念,对本文所述实施例进行的变更和修改,或利用本发明说明书及附图内容所作的等效结构或等效流程变换,直接或间接地将以上技术方案运用在其他相关的技术领域,均包括在本发明的专利保护范围之内。It should be noted that, although the above embodiments have been described herein, it does not limit the scope of the patent protection of the present invention. Therefore, based on the innovative concept of the present invention, changes and modifications to the embodiments described herein, or equivalent structures or equivalent process transformations made by using the contents of the description and drawings of the present invention, directly or indirectly apply the above technical solutions In other related technical fields, all are included within the scope of patent protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911135019.6A CN110867457B (en) | 2019-11-19 | 2019-11-19 | A high capacitance array substrate and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911135019.6A CN110867457B (en) | 2019-11-19 | 2019-11-19 | A high capacitance array substrate and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110867457A true CN110867457A (en) | 2020-03-06 |
CN110867457B CN110867457B (en) | 2024-12-13 |
Family
ID=69655582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911135019.6A Active CN110867457B (en) | 2019-11-19 | 2019-11-19 | A high capacitance array substrate and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110867457B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112909027A (en) * | 2021-02-09 | 2021-06-04 | 福建华佳彩有限公司 | Array substrate with high-capacity capacitor structure and preparation method thereof |
CN112909026A (en) * | 2021-02-09 | 2021-06-04 | 福建华佳彩有限公司 | Oxide thin film transistor array substrate and preparation method thereof |
CN112909025A (en) * | 2021-02-09 | 2021-06-04 | 福建华佳彩有限公司 | Array substrate and preparation method thereof |
CN112909028A (en) * | 2021-02-09 | 2021-06-04 | 福建华佳彩有限公司 | Display device and manufacturing method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101359136A (en) * | 2007-07-31 | 2009-02-04 | 北京京东方光电科技有限公司 | TFT LCD array substrate structure and method for manufacturing same |
US20110278565A1 (en) * | 2010-05-12 | 2011-11-17 | Hoon Yim | Oxide thin film transistor and method of fabricating the same |
CN102916014A (en) * | 2011-08-01 | 2013-02-06 | 三星显示有限公司 | Thin-film transistor array substrate, organic light-emitting display having the same, and method of manufacturing the organic light-emitting display |
CN104218041A (en) * | 2014-08-15 | 2014-12-17 | 京东方科技集团股份有限公司 | Array substrate and production method thereof and display device |
CN210668373U (en) * | 2019-11-19 | 2020-06-02 | 福建华佳彩有限公司 | Array substrate with high capacitance structure |
-
2019
- 2019-11-19 CN CN201911135019.6A patent/CN110867457B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101359136A (en) * | 2007-07-31 | 2009-02-04 | 北京京东方光电科技有限公司 | TFT LCD array substrate structure and method for manufacturing same |
US20110278565A1 (en) * | 2010-05-12 | 2011-11-17 | Hoon Yim | Oxide thin film transistor and method of fabricating the same |
CN102916014A (en) * | 2011-08-01 | 2013-02-06 | 三星显示有限公司 | Thin-film transistor array substrate, organic light-emitting display having the same, and method of manufacturing the organic light-emitting display |
CN104218041A (en) * | 2014-08-15 | 2014-12-17 | 京东方科技集团股份有限公司 | Array substrate and production method thereof and display device |
CN210668373U (en) * | 2019-11-19 | 2020-06-02 | 福建华佳彩有限公司 | Array substrate with high capacitance structure |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112909027A (en) * | 2021-02-09 | 2021-06-04 | 福建华佳彩有限公司 | Array substrate with high-capacity capacitor structure and preparation method thereof |
CN112909026A (en) * | 2021-02-09 | 2021-06-04 | 福建华佳彩有限公司 | Oxide thin film transistor array substrate and preparation method thereof |
CN112909025A (en) * | 2021-02-09 | 2021-06-04 | 福建华佳彩有限公司 | Array substrate and preparation method thereof |
CN112909028A (en) * | 2021-02-09 | 2021-06-04 | 福建华佳彩有限公司 | Display device and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN110867457B (en) | 2024-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106684155B (en) | Double-gate thin film transistor and preparation method thereof, array substrate and display device | |
US9236405B2 (en) | Array substrate, manufacturing method and the display device thereof | |
US9761731B2 (en) | Thin film transistor and its manufacturing method, array substrate and its manufacturing method, and display device | |
US7863607B2 (en) | Thin film transistor array panel and manufacturing method thereof | |
CN104218041B (en) | Array base palte and preparation method and display device | |
CN107331669B (en) | TFT drive backplane fabrication method | |
CN110867457A (en) | Array substrate with high-capacitance structure and manufacturing method | |
CN103227147B (en) | TFT-LCD array substrate and manufacture method, liquid crystal display | |
CN106531692A (en) | Array substrate and preparation method therefor, and display apparatus | |
WO2015100898A1 (en) | Thin-film transistor, tft array substrate and manufacturing method therefor, and display device | |
CN103094205B (en) | A kind of thin-film transistor, thin-film transistor drive the preparation method of backboard and thin-film transistor to drive backboard | |
CN102769039A (en) | A kind of thin film transistor and its manufacturing method, array substrate and display device | |
CN111403337A (en) | Array substrate, display panel and manufacturing method of array substrate | |
CN109004032A (en) | Thin film transistor (TFT) and its manufacturing method, array substrate | |
CN103545319A (en) | Low-temperature polysilicon thin film transistor array substrate, manufacturing method thereof, and display device | |
CN110071069A (en) | Show backboard and preparation method thereof | |
CN113745249B (en) | Display panel and preparation method thereof, and mobile terminal | |
CN108873526B (en) | Array substrate, manufacturing method thereof and display device | |
CN107799466A (en) | TFT substrate and preparation method thereof | |
CN104576760A (en) | Thin film transistor, manufacturing method thereof, array substrate and display device | |
CN111739841B (en) | In-cell touch panel with top gate structure and manufacturing method | |
US20210183899A1 (en) | Active matrix substrate and method for manufacturing same | |
CN113421886B (en) | Display panel and manufacturing method thereof | |
CN210668373U (en) | Array substrate with high capacitance structure | |
WO2016000363A1 (en) | Low temperature poly-silicon thin film transistor array substrate and manufacturing method therefor and display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |