CN110865093A - 水凝胶制备及其性能测试的方法 - Google Patents

水凝胶制备及其性能测试的方法 Download PDF

Info

Publication number
CN110865093A
CN110865093A CN201810987583.XA CN201810987583A CN110865093A CN 110865093 A CN110865093 A CN 110865093A CN 201810987583 A CN201810987583 A CN 201810987583A CN 110865093 A CN110865093 A CN 110865093A
Authority
CN
China
Prior art keywords
hydrogel
gel
powder
solution
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810987583.XA
Other languages
English (en)
Inventor
夏海明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201810987583.XA priority Critical patent/CN110865093A/zh
Publication of CN110865093A publication Critical patent/CN110865093A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/16Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using titration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • G01N2021/3572Preparation of samples, e.g. salt matrices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明提供了化学领域内的水凝胶制备及其性能测试的方法,包括以下步骤,(1)准备实验材料;(2)取2.5g纤维素粉末加入到50mL的85%浓磷酸中,在0℃下机械搅拌;(3)入氮气吹扫30 min后彻底排出体系内的空气;(4)在纤维素溶液中加入100mg APS和50 mg MBA,将混合物在0℃下搅拌均匀;(5)用滴液漏斗滴加不同量的单体AA,连续搅拌2h后,将反应混合物转移至直径为6 mm的玻璃管中,在0℃下继续聚合反应24 h;(6)得到圆柱形状的条状水凝胶,将新鲜的水凝胶切成2~3mm厚度的圆片,用去离子水洗去残留原料和副产物;本发明操作简单,温度控制容易。

Description

水凝胶制备及其性能测试的方法
技术领域
本发明属于化学领域,特别涉及水凝胶制备及其性能测试的方法。
背景技术
氧化纤维素是一种储量丰富的可再生,可生物降解的绿色资源。目前纤维素的各种衍生物已被广泛地应用在造纸、食品、医药卫生、化妆品和石油工业等领域。水凝胶作为一种具有交联的三维网络结构的生物材料,在溶剂中只溶胀而不溶解,可以应用在药物释放载体,伤口敷裹以及农林育种等诸多领域,而以天然高分子材料制备功能性水凝胶具有重要的环保意义和经济意义。
化锂/N,N'-二甲基乙酰胺(LiCl/DMAC)是目前公认的非常有效、对纤维降解较少且环保的绿色溶剂,其主要的缺陷在于较高的反应温度(110℃)和较长的反应时间(4~5h)。
发明内容
针对现有技术中的缺陷,本发明的目的在于克服上述现有技术中的不足之处,提供水凝胶制备及其性能测试的方法,本发明的反应时间短,效率高。
本发明的目的是这样实现的:水凝胶制备及其性能测试的方法,包括以下步骤:
(1)准备实验材料;
(2)取 2.5 g纤维素粉末加入到 50 mL 的 85%浓磷酸中,在 0℃下机械搅拌直到混合物变成均匀的半透明胶状物;
(3)入氮气吹扫 30 min 后彻底排出体系内的空气;
(4)在纤维素溶液中加入100 mg APS(作为引发剂)和 50 mg MBA(作为交联剂),将混合物在0℃下充分搅拌至均匀;
(5)用恒压滴液漏斗缓慢滴加不同量的单体 AA(约 30 min 滴完),连续搅拌 2 h后,将反应混合物转移至直径为 6 mm 的玻璃管中(作为微型反应器),在 0℃下继续聚合反应24 h;
(6)得到圆柱形状的条状水凝胶,将新鲜的水凝胶切成 2~3 mm厚度的圆片,用大量去离子水洗去残留原料和副产物,然后在 50℃的烘箱中干燥至恒重备用;
(7)将干燥后的水凝胶进行性能测试,将测试得到的结果进行分析,包括SEM分析、FTIR分析、羧基含量的电导滴定测定、不同溶剂介质中 C-g-AA 凝胶溶胀行为的测定和C-g-AA凝胶阳离子染料吸附测定。
作为本发明的进一步改进,所述SEM分析具体的为:
(1)将事先溶胀平衡的C-g-AA水凝胶圆片在-45℃的条件下冷冻干燥两天,直到所有的水分升华;
(2)将凝胶圆片在液氮中迅速冷冻,并破裂成碎片,在断裂表面喷金;
(3)通过扫描电子显微镜(Quanta 200,FEI Company)记录断裂样品的表面形态图像,电镜工作电压为3 kV,分辨率为10 nm,每个样品选择五个不同的位置进行扫描,选择具有重复特征的图片进行分析。
作为本发明的进一步改进,所述FTIR分析具体的为:
(1)将充分干燥后的C-g-AA水凝胶研磨成粉末状,在玛瑙研钵中与光谱级的溴化钾(KBr)粉末充分混合;
(2)在压片机中将此粉末混合物压成透明薄片;
(3)通过Bruker Vector 33红外光谱仪记录测得凝胶的FTIR谱图,测量波长范围为4000~500 cm-1
(4)以纯的纤维素与KBr混合压片作为实验的对照组。
作为本发明的进一步改进,所述羧基含量的电导滴定测定具体的为:
(1)将凝胶粉末充分分散在0.01 mol/L 的盐酸溶液中,与溶液中的H+
离子交换阳离子,充分交换6 h后用去离子水将残余的H+离子洗去直至溶液呈中性;
(2)通过慢速的酸碱滴定来确保水相和胶相之间的完全平衡,并获得定量数据;
(3)将纤维素粉末经过上述同样处理可得到空白滴定曲线;
(4)每个样品滴定三次,并取其算术平均值。
作为本发明的进一步改进,所述不同溶剂介质中 C-g-AA 凝胶溶胀行为的测定具体的为:
(1)将充分干燥后的C-g-AA水凝胶圆片置于不同的溶液,包括去离子水,pH缓冲溶液(pH:2.0~11.0,离子强度:I=0.2 M),以及盐溶液(NaCl或CaCl2,0.01~2.5 mol/L)中充分溶胀;
(2)每隔一定时间将溶胀中的凝胶取出,用滤纸吸去表面的水分并称重,然后将水凝胶再次浸入到原先溶液中溶胀,预定时间间隔后再次取出进行如上操作并称重。
作为本发明的进一步改进, 所述C-g-AA 凝胶阳离子染料吸附测定具体的为:
(1)将准确称重的干凝胶置于去离子水中24 h,直至溶胀平衡,然后将溶胀平衡的凝胶浸入MB溶液中,并置于旋转摇床(30℃,85 rpm)中充分接触36h;
(2)通过紫外可见分光光度计(Hitachi Z-5000,Japan)测定664 nm处的MB吸光度,以此作为吸附定量数据。
附图说明
图1为水凝胶合成机理图。
图2为原料棉短绒和C-g-AA水凝胶的FTIR谱图。
具体实施方式
水凝胶制备及其性能测试的方法,包括以下步骤:
(1)准备实验材料,实验原料如表1所示;
(2)取 2.5 g纤维素粉末加入到 50 mL 的 85%浓磷酸中,在 0℃下机械搅拌直到混合物变成均匀的半透明胶状物;
(3)入氮气吹扫 30 min 后彻底排出体系内的空气;
(4)在纤维素溶液中加入100 mg APS(作为引发剂)和 50 mg MBA(作为交联剂),将混合物在0℃下充分搅拌至均匀;
