CN110862444A - Maize bm1 gene mutant and molecular marker and application thereof - Google Patents

Maize bm1 gene mutant and molecular marker and application thereof Download PDF

Info

Publication number
CN110862444A
CN110862444A CN201911311607.0A CN201911311607A CN110862444A CN 110862444 A CN110862444 A CN 110862444A CN 201911311607 A CN201911311607 A CN 201911311607A CN 110862444 A CN110862444 A CN 110862444A
Authority
CN
China
Prior art keywords
maize
gene
mutant
molecular marker
corn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911311607.0A
Other languages
Chinese (zh)
Other versions
CN110862444B (en
Inventor
赵久然
骆美洁
赵衍鑫
邢锦丰
段民孝
宋伟
张如养
张云霞
孔梦思
冯震
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Academy of Agriculture and Forestry Sciences
Original Assignee
Beijing Academy of Agriculture and Forestry Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Academy of Agriculture and Forestry Sciences filed Critical Beijing Academy of Agriculture and Forestry Sciences
Priority to CN201911311607.0A priority Critical patent/CN110862444B/en
Publication of CN110862444A publication Critical patent/CN110862444A/en
Application granted granted Critical
Publication of CN110862444B publication Critical patent/CN110862444B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Abstract

The invention provides a maize bm1 gene mutant and a molecular marker and application of the gene, belonging to the technical field of genetic engineering. The invention discovers that the natural mutant Rb243 of corn brown midrib has the lignin content of the midrib which is obviously lower than that of the normal corn B73. Sequence analysis found that the bm1 gene in Rb243 has 2101bp insertion mutation in the first exon compared with B73. Mutant allelic testing confirmed that mutation of the bm1 gene resulted in the brown midrib phenotype of Rb 243. The invention develops a PCR functional molecular marker based on bm1 gene mutation sites in Rb243, utilizes the functional molecular marker to carry out molecular auxiliary selection, has great effect in genetic improvement breeding of corn germplasm resources, and can ensure that the improved corn obtains brown midrib traits.

Description

Maize bm1 gene mutant and molecular marker and application thereof
Technical Field
The invention belongs to the field of plant molecular biology, and particularly relates to a maize bm1 gene mutant, a molecular marker of the gene and application of the gene.
Background
The silage corn is a corn which is obtained by harvesting overground green plants including fruit clusters at the early stage of corn wax ripening and using a microbial anaerobic fermentation method to prepare silage for herbivorous livestock to eat. With the development of agricultural structure adjustment, the proportion of herbivorous livestock is greatly improved, and the planting area of silage corns is also rapidly increased. However, the high and low digestibility of cellulose in the stalks and leaves has a great influence on the nutritional value of the silage corn. Researches find that the silage corn contains brown midrib genes, so that the cellulose component in corn tissues is changed, the lignin content is reduced, the cellulose digestibility is improved, and the nutritional value of the silage feed is obviously improved.
Brown midrib maize is typically characterized by the onset of brown pigmentation in the maize midrib at the growth stage of V4 to V6. So far, 6 brown natural leaf vein mutants are discovered, the brown natural leaf vein character control genes are bm1, bm2, bm3, bm4, bm5 and bm6, all belong to recessive monogenic inheritance, and have the function of reducing the lignin content. In 1931, the bm1 mutant was first discovered by Jorgenson; in 1972, in vivo digestibility analysis of brown midrib bm1 gene mutant maize by Lechtenberg et al found that maize lignin content was reduced by 9.1% and feed digestibility was increased by 1.3% in bm1 mutant plants compared to wild type (Lechtenberg et al, 1972, Agronomy Journal 64: 657-. Halpin maps the bm1 gene on chromosome 5 and was found to encode a cinnamyl alcohol dehydrogenase, with a significant decrease in cinnamyl alcohol dehydrogenase activity in the bm1 mutant maize (Halpin et al, 1998, the Plant Journal, 14 (5): 545. sup. 553).
In conclusion, brown midrib maize has great utility, but it does not appear brown pigmentation until V4 to V6. The bm1 gene has great influence on the nutritive value of silage corn feed, and the development of the bm1 functional molecular marker can quickly identify the brown leaf vein character of the corn at early stage, and has important significance on the early identification of the brown leaf vein corn and the improvement of the brown leaf vein character of the corn by using the molecular marker-assisted selection.
Disclosure of Invention
The invention aims to provide a maize bm1 gene mutant, a molecular marker of the gene and application of the gene.
The technical scheme of the invention is mainly as follows: in the corn planting process, a corn brown vein natural mutant Rb243 with a vein lignin content remarkably lower than that of normal corn B73 is found. Leaf vein samples are collected from F2 obtained by selfing after Rb243 and B73 hybridization, a brown leaf vein pool and a normal leaf vein pool are constructed, BSR-seq analysis is carried out on the two mixed pools, the brown leaf vein control gene is positioned in a chromosome 5 chromosome 56,390,000-190,790,000bp interval, and reported bm1 genes (GRMZM5G844562, 99,030,278-99,034,633bp) for controlling the brown leaf vein character of corn are found to be positioned in the interval, and the expression level of the bm1 gene is obviously different between Rb243 and B73. Sequence analysis found that the bm1 gene in Rb243 has 2101bp insertion mutation in the first exon compared with B73. Mutant allelic testing confirmed that mutation of the bm1 gene resulted in the brown midrib phenotype of Rb 243. Based on the mutation site of bm1 gene in Rb243, PCR functional molecular marker PCR-Zmbm1 is developed, the amplified fragment of the marker in the Rb243 mutant is 588bp, the amplified fragment in normal maize B73 is 254bp, and the amplified fragment in the Rb243 xB 73 hybrid is 254bp and 588 bp. The functional molecular marker is used for auxiliary selection, and the excellent corn hybrid species Jingke 968 is improved, so that the brown leaf vein character is obtained.
The invention firstly provides a maize bm1 gene mutant Rb243, which is a gene fragment with insertion mutation of a 2101bp fragment from the 133 th base of SEQ ID NO.1 on the first exon of a maize bm1 gene coding region, wherein the nucleotide sequence of the 2101bp fragment is shown as SEQ ID NO. 2.
Specifically, the nucleotide sequence of the maize bm1 gene mutant Rb243 is shown as SEQ ID No. 3.
The biological material containing the corn bm1 gene mutant Rb243 belongs to the protection scope of the invention, and the biological material is an expression cassette, an expression vector, engineering bacteria or host cells.
The invention provides a molecular marker for detecting a maize bm1 gene, which can be obtained by PCR amplification of the following primer combination, wherein the nucleotide sequence of the primer combination is as follows:
the upstream primer F1: GAATCGAATGGGGAGCCTGG the flow of the air in the air conditioner,
the upstream primer F1: TCGGCTTCTCAAACTTGTGCT the flow of the air in the air conditioner,
a downstream primer R: AGAACTACTGGAGGAGGCGC are provided.
The invention provides a primer combination containing a primer sequence shown in SEQ ID NO. 4-6.
The invention further provides the application of the maize bm1 gene mutant Rb243, or biological materials containing the mutant gene, or the molecular marker, or the primer combination in maize molecular assisted selective breeding or improved seed production.
The invention further provides application of the corn bm1 gene mutant Rb243, or biological materials containing the mutant gene, or the molecular marker, or the primer combination in screening or preparing corn with brown midrib traits.
The invention further provides an application of the corn bm1 gene mutant Rb243, or a biological material containing the mutant gene, or the molecular marker, or the primer combination in detecting the brown midrib phenotype or genotype of the corn, wherein the application comprises the following steps:
the molecular marker or the primer combination is used for carrying out PCR amplification on a corn genome to be detected, if an amplification product electrophoresis detection only has a 588bp band, the result shows that the corn to be detected carries bm1 mutant genes, is an Rb243 mutant homozygous genotype and has a brown vein phenotype;
if the electrophoresis detection of the amplification product only has a 254bp band, the result shows that the corn to be detected carries bm1 wild gene, is a homozygous genotype and does not have a brown vein phenotype;
if the electrophoresis detection result of the amplification product has two bands of 254bp and 588bp, the fact that the corn to be detected carries bm1 wild gene and Rb243 mutant is heterozygous genotype and does not have brown vein phenotype is shown.
The invention also provides a method for detecting the corn bm1 gene mutant Rb243, which comprises the step of carrying out PCR amplification on the corn to be detected by using the molecular marker or the primer combination, wherein the corn to be detected contains the corn bm1 gene mutant Rb243 if an amplification product electrophoresis detection only has a 588bp band.
The invention also provides a method for detecting the maize bm1 gene, the molecular marker or the primer combination is used for carrying out PCR amplification on the maize to be detected, if the electrophoresis detection of the amplification product has 254bp or 254bp and 588bp bands, the maize to be detected contains maize bm1 wild gene.
The maize bm1 gene mutant Rb243 provided by the invention has the following advantages:
(1) the invention provides a new maize recessive brown midrib mutant, which lays a material foundation for developing a new brown midrib maize seed production method.
(2) The mutant only affects the brown leaf vein character of the corn, but has no effect on other agronomic characters of the corn.
(3) The mutant is an intragenic mutation and does not affect the functions of adjacent genes on both sides of bm 1.
(4) Compared with wild type, the insertion of 2101bp bases is caused by natural mutation, and the molecular detection can be carried out by adopting agarose electrophoresis commonly used in laboratories, namely the identification can be realized without special detection technology and method.
(5) The maize bm1 gene mutant Rb243 can be directly used for hybrid maize identification and breeding and maize germplasm resource improvement, and has great economic value.
Drawings
FIG. 1 is a photograph of a comparison of brown midrib mutant Rb243 (left) with normal maize B73 (right) phenotype.
Fig. 2 is a graphical representation of H, G, S comparison of the content of three lignin types in leaf vein Cell Wall Residue (CWR): vein cell wall residue, H, G, S lignin type contents from left to right in the figure.
FIG. 3 is a graph showing the result of localization of the brown midrib gene BSR-seq.
FIG. 4 results of DNA amplification of the first exon of the bm1 gene in maize mutant Rb243 and normal maize B73. The PCR product was detected by electrophoresis on a 1% agarose gel. And M is DL5000 DNA marker.
FIG. 5 results of amplification of the full-length cDNA of bm1 gene in maize mutant Rb243 and normal maize B73. The PCR product was detected by electrophoresis on a 1% agarose gel. And M is DL5000 DNA marker.
Fig. 6 shows photographs of leaf phenotype of mutant Rb243 (right), bm1 mutant (left) and two hybrids (middle), with the scale being 10 cm.
FIG. 7 shows the results of genotyping and detecting the maize mutants Rb243, normal maize B73 and hybrid species Rb243 XB 73 by the functional molecular marker PCR-Zmbm1, and the PCR products are detected by 2% agarose gel electrophoresis. R × B: rb243 × B73. And R is Rb 243. B, B73. The DNA marker is a 100bp DNA ladder marker.
FIG. 8 shows the results of genotyping detection of normal maize inbred lines Jing 724, C92, Chang 7-2 and MC01 by functional molecular marker PCR-Zmbm 1. The PCR product was detected by electrophoresis on a 2% agarose gel. 1, 2, 3 and 4 respectively represent inbred lines of maize, namely Jing 724, C92, Chang 7-2 and MC 01. M100 bp DNA ladder (DNA ladder same as FIG. 7).
Fig. 9 is a representation of the improved kyoto 968 leaf profile with brown vein-like character using molecular marker assisted breeding, showing that the improved kyoto 968 (left) scale of kyoto 968 (right) is 4 cm.
Detailed Description
The following examples are intended to illustrate the invention but are not intended to limit the scope of the invention. Modifications or substitutions to methods, procedures, or conditions of the invention may be made without departing from the spirit and scope of the invention.
The corn germplasm resources used in the embodiment of the invention are from a corn germplasm resource library of the corn research center of the agriculture and forestry academy of sciences of Beijing.
Unless otherwise specified, the technical means used in the examples are conventional means well known to those skilled in the art.
Example 1 identification of maize Brown midrib mutant Gene
1. Maize brown midrib mutant gene BSR-seq localization
During the corn planting process, the inventor finds a corn brown vein natural mutant Rb243 (figure 1), wherein the contents of H, G, S three lignin types in vein Cell Wall Residues (CWR) are respectively 2.54 +/-0.12, 43.21 +/-1.84 and 45.50 +/-1.30 mu mol/g and are significantly lower than that of normal corn B73 (the contents of H, G, S lignin types are respectively 4.37 +/-0.02, 82.49 +/-1.41 and 142.42 +/-3.39 mu mol/g) (figure 2). After the corn brown vein mutant Rb243 is hybridized with the normal corn B73, the F1 hybrid is a normal vein, and 152 brown vein individuals and 439 normal vein individuals in 591F 2 individuals meet the conditions that 1: 3 separation (X)2 1:30.16 and P0.69), indicating that the maize brown midrib trait is controlled by a recessive single gene.
The method for measuring the lignin monomer comprises the following steps: after grinding corn leaf vein into powder in liquid nitrogen, extraction was carried out successively with chloroform/methanol (2:1v/v), methanol and water at room temperature, and after freeze-drying of the remaining cell wall residue, the total lignin content was determined by the AcBr method (Hatfield et al, 1999, Journal of Agricultural and Food Chemistry 47: 628-.
2. Gene screening for brown leaf pulse candidate
The brown nervus leaf vein mutant Rb243 is hybridized with normal corn B73 and then selfed, the obtained F2 plant grows to the V6 stage, 30 veins of brown nervus leaf vein plants and veins of normal nervus leaf vein plants are respectively taken from the plant, a pool of brown nervus leaf veins and normal nervus leaf veins is constructed, and BSR-seq analysis is carried out on the two mixed pools. BSR-seq was performed according to standard experimental procedures of the company Data2 Bio. The results of the analysis located the brown leaf midvein control gene within the 56,390,000-190,790,000bp interval on chromosome 5 (FIG. 3).
The MaizeGDB database (https:// www.maizegdb.org/; B73 RefGen _ v3) was searched and 37 differentially expressed genes were found in this region, including the reported bm1 gene (GRMZM5G844562, 99,030,278-99,034,633bp) that controls the brown midrib trait in maize. The expression level of bm1 gene in B73 veins was 3.68 times higher than that of mutant Rb243 veins (FDR ═ 2.07E-121).
The bm1 gene was amplified by PCR using DNA of Rb243 and B73 as templates, and the PCR amplification program was as follows using 141F/q287R (table 1): pre-denaturation at 94 ℃ for 4 min; denaturation at 94 ℃ for 30s, annealing at 59 ℃ for 30s, extension at 72 ℃ for 2min, and 34 cycles; the extension was carried out at 72 ℃ for 10min, and the amplified fragment size was 3406bp in Rb243 and 1305bp in B73 (FIG. 4). Sequence alignment analysis shows that mutant Rb243 has insertion mutation of 2101bp (SEQ ID NO.2) in the first exon of bm1 gene compared with B73, and CENSOR software (https:// www.girinst.org/CENSOR/index. php) analysis shows that the insertion sequence belongs to hAT transposon.
In the brown vein mutant Rb243 and normal vein B73 materials, the full length bm1 gene was amplified by PCR using cDNA as a template. The amplification primers are shown as cDNA amplification primers in Table 1, and the amplification procedure is as follows: pre-denaturation at 94 ℃ for 4 min; denaturation at 94 ℃ for 30s, annealing at 59 ℃ for 30s, extension at 72 ℃ for 2min, and 34 cycles; extension at 72 ℃ for 10 min. In mutant Rb243, the amplified fragment size was 2700bp (cDNA sequence shown in SEQ ID NO. 12) and 1228bp (cDNA sequence of bm1 gene shown in SEQ ID NO. 11) in normal vein B73 (FIG. 5), indicating that insertion mutation of the first exon of bm1 gene results in alteration of the bm1 gene transcript information in maize mutant Rb 243.
TABLE 1 primer information List
Figure BDA0002324667340000071
In combination with the expression level difference and sequence difference of the bm1 gene in the mutant Rb243 and normal corn material and the functional annotation thereof, the bm1 gene is considered to be a brown midrib trait control gene in the corn mutant Rb 243. The bm1 gene in Rb243 has 2101bp insertion mutation in the first exon, and this mutation site has not been reported before, and is a new allelic variation of the bm1 gene.
3. Gene function verification of brown leaf pulse candidate
Allelic assays were performed using known bm1 maize mutants with brown leaf midrib (Halpin et al, 1998, the plant journal, 14 (5): 545. sup. 553) hybridized to Rb 243. The veins of bm1 maize mutant hybridized with Rb 243F 1 had a brown vein phenotype (fig. 6), which further confirms that bm1 is the brown vein trait control gene for Rb 243.
Example 2 corn Brown midrib mutant bm1 mutant Gene functional molecular marker development
Based on the sequence difference of the brown midrib mutant Rb243 and the normal corn B73 in the first exon of the bm1 gene, the invention develops a PCR functional molecular marker PCR-Zmbm1 for detecting the mutant. The functional molecular marker PCR-Zmbm1 shows the functional marker primers in Table 1, and the PCR amplification procedure is as follows: pre-denaturation at 94 ℃ for 4 min; denaturation at 94 ℃ for 20s, annealing at 60 ℃ for 20s, and extension at 72 ℃ for 20s, for 34 cycles; extension at 72 ℃ for 10 min. The primer 141F, -193F and 394R are used for amplifying the bm1 gene, the amplification product is detected by agarose electrophoresis, the size of the amplification fragment in the brown midrib mutant Rb243 is 588bp, the size of the amplification fragment in the normal maize B73 is 254bp, and the size of the amplification fragment in the hybrid Rb243 xB 73 is 254bp and 588bp (figure 7). The molecular marker developed by the invention is adopted to carry out PCR detection on the normal maize inbred lines Jing 724, C92, Chang 7-2 and MC01, and the detection result shows that the fragment sizes of the amplified products are all 254bp (figure 8). Since maize is a diploid crop, hybrids of the mutant and ordinary maize carry the bm1 mutant gene, but do not exhibit the brown vein phenotype, since the gene mutation is a recessive mutation; the marker can screen out plants carrying the mutation, and pure and recessive mutant materials can be separated after the plants are selfed, and the plants have brown vein phenotypes. Rb243 xb 73 has no brown vein phenotype, but carries the bm1 mutant gene. The molecular marker developed by the invention can be used for identifying the brown midrib mutant Rb243 and other corn varieties without brown midrib phenotype.
Example 3 application of functional molecular marker PCR-Zmbm1 in molecular marker assisted breeding kyoto 968 is a maize hybrid widely popularized in china, the female parent of which is kyoto 724 and the male parent of which is C92, and none of these materials has brown leaf vein phenotype. PCR-Zmbm1 functional molecular marker-assisted selection is used for improving the vein traits of Jing 724 and C92, and further obtaining improved Jingke 968 with a brown vein phenotype (figure 9).
The specific implementation method comprises the following steps: the brown midrib maize mutant Rb243 is used as a non-recurrent parent, and Jing 724 and C92 are used as recurrent parents. Rb243 is respectively hybridized with Jing 724 and C92, then is respectively backcrossed with Jing 724 and C92 for 5 times, and finally is selfed once, namely BC5F2, and single plants with brown leaf vein phenotype are selected from BC5F2 generations, wherein the corn single plants are improved Jing 724 and C92 with brown leaf vein property, not only carry bm1 mutant genes in mutant Rb243, but also have genetic background consistent with recurrent parent. In the backcross process, from the BC1 generation, the functional molecular marker PCR-Zmbm1 developed by the invention is used for detecting individual plants of BC1, BC2, BC3, BC4 and BC5 generation, the individual plant which can simultaneously amplify fragments of 254bp and 588bp, namely the individual plant carrying the maize brown vein midrib mutant bm1 mutant gene is reserved, and the reserved individual plant is used for the next round of backcross.
Since maize is a diploid crop, hybrids of the mutant and ordinary maize carry the bm1 mutant gene, but do not exhibit the brown vein phenotype, since the gene mutation is a recessive mutation; the marker can screen out plants carrying the mutation, and pure and recessive mutant materials can be separated after the plants are selfed, and the plants have brown vein phenotypes. The BC1, BC2, BC3, BC4 and BC5 individuals did not have a brown vein phenotype, but carried the bm1 mutant gene. Therefore, in molecular marker-assisted breeding, individuals carrying the maize brown midrib mutant bm1 mutant gene can be screened by using the molecular marker of the invention, and the remained individuals are used for the next round of backcross.
The foregoing is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, various modifications and decorations can be made without departing from the technical principle of the present invention, and these modifications and decorations should also be regarded as the protection scope of the present invention.
Sequence listing
<110> agriculture and forestry academy of sciences of Beijing City
<120> corn bm1 gene mutant and molecular marker and application of gene
<130>KHP191117294.5
<160>12
<170>SIPOSequenceListing 1.0
<210>1
<211>4001
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>1
gccacccgct ccgtcgtcgt cgtccccgcc gcgccgatcc cgaatcgaat ggggagcctg 60
gcgtccgaga ggaaggtggt cgggtgggcc gccagggacg ccaccggaca cctctccccc 120
tactcctaca ccctcaggta ctacgccgcg ccggcgccct cgtgtttgtc ctctcctcca 180
gtccctcccg tctgtatatg tccgactgtc tccgcccttt tgcaaacacg caaatggatg 240
gatccaggag gacgagagac ggttagtttc tgcacgcgcc tcctccagta gttctccgag 300
ttctcgggaa gaacagaaaa tttgattgat gttttttttg atgaaaaata aaaagggact 360
tggggcatat tttcgatcaa cttgcaacgg aagatgacta ggagtacgta cgtagcgtag 420
cggcggcggg ttttaatttg ggggagcact ctgttagtct gttgcatata tgggagtacc 480
tgattcgttg cagttattat tatctatacg cgtacgatat gttttagggg gtgtttggtt 540
gctcctgcta aagtttagtc cgggtcacat caagcgtttt acttttaaat aggagtatga 600
aatatagacc caaccaacta gactagattc gtctcgtctt ttaatcttcg gctgacaaat 660
tagttttata atccgactac atttaatacc cggaacagag gttcaaacat tcgatgggac 720
agagactaaa ttttagcagg gtgtaaccaa acaccccctt agtccacaac aagagcatta 780
tgcgctgtgt tgcatcatgc atatatgata cgtcttcaac ttcttgcggt ccaactctag 840
atagtgcaca tgcatatgcc aaatacggat actggacaag atagcacaca agcagagcag 900
gttgggcgag cgtacactgc acgtatgctt ctcttctaca tggcattttg tttcgaacat 960
taatatatgg gtactgctcc tgcacagcac tgcacgtgct tgacgtctcg tacagaccca 1020
gcagcgtgtg aacttgtagg taagatacgt aactactgat atctgcagct acctaccgcc 1080
tgtcgcgatc accatccatt tgtactcgca gtaataatac cgattaccct tttattatta 1140
tttctcatgc catcgacgac tactagcact atccaacgta caactgtggc gcgattcata 1200
tatgcataat tctacatggt gctagtcttc ggcaagaaaa aaaaactaac acttgtctct 1260
ttttcatatg ggatgtgttg tggtggtgac aacaggaaca caggccctga agatgtggtg 1320
gtgaaggtgc tctactgcgg gatctgccac acggacatcc accaggccaa gaaccacctc 1380
ggggcttcaa agtatcctat ggtccctggg tgagcacaaa cggttaacac acacacgcac 1440
ccagcgattt ttcaggaccc ttggggatcc agtatatata tatatgctcc gtgtacggtc 1500
cagaatatac gtactgaatt tccaagtgtc ctattattca atttgtctca aaactataaa 1560
ggatatatat agtgacatgc agtttcagcg ttttcatgag aaaattacac atgcagacaa 1620
attcaggtat aattatttga ttcatgacga ccagcatata gattggtaga tagagtgcac 1680
atttgtcaac cacaaacgtt agcatcccag tccggagcta tcccctgggt tacaggtggc 1740
aaatacacac caaccacaat aataagctaa tactcttacg tctgtagttg gttgccaatt 1800
actgatcaga ttacttgaat cacaagagct tgttgtgtct aatttgtaca ggctatttat 1860
atcatgatag ctaaagagct gctgaaatga gtagcaagga aacctcaccg gccgtcctat 1920
acttttctct gacatgacga caggacaacc actccaccac cgtgaactga tacaataaca 1980
ataaagtcct ttagtcccag taaattagaa taggctagaa actaaaatcc aacagagaga 2040
cgaaatcatg gctttggttt gataataact gatacttttg caggcacgag gtggtcggcg 2100
aggtggtgga ggtcgggccc gaggtggcca agtacggcgt cggcgacgtg gtaggcgtcg 2160
gggtgatcgt tgggtgctgc cgcgagtgca gcccctgcaa ggccaacgtt gagcagtact 2220
gcaacaagaa gatctggtca tacaacgacg tctacactga tggacggccc acgcagggtg 2280
gattcgcctc caccatggtc gtcgaccaga agtgagttct tgagactgaa aactaatctt 2340
ttcactggtt taattatttt cagcgttatc ttgcatgcag tgttgtagag ataataatct 2400
ctttttttat taaaaaaatg tttggtctga aaaaagctag aaatatatag ttgaacttca 2460
attatatttc aacttttgcg agaagtggac gagataaggt ccaatccttc tagaaaaggt 2520
gcaggaaagt atatatatat atatatatat atatatatat atatatatat atatatatat 2580
atatatatat atatatatat atatatatat atggggataa aatatgatcg agaaagtcca 2640
tcatcatcta gctgcaagtc gttgtatgga tgtcttatgg tgaccaggca agagtgttga 2700
tgtggaaagt acggtatgat ttggtgtgct ttacttgctt gactttgtga ggttgaacca 2760
ccaccacaga agccgaatcc tcacctactc ttgattgaag attggccacc caaaccatca 2820
ccggttgttg ggagaaatga ggataacttt ctccatcgtt cgctccaaaa cctgtctaca 2880
ctttagtgta ctgtcttttt cagtcagtgc gcaaaccaca ccacctacct ccaacaacat 2940
tttgagatag cgatttcttt tttctttttt taaaggcact ccgtgtgtga attatgatag 3000
aacagtaact tttcaagcaa ttttctttgc tgccagtcaa ttttggaaga aaaaaaaagg 3060