(5)用恒压滴液漏斗缓慢滴加不同量的单体 AA(约 30 min 滴完),连续搅拌 2 h后,将反应混合物转移至直径为 6 mm 的玻璃管中(作为微型反应器),在 0℃下继续聚合反应24 h;
(6)得到圆柱形状的条状水凝胶,将新鲜的水凝胶切成 2~3 mm厚度的圆片,用大量去离子水洗去残留原料和副产物,然后在 50℃的烘箱中干燥至恒重备用;
(7)将干燥后的水凝胶进行性能测试,将测试得到的结果进行分析,包括SEM分析、FTIR分析、羧基含量的电导滴定测定、不同溶剂介质中 C-g-AA 凝胶溶胀行为的测定和C-g-AA凝胶阳离子染料吸附测定。
SEM分析具体的为:
(1)将事先溶胀平衡的C-g-AA水凝胶圆片在-45℃的条件下冷冻干燥两天,直到所有的水分升华;
(2)将凝胶圆片在液氮中迅速冷冻,并破裂成碎片,在断裂表面喷金;
(3)通过扫描电子显微镜(Quanta 200,FEI Company)记录断裂样品的表面形态图像,电镜工作电压为3 kV,分辨率为10 nm,每个样品选择五个不同的位置进行扫描,选择具有重复特征的图片进行分析。
FTIR分析具体的为:
(1)将充分干燥后的C-g-AA水凝胶研磨成粉末状,在玛瑙研钵中与光谱级的溴化钾(KBr)粉末充分混合;
(2)在压片机中将此粉末混合物压成透明薄片;
(3)通过Bruker Vector 33红外光谱仪记录测得凝胶的FTIR谱图,测量波长范围为4000~500 cm-1
(4)以纯的纤维素与KBr混合压片作为实验的对照组。
羧基含量的电导滴定测定具体的为:
(1)将凝胶粉末充分分散在0.01 mol/L 的盐酸溶液中,与溶液中的H+
离子交换阳离子,充分交换6 h后用去离子水将残余的H+离子洗去直至溶液呈中性;
(2)通过慢速的酸碱滴定来确保水相和胶相之间的完全平衡,并获得定量数据;
(3)将纤维素粉末经过上述同样处理可得到空白滴定曲线;
(4)每个样品滴定三次,并取其算术平均值。
不同溶剂介质中 C-g-AA 凝胶溶胀行为的测定具体的为:
(1)将充分干燥后的C-g-AA水凝胶圆片置于不同的溶液,包括去离子水,pH缓冲溶液(pH:2.0~11.0,离子强度:I=0.2 M),以及盐溶液(NaCl或CaCl2,0.01~2.5 mol/L)中充分溶胀;
(2)每隔一定时间将溶胀中的凝胶取出,用滤纸吸去表面的水分并称重,然后将水凝胶再次浸入到原先溶液中溶胀,预定时间间隔后再次取出进行如上操作并称重。
C-g-AA 凝胶阳离子染料吸附测定具体的为:
(1)将准确称重的干凝胶置于去离子水中24 h,直至溶胀平衡,然后将溶胀平衡的凝胶浸入MB溶液中,并置于旋转摇床(30℃,85 rpm)中充分接触36h;
(2)通过紫外可见分光光度计(Hitachi Z-5000,Japan)测定664 nm处的MB吸光度,以此作为吸附定量数据。
表1 制备凝胶的原料用量
Figure 648724DEST_PATH_IMAGE002
实验成功制备了C-g-AA水凝胶样品,CA10,CA15和CA20,其纤维素/AA摩尔比分别为1:2,1:4和1:6,水凝胶外观呈半透明状,表面光滑,柔软有弹性,对凝胶断裂面进行了SEM分析,结果表明该水凝胶具有高度多孔的网络结构,该结构有利于水分子的扩散和后续染料离子和金属离子的吸附;另外实验表明当水凝胶中AA含量过高,例如纤维素/AA摩尔比达到1:8时,形成的凝胶强度较差以致很难成形。
图2中显示两种样品在3355 cm−1和 3448 cm−1处都有明显的吸收峰,这是纤维素中参与氢键键合的–OH 基团的特征峰。同样在 2900 cm-1处两者都显示有特征峰,这是纤维素–CH2OH 基团中–CH2–的非对称伸缩所致;C-g-AA 水凝胶在 1710~1569 cm−1范围内有一宽峰,这是由于接枝的丙烯酸支链上–COOH 基团中 C=O 的伸缩振动而产生;而 1411cm-1处尖锐的特征峰则归因于–COO– 基团的对称伸缩振动;710~1569 cm-1和 1411 cm-1处的吸收峰证明聚合反应后水凝胶结构中羧基基团的存在。此外与原料棉短绒在 1060cm-1的吸收峰相比,C-g-AA水凝胶在 1069 cm-1处吸收峰的强度明显降低,此处为–CH2OH基团中 C–O 的伸缩振动峰,表明接枝聚合反应主要发生在纤维素的伯羟基位,此处反应使羟基的数量发生减少。
然而羧基基团的存在也可能是由于 AA 单体的混入或是丙烯酸均聚物的存在,而不是接枝在纤维素水凝胶上。为了证明这一点,将水凝胶放入 0.01 mol/L 的 NaOH 溶液中彻底浸泡洗涤 48 h,随后冷冻干燥,研成粉末用于 FTIR 观察。结果表明无论是否用稀碱溶液洗涤,水凝胶均表现出完全相同的 FTIR 谱图。这进一步证明了 AA 单体成功的接枝在了纤维素骨架上,反应合成了一种全新的聚合物。
本发明并不局限于上述实施例,在本发明公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本发明保护范围内。

Claims (6)

1.水凝胶制备及其性能测试的方法,其特征在于,包括以下步骤:
(1)准备实验材料;
(2)取 2.5 g纤维素粉末加入到 50 mL 的 85%浓磷酸中,在 0℃下机械搅拌直到混合物变成均匀的半透明胶状物;
(3)入氮气吹扫 30 min 后彻底排出体系内的空气;
(4)在纤维素溶液中加入100 mg APS(作为引发剂)和 50 mg MBA(作为交联剂),将混合物在0℃下充分搅拌至均匀;
(5)用恒压滴液漏斗缓慢滴加不同量的单体 AA(约 30 min 滴完),连续搅拌 2 h后,将反应混合物转移至直径为 6 mm 的玻璃管中(作为微型反应器),在 0℃下继续聚合反应24 h;
(6)得到圆柱形状的条状水凝胶,将新鲜的水凝胶切成 2~3 mm厚度的圆片,用大量去离子水洗去残留原料和副产物,然后在 50℃的烘箱中干燥至恒重备用;
(7)将干燥后的水凝胶进行性能测试,将测试得到的结果进行分析,包括SEM分析、FTIR分析、羧基含量的电导滴定测定、不同溶剂介质中 C-g-AA 凝胶溶胀行为的测定和C-g-AA凝胶阳离子染料吸附测定。
2.根据权利要求1所述的水凝胶制备及其性能测试的方法,其特征在于,所述SEM分析具体的为:
(1)将事先溶胀平衡的C-g-AA水凝胶圆片在-45℃的条件下冷冻干燥两天,直到所有的水分升华;
(2)将凝胶圆片在液氮中迅速冷冻,并破裂成碎片,在断裂表面喷金;
(3)通过扫描电子显微镜(Quanta 200,FEI Company)记录断裂样品的表面形态图像,电镜工作电压为3 kV,分辨率为10 nm,每个样品选择五个不同的位置进行扫描,选择具有重复特征的图片进行分析。
3.根据权利要求1或2所述的水凝胶制备及其性能测试的方法,其特征在于,所述FTIR分析具体的为:
(1)将充分干燥后的C-g-AA水凝胶研磨成粉末状,在玛瑙研钵中与光谱级的溴化钾(KBr)粉末充分混合;
(2)在压片机中将此粉末混合物压成透明薄片;
(3)通过Bruker Vector 33红外光谱仪记录测得凝胶的FTIR谱图,测量波长范围为4000~500 cm-1
(4)以纯的纤维素与KBr混合压片作为实验的对照组。
4. 根据权利要求2或3所述的水凝胶制备及其性能测试的方法,其特征在于, 所述羧基含量的电导滴定测定具体的为:
(1)将凝胶粉末充分分散在0.01 mol/L 的盐酸溶液中,与溶液中的H+
离子交换阳离子,充分交换6 h后用去离子水将残余的H+离子洗去直至溶液呈中性;
(2)通过慢速的酸碱滴定来确保水相和胶相之间的完全平衡,并获得定量数据;
(3)将纤维素粉末经过上述同样处理可得到空白滴定曲线;
(4)每个样品滴定三次,并取其算术平均值。
5. 根据权利要求2或3所述的水凝胶制备及其性能测试的方法,其特征在于, 所述不同溶剂介质中 C-g-AA 凝胶溶胀行为的测定具体的为:
(1)将充分干燥后的C-g-AA水凝胶圆片置于不同的溶液,包括去离子水,pH缓冲溶液(pH:2.0~11.0,离子强度:I=0.2 M),以及盐溶液(NaCl或CaCl2,0.01~2.5 mol/L)中充分溶胀;
(2)每隔一定时间将溶胀中的凝胶取出,用滤纸吸去表面的水分并称重,然后将水凝胶再次浸入到原先溶液中溶胀,预定时间间隔后再次取出进行如上操作并称重。
6. 根据权利要求1~5任一项所述的水凝胶制备及其性能测试的方法,其特征在于,所述C-g-AA 凝胶阳离子染料吸附测定具体的为:
(1)将准确称重的干凝胶置于去离子水中24 h,直至溶胀平衡,然后将溶胀平衡的凝胶浸入MB溶液中,并置于旋转摇床(30℃,85 rpm)中充分接触36h;
(2)通过紫外可见分光光度计(Hitachi Z-5000,Japan)测定664 nm处的MB吸光度,以此作为吸附定量数据。
CN201810987583.XA 2018-08-28 2018-08-28 水凝胶制备及其性能测试的方法 Pending CN110865093A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810987583.XA CN110865093A (zh) 2018-08-28 2018-08-28 水凝胶制备及其性能测试的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810987583.XA CN110865093A (zh) 2018-08-28 2018-08-28 水凝胶制备及其性能测试的方法

Publications (1)

Publication Number Publication Date
CN110865093A true CN110865093A (zh) 2020-03-06

Family

ID=69651297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810987583.XA Pending CN110865093A (zh) 2018-08-28 2018-08-28 水凝胶制备及其性能测试的方法

Country Status (1)

Country Link
CN (1) CN110865093A (zh)

Similar Documents

Publication Publication Date Title
Gabrielii et al. Preparation and properties of hydrogels based on hemicellulose
Bidgoli et al. Effect of carboxymethylation conditions on the water-binding capacity of chitosan-based superabsorbents
Lamarque et al. Comparative study of the first heterogeneous deacetylation of α-and β-chitins in a multistep process
CN109517193B (zh) 一种羧乙基壳聚糖/聚乙烯醇自愈合水凝胶及其制备方法和应用
CN107118357A (zh) 一种儿茶酚壳聚糖自愈合水凝胶材料及其制备方法
AU2015206354A1 (en) Production of gelled networks of poly alpha-1,3-glucan formate and films therefrom
CN111423518B (zh) 一种锂电池粘结剂羧甲基纤维素盐的合成方法
Qi et al. Enhanced mechanical performance of biocompatible hemicelluloses-based hydrogel via chain extension
CN114736396B (zh) 一种纤维素基柔性透明导电有机水凝胶及其制备方法与应用
Barahona et al. Cationization of kappa-and iota-carrageenan–Characterization and properties of amphoteric polysaccharides
JP2020066658A (ja) 硫酸エステル化セルロースナノファイバー及びその乾燥物
CN106928375A (zh) 一种壳聚糖水凝胶的制备方法
CN110864941A (zh) 制备和测试水凝胶性能的方法
CN114230719B (zh) 一种冷等离子体制备的双重交联纤维素基水凝胶及其制备方法与应用
Ko et al. Design and development of trivalent Fe ion-induced novel urushi organogels
Zhang et al. Biomass-based single-and double-network hydrogels derived from cellulose microfiber and chitosan for potential application as plant growing substrate
KR20130028010A (ko) 비이온성 수용성 셀룰로오스 에테르의 제조 방법
CN110865093A (zh) 水凝胶制备及其性能测试的方法
Sukhlaaied et al. Green synthesis and physical properties of poly (vinyl alcohol) maleated in an aqueous solutions
CN110862483A (zh) 纤维基水凝胶制备及其性能测试的方法
KR20190062101A (ko) 셀룰로오스 나노피브릴 및 그 제조방법
ErdoĞan et al. Improvement of the adhesion of conductive poly (m-toluidine) onto chemically reduced-wool fabrics
CN115895020A (zh) 一种基于椰壳纤维素交联壳聚糖制备疏水气凝胶的方法
CN110615958A (zh) 一种腐植酸复合凝胶材料及其制备方法
Wang et al. Surface sulfation of crab chitin for anisotropic swelling and nanodispersion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200306