caacctcggt aacacgaatt taggttccta ttttgttctt ggtaaaaaaa aactaaatac 3120
ctagttccac gtaagttgat agttaatgca ttttgtttca ggtttgtggt gaagatcccg 3180
gcgggtctgg ctccggagca agcggcgccg ctgctgtgcg ctggcgtgac ggtgtacagc 3240
ccgctgaagc actttgggct gacgaccccg ggcctccgtg gcggcatcct gggcctcggc 3300
ggcgtgggcc acatgggcgt gaaggtagcc aaggccatgg gccaccacgt gacggtgatc 3360
agctcgtcgt ccaagaagcg cgcggaggca atggaccacc tcggcgcgga cgcgtaccta 3420
gtgagctcgg acgccgcggc catggcggcg gccgccgact cgctggacta catcatcgac 3480
acggtgcccg tgcaccaccc gctggagccg tacctggcgc tgctgaagct ggacggcaag 3540
ctcgtgctgc tgggcgtcat cggcgagccc ctgagcttcg tgtcgcccat ggtgatgctg 3600
gggcggaagg ccatcacggg gagcttcatc ggcagcatcg acgagaccgc tgaggtgctt 3660
cagttctgcg tcgacaaggg actcacctcc cagatcgagg tggtcaagat ggggtacgtg 3720
aacgaggcgc tggagcggct ggagcgcaac gacgtccgct accgcttcgt cgtcgacgtc 3780
gccggtagca acgtcgaggc ggaggcggcg gcggcggatg cggccagcaa ctgatggcac 3840
cgcgtcgtcg agtcgaacca cgtctgtgcg ccgcgtgcaa cgttcgttcg ggtcgagtct 3900
gcgtgcaacg ttctgcttcc tttactagtt gttgtctttc cgccttcttg ccgttctgtt 3960
ctgggctttg agatgagacg atggatggtc agtttttaat g 4001
<210>2
<211>2101
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>2
caggggcgat tctatgtgga gtcatcggtg tcggctgaca ccaacgattt tggcaaaatc 60
acttataccc catgtttttt caccatggtt gaccccaata aaaaaatgca ttgaccccgg 120
cggctggtgc taatcactct atagactata gttaatcagc ccagcagata gcaagcgcga 180
gcgccgagcg ccgagcggcc cagcttgccc agttgattag tccttgcgtg tcttgcgata 240
gcccacagcc cagcagtagt ccaccaacga agcgtcgatc tgtcttcatt tctgacggct 300
cgcggacggc gcggcgccac caccaaagcg tcgatccatc ttctcgtttc tcagggctcg 360
cggacggcgc agcacagttt tatcttcctt tcctcgccct cgccaggccg gcaccggtag 420
gctgcaaggt atcgcgccgc cgcgttggac ctcctccaag tctccaactc acgttatgcc 480
aggttagaca aagattttga tttttgactc acgtttgcat ctcatgctta tatcatatat 540
cctttagtat tttaattttg ttcaatgttc acgaatttga tagggaacca aagtttgatg 600
gaacggtttt tgaaaagaaa attgcctcca gctagtgact ctaatgatcc tggtgccgat 660
ggagagacat caagaagggg agcaaatgca tcaaacacta accttgaccg tacagcgagt 720
catcgtcctt tgcgagtttc acgaaaccag gtaaactttg atgagcttcc ttacgatcca 780
gcagatagaa gaagcatatc tgattacata ggacaaaagc tccaagatga aattagaaag 840
aagtatttga tcagaggtcc ttttagacca cctgttggct ttaaatatcc acagaagatc 900
atagcaggtc atgcacgttg gtcgtctcat tttaaaaccc ttcagaggtt aagcagtttg 960
ttccctgatg taattgaagt tctccaatac gttgaaaaag aaggtccaaa tgatgccaag 1020
agacgccaag cacgtggtct catggactat ttgatggatt ttgactttgt gtttcacttg 1080
cagttaatgt tgcttatttt gggccatgca aatgctttgt cattgtcatt acaaaggaaa 1140
gataaagaca ttttagaggc catggtagag gtgaagttaa caaagcagag atttcagcaa 1200
attagggatg atggttggga ttctctatta gaggatgtgt tatccttttg tgaaaaacat 1260
ggtattccga agttggacat ggatcatgag tacattaatc gccacaagcc taggcaaaga 1320
accaaccgaa ctaactatca acactataga tatgattgct tgaaccctgt tattgactta 1380
cagcttatag agttcaatga tcgtttcaat gaggtgaatt ctgaattgct tacccacatg 1440
gctgctttta gtcccaataa ttcttttggt gcctttaaac atgagagttt gatggaattg 1500
gctaaggcat accctgatga tttcagccca gtggaactag atgatctcag tagtgaactt 1560
cattgttaca ttgataatgt gagagctgat gcaagatttg ctcaattggg tactatttct 1620
gagcacggta aactaatggt ggatacaaaa aaacatcttg ctttttcatt ggtctatcgg 1680
cttctcaaac ttgtgctagt tctccctatt gcaactgcat cagtagagag atcattttca 1740
gcaatgaaaa ttgtgaagac ggtcctacga aaccggatcg gtgatgactt tatgaatgat 1800
tgtgtcatta gcttcatgga acaagaactt cttgatacaa tttcaaataa tgatgtgata 1860
gttcgattcc agaagatgga tggacacaat cgtagagtga aattataaaa ggtacacttg 1920
taaaagctta ttttatcatg ttatgttttt gctaattttg tctttttatt atacgtgtta 1980
aattttatca ttatattatc aatattcgtt atgtcaccct attatgcata gggtttgata 2040
attatgagtc gtaagtccga ccccggtgga gatttatcct agattcgccc ctgcctacac 2100
c 2101
<210>3
<211>6102
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>3
gccacccgct ccgtcgtcgt cgtccccgcc gcgccgatcc cgaatcgaat ggggagcctg 60
gcgtccgaga ggaaggtggt cgggtgggcc gccagggacg ccaccggaca cctctccccc 120
tactcctaca cccaggggcg attctatgtg gagtcatcgg tgtcggctga caccaacgat 180
tttggcaaaa tcacttatac cccatgtttt ttcaccatgg ttgaccccaa taaaaaaatg 240
cattgacccc ggcggctggt gctaatcact ctatagacta tagttaatca gcccagcaga 300
tagcaagcgc gagcgccgag cgccgagcgg cccagcttgc ccagttgatt agtccttgcg 360
tgtcttgcga tagcccacag cccagcagta gtccaccaac gaagcgtcga tctgtcttca 420
tttctgacgg ctcgcggacg gcgcggcgcc accaccaaag cgtcgatcca tcttctcgtt 480
tctcagggct cgcggacggc gcagcacagt tttatcttcc tttcctcgcc ctcgccaggc 540
cggcaccggt aggctgcaag gtatcgcgcc gccgcgttgg acctcctcca agtctccaac 600
tcacgttatg ccaggttaga caaagatttt gatttttgac tcacgtttgc atctcatgct 660
tatatcatat atcctttagt attttaattt tgttcaatgt tcacgaattt gatagggaac 720
caaagtttga tggaacggtt tttgaaaaga aaattgcctc cagctagtga ctctaatgat 780
cctggtgccg atggagagac atcaagaagg ggagcaaatg catcaaacac taaccttgac 840
cgtacagcga gtcatcgtcc tttgcgagtt tcacgaaacc aggtaaactt tgatgagctt 900
ccttacgatc cagcagatag aagaagcata tctgattaca taggacaaaa gctccaagat 960
gaaattagaa agaagtattt gatcagaggt ccttttagac cacctgttgg ctttaaatat 1020
ccacagaaga tcatagcagg tcatgcacgt tggtcgtctc attttaaaac ccttcagagg 1080
ttaagcagtt tgttccctga tgtaattgaa gttctccaat acgttgaaaa agaaggtcca 1140
aatgatgcca agagacgcca agcacgtggt ctcatggact atttgatgga ttttgacttt 1200
gtgtttcact tgcagttaat gttgcttatt ttgggccatg caaatgcttt gtcattgtca 1260
ttacaaagga aagataaaga cattttagag gccatggtag aggtgaagtt aacaaagcag 1320
agatttcagc aaattaggga tgatggttgg gattctctat tagaggatgt gttatccttt 1380
tgtgaaaaac atggtattcc gaagttggac atggatcatg agtacattaa tcgccacaag 1440
cctaggcaaa gaaccaaccg aactaactat caacactata gatatgattg cttgaaccct 1500
gttattgact tacagcttat agagttcaat gatcgtttca atgaggtgaa ttctgaattg 1560
cttacccaca tggctgcttt tagtcccaat aattcttttg gtgcctttaa acatgagagt 1620
ttgatggaat tggctaaggc ataccctgat gatttcagcc cagtggaact agatgatctc 1680
agtagtgaac ttcattgtta cattgataat gtgagagctg atgcaagatt tgctcaattg 1740
ggtactattt ctgagcacgg taaactaatg gtggatacaa aaaaacatct tgctttttca 1800
ttggtctatc ggcttctcaa acttgtgcta gttctcccta ttgcaactgc atcagtagag 1860
agatcatttt cagcaatgaa aattgtgaag acggtcctac gaaaccggat cggtgatgac 1920
tttatgaatg attgtgtcat tagcttcatg gaacaagaac ttcttgatac aatttcaaat 1980
aatgatgtga tagttcgatt ccagaagatg gatggacaca atcgtagagt gaaattataa 2040
aaggtacact tgtaaaagct tattttatca tgttatgttt ttgctaattt tgtcttttta 2100
ttatacgtgt taaattttat cattatatta tcaatattcg ttatgtcacc ctattatgca 2160
tagggtttga taattatgag tcgtaagtcc gaccccggtg gagatttatc ctagattcgc 2220
ccctgcctac accctcaggt actacgccgc gccggcgccc tcgtgtttgt cctctcctcc 2280
agtccctccc gtctgtatat gtccgactgt ctccgccctt ttgcaaacac gcaaatggat 2340
ggatccagga ggacgagaga cggttagttt ctgcacgcgc ctcctccagt agttctccga 2400
gttctcggga agaacagaaa atttgattga tgtttttttt gatgaaaaat aaaaagggac 2460
ttggggcata ttttcgatca acttgcaacg gaagatgact aggagtacgt acgtagcgta 2520
gcggcggcgg gttttaattt gggggagcac tctgttagtc tgttgcatat atgggagtac 2580
ctgattcgtt gcagttatta ttatctatac gcgtacgata tgttttaggg ggtgtttggt 2640
tgctcctgct aaagtttagt ccgggtcaca tcaagcgttt tacttttaaa taggagtatg 2700
aaatatagac ccaaccaact agactagatt cgtctcgtct tttaatcttc ggctgacaaa 2760
ttagttttat aatccgacta catttaatac ccggaacaga ggttcaaaca ttcgatggga 2820
cagagactaa attttagcag ggtgtaacca aacaccccct tagtccacaa caagagcatt 2880
atgcgctgtg ttgcatcatg catatatgat acgtcttcaa cttcttgcgg tccaactcta 2940
gatagtgcac atgcatatgc caaatacgga tactggacaa gatagcacac aagcagagca 3000
ggttgggcga gcgtacactg cacgtatgct tctcttctac atggcatttt gtttcgaaca 3060
ttaatatatg ggtactgctc ctgcacagca ctgcacgtgc ttgacgtctc gtacagaccc 3120
agcagcgtgt gaacttgtag gtaagatacg taactactga tatctgcagc tacctaccgc 3180
ctgtcgcgat caccatccat ttgtactcgc agtaataata ccgattaccc ttttattatt 3240
atttctcatg ccatcgacga ctactagcac tatccaacgt acaactgtgg cgcgattcat 3300
atatgcataa ttctacatgg tgctagtctt cggcaagaaa aaaaaactaa cacttgtctc 3360
tttttcatat gggatgtgtt gtggtggtga caacaggaac acaggccctg aagatgtggt 3420
ggtgaaggtg ctctactgcg ggatctgcca cacggacatc caccaggcca agaaccacct 3480
cggggcttca aagtatccta tggtccctgg gtgagcacaa acggttaaca cacacacgca 3540
cccagcgatt tttcaggacc cttggggatc cagtatatat atatatgctc cgtgtacggt 3600
ccagaatata cgtactgaat ttccaagtgt cctattattc aatttgtctc aaaactataa 3660
aggatatata tagtgacatg cagtttcagc gttttcatga gaaaattaca catgcagaca 3720
aattcaggta taattatttg attcatgacg accagcatat agattggtag atagagtgca 3780
catttgtcaa ccacaaacgt tagcatccca gtccggagct atcccctggg ttacaggtgg 3840
caaatacaca ccaaccacaa taataagcta atactcttac gtctgtagtt ggttgccaat 3900
tactgatcag attacttgaa tcacaagagc ttgttgtgtc taatttgtac aggctattta 3960
tatcatgata gctaaagagc tgctgaaatg agtagcaagg aaacctcacc ggccgtccta 4020
tacttttctc tgacatgacg acaggacaac cactccacca ccgtgaactg atacaataac 4080
aataaagtcc tttagtccca gtaaattaga ataggctaga aactaaaatc caacagagag 4140
acgaaatcat ggctttggtt tgataataac tgatactttt gcaggcacga ggtggtcggc 4200
gaggtggtgg aggtcgggcc cgaggtggcc aagtacggcg tcggcgacgt ggtaggcgtc 4260
ggggtgatcg ttgggtgctg ccgcgagtgc agcccctgca aggccaacgt tgagcagtac 4320
tgcaacaaga agatctggtc atacaacgac gtctacactg atggacggcc cacgcagggt 4380
ggattcgcct ccaccatggt cgtcgaccag aagtgagttc ttgagactga aaactaatct 4440
tttcactggt ttaattattt tcagcgttat cttgcatgca gtgttgtaga gataataatc 4500
tcttttttta ttaaaaaaat gtttggtctg aaaaaagcta gaaatatata gttgaacttc 4560
aattatattt caacttttgc gagaagtgga cgagataagg tccaatcctt ctagaaaagg 4620
tgcaggaaag tatatatata tatatatata tatatatata tatatatata tatatatata 4680
tatatatata tatatatata tatatatata tatggggata aaatatgatc gagaaagtcc 4740
atcatcatct agctgcaagt cgttgtatgg atgtcttatg gtgaccaggc aagagtgttg 4800
atgtggaaag tacggtatga tttggtgtgc tttacttgct tgactttgtg aggttgaacc 4860
accaccacag aagccgaatc ctcacctact cttgattgaa gattggccac ccaaaccatc 4920
accggttgtt gggagaaatg aggataactt tctccatcgt tcgctccaaa acctgtctac 4980
actttagtgt actgtctttt tcagtcagtg cgcaaaccac accacctacc tccaacaaca 5040
ttttgagata gcgatttctt ttttcttttt ttaaaggcac tccgtgtgtg aattatgata 5100
gaacagtaac ttttcaagca attttctttg ctgccagtca attttggaag aaaaaaaaag 5160
gcaacctcgg taacacgaat ttaggttcct attttgttct tggtaaaaaa aaactaaata 5220
cctagttcca cgtaagttga tagttaatgc attttgtttc aggtttgtgg tgaagatccc 5280
ggcgggtctg gctccggagc aagcggcgcc gctgctgtgc gctggcgtga cggtgtacag 5340
cccgctgaag cactttgggc tgacgacccc gggcctccgt ggcggcatcc tgggcctcgg 5400
cggcgtgggc cacatgggcg tgaaggtagc caaggccatg ggccaccacg tgacggtgat 5460
cagctcgtcg tccaagaagc gcgcggaggc aatggaccac ctcggcgcgg acgcgtacct 5520
agtgagctcg gacgccgcgg ccatggcggc ggccgccgac tcgctggact acatcatcga 5580
cacggtgccc gtgcaccacc cgctggagcc gtacctggcg ctgctgaagc tggacggcaa 5640
gctcgtgctg ctgggcgtca tcggcgagcc cctgagcttc gtgtcgccca tggtgatgct 5700
ggggcggaag gccatcacgg ggagcttcat cggcagcatc gacgagaccg ctgaggtgct 5760
tcagttctgc gtcgacaagg gactcacctc ccagatcgag gtggtcaaga tggggtacgt 5820
gaacgaggcg ctggagcggc tggagcgcaa cgacgtccgc taccgcttcg tcgtcgacgt 5880
cgccggtagc aacgtcgagg cggaggcggc ggcggcggat gcggccagca actgatggca 5940
ccgcgtcgtc gagtcgaacc acgtctgtgc gccgcgtgca acgttcgttc gggtcgagtc 6000
tgcgtgcaac gttctgcttc ctttactagt tgttgtcttt ccgccttctt gccgttctgt 6060
tctgggcttt gagatgagac gatggatggt cagtttttaa tg 6102
<210>4
<211>20
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>4
gaatcgaatg gggagcctgg 20
<210>5
<211>21
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>5
tcggcttctc aaacttgtgc t 21
<210>6
<211>20
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>6
agaactactg gaggaggcgc 20
<210>7
<211>20
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>7
gaatcgaatg gggagcctgg 20
<210>8
<211>20
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>8
gcaagaaggc ggaaagacaa 20
<210>9
<211>20
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>9
gaatcgaatg gggagcctgg 20
<210>10
<211>20
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>10
cagatcccgc agtagagcac 20
<210>11
<211>1228
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>11
gaatcgaatg gggagcctgg cgtccgagag gaaggtggtc gggtgggccg ccagggacgc 60
caccggacac ctctccccct actcctacac cctcaggaac acaggccctg aagatgtggt 120
ggtgaaggtg ctctactgcg ggatctgcca cacggacatc caccaggcca agaaccacct 180
cggggcttca aagtatccta tggtccctgg gcacgaggtg gtcggcgagg tggtggaggt 240
cgggcccgag gtggccaagt acggcgtcgg cgacgtggta ggcgtcgggg tgatcgttgg 300
gtgctgccgc gagtgcagcc cctgcaaggc caacgttgag cagtactgca acaagaagat 360
ctggtcatac aacgacgtct acactgatgg acggcccacg cagggtggat tcgcctccac 420
catggtcgtc gaccagaagt ttgtggtgaa gatcccggcg ggtctggctc cggagcaagc 480
ggcgccgctg ctgtgcgctg gcgtgacggt gtacagcccg ctgaagcact ttgggctgac 540
gaccccgggc ctccgtggcg gcatcctggg cctcggcggc gtgggccaca tgggcgtgaa 600
ggtagccaag gccatgggcc accacgtgac ggtgatcagc tcgtcgtcca agaagcgcgc 660
ggaggcaatg gaccacctcg gcgcggacgc gtacctagtg agctcggacg ccgcggccat 720
ggcggcggcc gccgactcgc tggactacat catcgacacg gtgcccgtgc accacccgct 780
ggagccgtac ctggcgctgc tgaagctgga cggcaagctc gtgctgctgg gcgtcatcgg 840
cgagcccctg agcttcgtgt cgcccatggt gatgctgggg cggaaggcca tcacggggag 900
cttcatcggc agcatcgacg agaccgctga ggtgcttcag ttctgcgtcg acaagggact 960
cacctcccag atcgaggtgg tcaagatggg gtacgtgaac gaggcgctgg agcggctgga 1020
gcgcaacgac gtccgctacc gcttcgtcgt cgacgtcgcc ggtagcaacg tcgaggcgga 1080
ggcggcggcg gcggatgcgg ccagcaactg atggcaccgc gtcgtcgagt cgaaccacgt 1140
ctgtgcgccg cgtgcaacgt tcgttcgggt cgagtctgcg tgcaacgttc tgcttccttt 1200
actagttgtt gtctttccgc cttcttgc 1228
<210>12
<211>2700
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>12
gaatcgaatg gggagcctgg cgtccgagag gaaggtggtc gggtgggccg ccagggacgc 60
caccggacac ctctccccct actcctacac ccaggggcga ttctatgtgg agtcatcggt 120
gtcggctgac accaacgatt ttggcaaaat cacttatacc ccatgttttt tcaccatggt 180
tgaccccaat aaaaaaatgc attgaccccg gcggctggtg ctaatcactc tatagactat 240
agttaatcag cccagcagat agcaagcgcg agcgccgagc gccgagcggc ccagcttgcc 300
cagttgatta gtccttgcgt gtcttgcgat agcccacagc ccagcagtag tccaccaacg 360
aagcgtcgat ctgtcttcat ttctgacggc tcgcggacgg cgcggcgcca ccaccaaagc 420
gtcgatccat cttctcgttt ctcagggctc gcggacggcg cagcacagtt ttatcttcct 480
ttcctcgccc tcgccaggcc ggcaccggta ggctgcaagg tatcgcgccg ccgcgttgga 540
cctcctccaa gtctccaact cacgttatgc cagggaacca aagtttgatg gaacggtttt 600
tgaaaagaaa attgcctcca gctagtgact ctaatgatcc tggtgccgat ggagagacat 660
caagaagggg agcaaatgca tcaaacacta accttgaccg tacagcgagt catcgtcctt 720
tgcgagtttc acgaaaccag ttaatgttgc ttattttggg ccatgcaaat gctttgtcat 780
tgtcattaca aaggaaagat aaagacattt tagaggccat ggtagaggtg aagttaacaa 840
agcagagatt tcagcaaatt agggatgatg gttgggattc tctattagag gatgtgttat 900
ccttttgtga aaaacatggt attccgaagt tggacatgga tcatgagtac attaatcgcc 960
acaagcctag gcaaagaacc aaccgaacta actatcaaca ctatagatat gattgcttga 1020
accctgttat tgacttacag cttatagagt tcaatgatcg tttcaatgag gtgaattctg 1080
aattgcttac ccacatggct gcttttagtc ccaataattc ttttggtgcc tttaaacatg 1140
agagtttgat ggaattggct aaggcatacc ctgatgattt cagcccagtg gaactagatg 1200
atctcagtag tgaacttcat tgttacattg ataatgtgag agctgatgca agatttgctc 1260
aattgggtac tatttctgag cacggtaaac taatggtgga tacaaaaaaa catcttgctt 1320
tttcattggt ctatcggctt ctcaaacttg tgctagttct ccctattgca actgcatcag 1380
tagagagatc attttcagca atgaaaattg tgaagacggt cctacgaaac cggatcggtg 1440
atgactttat gaatgattgt gtcattagct tcatggaaca agaacttctt gatacaattt 1500
caaataatga tgtgatagtt cgattccaga agatggatgg acacaatcgt agagtgaaat 1560
tataaaagga acacaggccc tgaagatgtg gtggtgaagg tgctctactg cgggatctgc 1620
cacacggaca tccaccaggc caagaaccac ctcggggctt caaagtatcc tatggtccct 1680
gggcacgagg tggtcggcga ggtggtggag gtcgggcccg aggtggccaa gtacggcgtc 1740
ggcgacgtgg taggcgtcgg ggtgatcgtt gggtgctgcc gcgagtgcag cccctgcaag 1800
gccaacgttg agcagtactg caacaagaag atctggtcat acaacgacgt ctacactgat 1860
ggacggccca cgcagggtgg attcgcctcc accatggtcg tcgaccagaa gtttgtggtg 1920
aagatcccgg cgggtctggc tccggagcaa gcggcgccgc tgctgtgcgc tggcgtgacg 1980
gtgtacagcc cgctgaagca ctttgggctg acgaccccgg gcctccgtgg cggcatcctg 2040
ggcctcggcg gcgtgggcca catgggcgtg aaggtagcca aggccatggg ccaccacgtg 2100
acggtgatca gctcgtcgtc caagaagcgc gcggaggcaa tggaccacct cggcgcggac 2160
gcgtacctag tgagctcgga cgccgcggcc atggcggcgg ccgccgactc gctggactac 2220
atcatcgaca cggtgcccgt gcaccacccg ctggagccgt acctggcgct gctgaagctg 2280
gacggcaagc tcgtgctgct gggcgtcatc ggcgagcccc tgagcttcgt gtcgcccatg 2340
gtgatgctgg ggcggaaggc catcacgggg agcttcatcg gcagcatcga cgagaccgct 2400
gaggtgcttc agttctgcgt cgacaaggga ctcacctccc agatcgaggt ggtcaagatg 2460
gggtacgtga acgaggcgct ggagcggctg gagcgcaacg acgtccgcta ccgcttcgtc 2520
gtcgacgtcg ccggtagcaa cgtcgaggcg gaggcggcgg cggcggatgc ggccagcaac 2580
tgatggcacc gcgtcgtcga gtcgaaccac gtctgtgcgc cgcgtgcaac gttcgttcgg 2640
gtcgagtctg cgtgcaacgt tctgcttcct ttactagttg ttgtctttcc gccttcttgc 2700

Claims (10)

1. A maize bm1 gene mutant Rb243 is a gene with insertion mutation of 2101bp fragments starting from the 133 th base of SEQ ID NO.1 on the first exon of a maize bm1 gene coding region, and the nucleotide sequence of the 2101bp fragments is shown as SEQ ID NO. 2.
2. The maize bm1 gene mutant Rb243 of claim 1, having a nucleotide sequence shown in SEQ ID No. 3.
3. Biological material containing the maize bm1 gene mutant Rb243 of claim 1 or 2, which is an expression cassette, an expression vector, an engineered bacterium or a host cell.
4. The molecular marker for detecting the maize bm1 gene is characterized in that the molecular marker can be obtained by PCR amplification of the following primer combination, and the nucleotide sequence of the primer combination is as follows:
the upstream primer F1: GAATCGAATGGGGAGCCTGG the flow of the air in the air conditioner,
the upstream primer F1: TCGGCTTCTCAAACTTGTGCT the flow of the air in the air conditioner,
a downstream primer R: AGAACTACTGGAGGAGGCGC are provided.
5. A primer combination is characterized by comprising a primer sequence shown as SEQ ID NO. 4-6.
6. Use of the maize bm1 gene mutant Rb243 of claim 1 or 2, or the biological material of claim 3, or the molecular marker of claim 4, or the primer combination of claim 5 in maize molecular assisted selective breeding or improved seed production.
7. Use of the maize bm1 gene mutant Rb243 of claim 1 or 2, or the biological material of claim 3, or the molecular marker of claim 4, or the primer combination of claim 5 in screening or preparing maize with a brown midrib trait.
8. Use of the maize bm1 gene mutant Rb243 of claim 1 or 2, or the biological material of claim 3, or the molecular marker of claim 4, or the primer combination of claim 5, for detecting maize brown midrib phenotype or genotype, said use comprising:
carrying out PCR amplification on a corn genome to be detected by using the molecular marker of claim 4 or the primer combination of claim 5, wherein if an amplification product electrophoresis detection shows that only a 588bp band exists, the corn to be detected carries a bm1 mutant gene, is an Rb243 mutant homozygous genotype and has a brown vein phenotype;
if the electrophoresis detection of the amplification product only has a 254bp band, the result shows that the corn to be detected carries bm1 wild gene, is a wild homozygous genotype and does not have a brown vein phenotype;
if the electrophoresis detection result of the amplification product has two bands of 254bp and 588bp, the fact that the corn to be detected carries bm1 gene and Rb243 mutant is a heterozygous genotype and does not have a brown vein phenotype is shown.
9. The method for detecting the maize bm1 gene mutant Rb243 is characterized in that the molecular marker of claim 4 or the primer combination of claim 5 is used for carrying out PCR amplification on maize to be detected, and if the electrophoresis detection of an amplification product only has a 588bp band, the maize to be detected contains the maize bm1 gene mutant Rb 243.
10. A method for detecting a maize bm1 gene is characterized in that the molecular marker of claim 4 or the primer combination of claim 5 is used for carrying out PCR amplification on a maize to be detected, and if the electrophoresis detection of an amplification product shows that 254bp or 254bp and 588bp bands exist, the maize to be detected contains a maize bm1 wild gene.
CN201911311607.0A 2019-12-18 2019-12-18 Maize bm1 gene mutant and molecular marker and application thereof Active CN110862444B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911311607.0A CN110862444B (en) 2019-12-18 2019-12-18 Maize bm1 gene mutant and molecular marker and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911311607.0A CN110862444B (en) 2019-12-18 2019-12-18 Maize bm1 gene mutant and molecular marker and application thereof

Publications (2)

Publication Number Publication Date
CN110862444A true CN110862444A (en) 2020-03-06
CN110862444B CN110862444B (en) 2021-03-26

Family

ID=69659798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911311607.0A Active CN110862444B (en) 2019-12-18 2019-12-18 Maize bm1 gene mutant and molecular marker and application thereof

Country Status (1)

Country Link
CN (1) CN110862444B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109161553A (en) * 2018-09-29 2019-01-08 安徽农业大学 A kind of pears transcription factor PbBP and its application
CN115109133A (en) * 2022-06-20 2022-09-27 北京市农林科学院 ZmR1-CQ01 alleles and their use to increase zeaxanthin levels

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006119318A3 (en) * 2005-05-02 2007-03-08 Purdue Research Foundation Methods for increasing the yield of fermentable sugars from plant stover
CN106148365A (en) * 2011-01-03 2016-11-23 农业基因遗传学有限公司 The gene relevant with BM1 phenotype and variation, molecular marker, and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006119318A3 (en) * 2005-05-02 2007-03-08 Purdue Research Foundation Methods for increasing the yield of fermentable sugars from plant stover
CN106148365A (en) * 2011-01-03 2016-11-23 农业基因遗传学有限公司 The gene relevant with BM1 phenotype and variation, molecular marker, and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GANG WANG等: "Molecular characterization of a genomic interval with highly uneven recombination distribution on maize chromosome 10 L", 《GENETICA》 *
GANG WANG等: "Opaque7 Encodes an Acyl-Activating Enzyme-Like Protein That Affects Storage Protein Synthesis in Maize Endosperm", 《GENETICS》 *
WEI CHEN等: "Transposon insertion in a cinnamyl alcohol dehydrogenase gene is responsible for a brown midrib1 mutation in maize", 《PLANT MOL BIOL》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109161553A (en) * 2018-09-29 2019-01-08 安徽农业大学 A kind of pears transcription factor PbBP and its application
CN115109133A (en) * 2022-06-20 2022-09-27 北京市农林科学院 ZmR1-CQ01 alleles and their use to increase zeaxanthin levels

Also Published As

Publication number Publication date
CN110862444B (en) 2021-03-26

Similar Documents

Publication Publication Date Title
Sandal et al. A genetic linkage map of the model legume Lotus japonicus and strategies for fast mapping of new loci
CN110117673B (en) Molecular marker of brassica napus dwarf trait locus and application thereof
CN105695478B (en) Gene for regulating plant type and yield of plant and application thereof
EP3561079A1 (en) Soybean anti-pod-shattering major qtlqpd08-1, and mapping method and application thereof
CN110607389B (en) Molecular marker of brassica napus semi-short stalk character locus and application thereof
CN110862444B (en) Maize bm1 gene mutant and molecular marker and application thereof
WO2023029587A1 (en) Mutation site of ideal brittle stalk mutant ibc in rice, control gene ibc, and application
CN112266973A (en) SNP molecular marker related to wheat ear germination resistance and application thereof
CN110747288A (en) Rice large grain gene function marker and application
CN111172294A (en) Codominant SSR marker closely linked with tobacco nicotine synthesis major regulatory gene nic1 and application thereof
CN111206047B (en) OsSWEET13 gene mutant and application thereof in increasing rice yield
CN113980996B (en) Application of protein GEN1 and related biological materials thereof in corn yield regulation
CN111500756B (en) A05 chromosome main effect QTL site of cabbage type rape main inflorescence silique density character, SNP molecular marker and application
CN113774043B (en) Related protein for controlling rice glume color character and coding gene thereof
EP1100311A1 (en) Novel genetic materials for transmission into maize
CN112342311A (en) Method for verifying QTL (quantitative trait locus) of rice grain shape and grain weight
CN109517836B (en) Application of short N import segment in tobacco and screening and estimating method thereof
CN114369680B (en) Application of sequence shown in SEQ ID NO.1 in aspect of regulating and controlling wheat plant height as wheat dwarf gene Rht8, and molecular marker and application thereof
JP4298538B2 (en) Genetic markers linked to loci involved in dormancy and their use
CN107988213B (en) Rice genome recombinant nucleic acid fragment RecCR020428 and detection method thereof
JP2005229854A (en) Gene marker connected to gene locus controlling efflorescent or cleistogamic property and its utilization
CN118048470A (en) Development and application of molecular marker of cabbage type rape regulatory oil content accumulation gene BnLEC1
CN113801958A (en) InDel marker related to cabbage brilliant green character gene CER2 mutation, primer and application
CN113817863A (en) InDel marker closely linked with Chinese cabbage brilliant green character, primer and application
CN117502218A (en) Breeding method of hybrid eggplant 23-15 and InDel molecular marker and method for identifying seed purity of hybrid eggplant

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant