CN110861852A - Automatic classification garbage can based on visual identification and classification method - Google Patents

Automatic classification garbage can based on visual identification and classification method Download PDF

Info

Publication number
CN110861852A
CN110861852A CN201911189565.8A CN201911189565A CN110861852A CN 110861852 A CN110861852 A CN 110861852A CN 201911189565 A CN201911189565 A CN 201911189565A CN 110861852 A CN110861852 A CN 110861852A
Authority
CN
China
Prior art keywords
garbage
training
model
classification
tray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911189565.8A
Other languages
Chinese (zh)
Inventor
王拓
吴蓬勃
王贵选
刘正波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shijiazhuang Vocational And Technical College Of Posts And Telecommunications (training Center Of China Post Group Company)
Original Assignee
Shijiazhuang Vocational And Technical College Of Posts And Telecommunications (training Center Of China Post Group Company)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shijiazhuang Vocational And Technical College Of Posts And Telecommunications (training Center Of China Post Group Company) filed Critical Shijiazhuang Vocational And Technical College Of Posts And Telecommunications (training Center Of China Post Group Company)
Priority to CN201911189565.8A priority Critical patent/CN110861852A/en
Publication of CN110861852A publication Critical patent/CN110861852A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F1/00Refuse receptacles; Accessories therefor
    • B65F1/0033Refuse receptacles; Accessories therefor specially adapted for segregated refuse collecting, e.g. receptacles with several compartments; Combination of receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F1/00Refuse receptacles; Accessories therefor
    • B65F1/0033Refuse receptacles; Accessories therefor specially adapted for segregated refuse collecting, e.g. receptacles with several compartments; Combination of receptacles
    • B65F1/004Refuse receptacles; Accessories therefor specially adapted for segregated refuse collecting, e.g. receptacles with several compartments; Combination of receptacles the receptacles being divided in compartments by partitions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F1/00Refuse receptacles; Accessories therefor
    • B65F1/14Other constructional features; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F2210/00Equipment of refuse receptacles
    • B65F2210/138Identification means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F2210/00Equipment of refuse receptacles
    • B65F2210/168Sensing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/10Waste collection, transportation, transfer or storage, e.g. segregated refuse collecting, electric or hybrid propulsion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Image Analysis (AREA)

Abstract

The invention discloses an automatic classification garbage can based on visual identification and a classification method. The garbage can comprises a garbage throwing port, a first photoelectric switch sensor, an identification and classification tray, a second photoelectric switch sensor, a sub-garbage can, an image identification assembly, an STM32 controller, a two-way stepping motor driver and a garbage can shell; the side wall of the shell of the garbage can is provided with a garbage throwing opening; the first photoelectric switch sensor is placed at the garbage throwing port; a plurality of sub-garbage cans are arranged in the garbage can shell, and a second photoelectric switch sensor is arranged at the opening of each sub-garbage can; the recognition and classification tray is placed in the garbage can shell and is positioned above the sub garbage cans; the recognition and classification tray comprises a garbage tray, a V-shaped baffle stepping motor, a camera, a V-shaped baffle, a bracket, a rotating baffle stepping motor and a rotating baffle. This garbage bin passes through the camera and gathers rubbish image, adopts the TensorFlow degree of depth learning frame, through the migration training of model, has improved the rate of accuracy of rubbish discernment.

Description

Automatic classification garbage can based on visual identification and classification method
Technical Field
The invention relates to the field of garbage classification, in particular to an automatic classification garbage can based on visual identification and a classification method.
Background
The garbage amount in China is large, and most of the garbage is recyclable garbage with recycling value, so that the domestic garbage is recycled, and great benefits are brought to the aspects of economy, society, environment and the like. The garbage classification processing system is a complex system and structurally comprises four links of garbage classification collection, garbage classification transportation, garbage classification processing and garbage classification recycling. The garbage classification treatment needs to be carried out from the source, and the automatic garbage classification and collection is one of effective measures for solving the garbage classification problem. At present, sorting of recyclable garbage mainly depends on manpower, belongs to labor intensive industry, and is low in labor efficiency.
The design [ J ] of an intelligent garbage classification barrel for monitoring Internet of things monitoring and controlling of documents, namely broad sources of leaves, bear positive light, Limingshi, old people and the like [ 2017(01):136 and 138 ] garbage detection is used for garbage identification through a capacitive sensor, and garbage classification is realized by detecting dielectric constants of different garbage, so that the defects of difficult sampling, limited identification types and high error rate exist, the garbage identification types are difficult to increase according to actual garbage input, the garbage sorting and input are not realized, meanwhile, the installation position of the capacitive sensor needs manual debugging and cannot adapt to large-scale input, and the practicability is not strong.
Disclosure of Invention
Aiming at the defects of the prior art, the invention aims to provide an automatic classification garbage can based on visual identification and a classification method.
The technical scheme for solving the technical problem of the garbage can is that the invention provides an automatic classification garbage can based on visual identification, which is characterized in that the garbage can comprises a garbage putting port, a first photoelectric switch sensor, an identification classification tray, a second photoelectric switch sensor, a sub-garbage can, an image identification component, an STM32 controller, a two-way stepping motor driver and a garbage can shell;
the side wall of the garbage can shell is provided with a garbage throwing opening; the first photoelectric switch sensor is arranged at the garbage throwing port and used for detecting whether garbage is thrown into the garbage can or not; a plurality of sub-garbage cans are placed in the garbage can shell, a second photoelectric switch sensor is mounted at the opening of each sub-garbage can and used for detecting the capacity conditions of the sub-garbage cans; the recognition and classification tray is placed in the garbage can shell and is positioned above the sub garbage cans;
the identification and classification tray comprises a garbage tray, a V-shaped baffle stepping motor, a camera, a V-shaped baffle, a bracket, a rotary baffle stepping motor and a rotary baffle; the garbage tray is fixed on the inner wall of the garbage can shell; the camera is arranged on the garbage tray through a bracket, and the shooting visual angle range of the camera covers a garbage recognition area in the garbage tray and is used for collecting garbage images; the V-shaped baffle is placed in the garbage tray, the rotating shaft at the center of the V-shaped baffle is rotatably arranged at the center of the garbage tray, and the edges of two ends of the V-shaped baffle are in contact with the inner wall of the garbage tray; the output end of the V-shaped baffle stepping motor is connected with a rotating shaft of the V-shaped baffle to drive the V-shaped baffle to rotate by taking the center of the garbage tray as a shaft, so that garbage is pushed to the upper part of the corresponding garbage throwing port; the rotating baffle is provided with an opening, and a rotating shaft at the center of the rotating baffle is rotatably arranged at the center of the garbage tray; the output end of the stepping motor of the rotary baffle is connected with a rotating shaft of the rotary baffle, the rotary baffle is driven to rotate by taking the center of the garbage tray as a shaft, and the corresponding garbage throwing port is opened to enable the garbage to fall into the corresponding sub-garbage can;
the first photoelectric switch sensor, the second photoelectric switch sensor and the two-way stepping motor driver are all connected with the STM32 controller; the STM32 controller is connected with the image recognition component; the V-shaped baffle plate stepping motor and the rotary baffle plate stepping motor are both connected with a double-path stepping motor driver; the camera is connected with the image recognition component.
The technical scheme for solving the technical problem of the method is to provide a garbage classification method for automatically classifying garbage cans based on visual identification, which is characterized by comprising the following steps of:
step one, training an image recognition component;
(1) making an image recognition training set:
① collecting training pictures, collecting pictures of various garbage objects to obtain training pictures;
② screening training pictures, manually screening the training pictures to obtain a training picture set, wherein the pictures in the training picture set contain clear images of objects, have typical characteristics of the objects and diversify object backgrounds;
③ marking training pictures, marking pictures in the training picture set, identifying garbage in the pictures, and outputting the pictures as XML marking files;
④, generating a data set in a TFrecord format, and generating an XML label file into a uniform TFrecord format file by using a program of a target detection library of TensorFlow to obtain the data set in the TFrecord format;
(2) training is started, and the training process is as follows:
① downloading the pre-training model to the object _ detection folder of the object detection library of Tensflow;
②, modifying the object type file, adding or deleting the object type contained in the corresponding layout map file in the object _ detection/data folder according to the actual object type of the garbage;
③ modifying the model configuration file in object _ detection/samples/configurations, modifying the object type quantity according to the actual training garbage type, specifying the file path of the data set in TFRecord format for training and verification, specifying the storage path of the table map file;
④, adjusting the batch size of the pre-training model for each training according to the configuration condition of the computer hardware CPU and the memory, starting the training, and training the pre-training model into a trained model in a Vision Bonnet neural network operation card of the image recognition component;
⑤ converting the trained model into PB model which can run independently through the model file output program of the object detection library of TensorFlow;
⑥ testing the training result, testing the PB model by a testing program of a target detection library of TensorFlow, and increasing the number of the labeled pictures of each object and adjusting the parameter values in the model configuration file to ensure that the recognition rate of the PB model to the pictures is increased to a preset value;
(3) the method specifically comprises the following steps of:
①, configuring the PB model, copying the PB model, the cable map file and the model configuration file to a data directory of TensorRT;
②, adding support to the newly added PB model, modifying the model and the model configuration file path thereof into the newly added PB model and the model configuration file path thereof under the utilis directory of TensorRT, and realizing the support to the newly added PB model;
opening a camera _ tf _ trt. py file in TensorRT, modifying the default model name into a newly added PB model name, and modifying the able map file path into a newly added able map file path;
④ configuring a serial port to realize recognition result output, modifying the result output part of the visualization. py file under the utils directory of TensorRT, increasing serial port data output, and realizing the serial port output of the recognition result;
step two, after the training is finished, garbage classification is started:
①, garbage is thrown in through the garbage throwing port by a user, when the garbage is thrown in, the first photoelectric switch sensor is triggered, the garbage falls into the identification and classification tray, the trigger signal wakes up the STM32 controller in a dormant state, and the STM32 controller wakes up the image identification component;
② garbage image acquisition, wherein the light sensor detects illumination intensity and sends the illumination intensity information to the STM32 controller, the STM32 controller controls the on-off of the annular light supplement lamp and adjusts the illumination intensity to provide proper illumination intensity for the camera to acquire garbage images;
③ garbage recognition, wherein the camera sends the collected garbage image to a Vision Bonnet neural network operation card of the image recognition component to perform feature recognition on the garbage image, and the image recognition component transmits the recognition result to the STM32 controller;
④, classifying and throwing garbage, STM32 controlling garbage according to the recognition result and controlling the V-shaped baffle to convey the garbage to a corresponding garbage throwing area according to the classification result, meanwhile, detecting the capacity condition of the sub-garbage cans by the STM32 controller through the second photoelectric switch sensor, manually cleaning the corresponding sub-garbage cans if the sub-garbage cans are full, rotating the openings of the rotary baffles to the corresponding garbage throwing openings if the corresponding sub-garbage cans are not full, opening the corresponding garbage throwing openings, dropping the garbage into the sub-garbage cans, and returning the V-shaped baffle and the rotary baffles to the initial positions to finish the garbage classification process.
Compared with the prior art, the invention has the beneficial effects that:
(1) this garbage bin uses the AI technique to rubbish discernment in, uses the degree of depth learning vision classification technique to rubbish letter sorting, gathers rubbish image through the camera, adopts TensorFlow degree of depth learning frame, through the migration training of mobileNet SSD model, has greatly improved the rate of accuracy of rubbish discernment. The STM32 singlechip is handled the identification result, and control step motor has realized the transport and the input of rubbish with rubbish accuracy input corresponding sub-garbage bin, need not artifical the participation, has improved work efficiency and rate of accuracy, has greatly reduced the human cost.
(2) Adopt baffle and step motor cooperation to carry out waste classification and replace artifical input rubbish, improve work efficiency, reduce the running cost, simplify system mechanical structure simultaneously, improve system stability.
(3) Based on the TensorFlow deep learning framework, the garbage classification recognition method realizes learning in work, the recognized garbage types are gradually increased, and the accuracy is gradually improved.
(4) The MoblieNet SSD model which is easier to operate on embedded equipment and has higher recognition speed is adopted, the number of parameters is reduced, the calculation amount is smaller, the performance is higher, and the garbage can be recognized quickly and accurately. The VisionBonnet neural network operation card of Google is adopted to perform neural network operation of image recognition, so that the operation burden of a system CPU is reduced, and the operation efficiency of the system neural network is improved.
(5) The visual identification component adopts open source codes, so that later-stage upgrading and secondary development of a user are facilitated. Training picture sets and picture training volume can be increased by oneself, and rubbish discernment kind and discernment volume can be increased only to the mode through the training later stage, have reduced the running cost.
(6) The position of the camera does not need to be specially debugged, and the large-scale production and putting in are facilitated.
(7) The working scene of this garbage bin is public place, and the resident can realize automatic waste classification after dropping into the garbage bin with rubbish, has improved classification efficiency, has reduced the running cost, realizes waste classification from the source that rubbish was put in, has more practicality and generalizability.
Drawings
FIG. 1 is an exploded view of the overall structure of one embodiment of the present invention;
FIG. 2 is a schematic view of an embodiment of the present invention illustrating the identification and classification of pallet axes;
FIG. 3 is an isometric view of another perspective of an embodiment of the present invention identifying a sorting tray;
FIG. 4 is a schematic top view of an identification sorting tray according to an embodiment of the present invention;
fig. 5 is a recognition rate graph of a model trained using an image dataset according to embodiment 1 of the present invention.
Fig. 6 is a graph of the total loss rate of a model trained using an image dataset according to embodiment 1 of the present invention.
Fig. 7 is a graph showing the recognition effect of the image data set on the model after 11026 times of training in embodiment 1 of the present invention.
In the figure: 1. a garbage throwing port; 2. a first photoelectric switch sensor; 3. identifying a sorting tray; 4. a second photoelectric switch sensor; 5. a sub-dustbin; 6. an image recognition component; 7. an STM32 controller; 8. a two-way stepper motor driver; 9. a trash can shell; 31. a trash tray; 32. a V-shaped baffle stepping motor; 33. a camera; 34. an annular light supplement lamp; 35. a V-shaped baffle (L-shaped baffle); 36. a support; 37. a rotating baffle stepper motor; 38. rotating the baffle; 310. a wet waste deposit area; 311. a wet garbage throwing port; 312. a recyclable waste deposit area; 313. the garbage throwing port can be recovered; 314. a dry garbage throwing port; 315. a dry waste disposal area; 316. a harmful garbage throwing port; 317. a harmful garbage throwing area;
Detailed Description
The present invention will be further described with reference to the following examples and accompanying drawings. The specific examples are only intended to illustrate the invention in further detail and do not limit the scope of protection of the claims of the present application.
The invention provides an automatic classification garbage can (called as a garbage can for short) based on visual identification, which is characterized by comprising a garbage putting opening 1, a first photoelectric switch sensor 2, an identification classification tray 3, a second photoelectric switch sensor 4, a sub garbage can 5, an image identification assembly 6, an STM32 controller 7, a two-way stepping motor driver 8 and a garbage can shell 9, wherein the two-way stepping motor driver is connected with the garbage putting opening 1;
the side wall of the garbage can shell 9 is provided with a garbage throwing opening 1; the first photoelectric switch sensor 2 is arranged at the garbage throwing-in opening 1 and used for detecting whether garbage is thrown into the garbage can or not; a plurality of sub-garbage cans 5 are placed in the garbage can shell 9, a second photoelectric switch sensor 4 is mounted at the opening of each sub-garbage can 5, and the second photoelectric switch sensor 4 is used for detecting the capacity of the sub-garbage cans 5; the image recognition assembly 6, the STM32 controller 7 and the two-way stepping motor driver 8 are arranged in the garbage can shell 9; the recognition and classification tray 3 is placed in the garbage can shell 9, is positioned above the sub garbage can 5 and below the garbage throwing-in opening 1, and is communicated with the garbage throwing-in opening 1;
the recognition and classification tray 3 comprises a garbage tray 31, a V-shaped baffle stepping motor 32, a camera 33, an annular light supplement lamp 34, a V-shaped baffle 35, a bracket 36, a rotary baffle stepping motor 37, a rotary baffle 38 and a light sensor (not shown in the figure); the garbage tray 31 is fixed on the inner wall of the garbage can shell 9; the camera 33 is mounted on the garbage tray 31 through the bracket 36, and the mounting height is determined by the shooting visual angle range of the camera, so that the shooting visual angle range of the camera 33 covers the whole garbage recognition area in the garbage tray 31 and is used for collecting garbage images; the annular light supplement lamp 34 is mounted on the garbage tray 31 through a support 36 and is positioned above the camera 33, so that sufficient illumination is provided for the camera 33 to collect garbage images; the light sensor is arranged on the support 36 and located in the illumination range of the annular light supplement lamp 34, the light sensor detects illumination intensity and sends illumination intensity information to the STM32 controller 7, the STM32 controller 7 controls the opening and closing of the annular light supplement lamp 34 and the illumination intensity according to the illumination intensity information, appropriate illumination intensity is provided for the camera 33 to collect garbage images, and all-weather operation of the garbage can is guaranteed; the V-shaped baffle 35 is placed in the garbage tray 31, the rotating shaft at the center of the V-shaped baffle is rotatably arranged at the center of the garbage tray 31, and the edges of two ends of the V-shaped baffle are in contact with the inner wall of the garbage tray 31; the output end of the V-shaped baffle stepping motor 32 is connected with the rotating shaft of the V-shaped baffle 35 to drive the V-shaped baffle 35 to rotate by taking the center of the garbage tray 31 as the shaft, so that the garbage is pushed to the upper part of the corresponding garbage throwing port; the rotary baffle 38 is positioned outside the garbage tray 31 and on the other side of the V-shaped baffle 35, and is provided with an opening, and a rotating shaft at the center of the rotary baffle is rotatably arranged at the center of the garbage tray 31; the output end of the rotating baffle stepping motor 37 is connected with the rotating shaft of the rotating baffle 38, so as to drive the rotating baffle 38 to rotate by taking the center of the garbage tray 31 as a shaft, and open the corresponding garbage throwing port to enable the garbage to fall into the corresponding sub-garbage can 5;
the first photoelectric switch sensor 2, the annular light supplement lamp 34, the second photoelectric switch sensor 4, the two-way stepping motor driver 8 and the light sensor are all connected with the STM32 controller 7 through signal lines; the STM32 controller 7 is connected with the image recognition component 6 through a serial port line; the V-shaped baffle stepping motor 32 and the rotary baffle stepping motor 37 are both connected with the two-way stepping motor driver 8 through leads; the camera 33 is connected to the image recognition unit 6 via a USB cable.
The sub-garbage cans 5 can be four and are respectively used for containing wet garbage, recyclable garbage, dry garbage and harmful garbage, and the four types of garbage are accurately classified according to the national standard. The trash recognition area of the recognition sorting tray 3 may be divided into a wet trash throwing area 310, a wet trash throwing port 311, a recoverable trash throwing area 312, a recoverable trash throwing port 313, a dry trash throwing port 314, a dry trash throwing area 315, a harmful trash throwing port 316, and a harmful trash throwing area 317;
the image identification component 6 consists of a Vision Bonnet neural network operation card and a Raspberry Pi zeroWH microcomputer; the Vision Bonnet neural network operation card is used for performing neural network operation of image recognition and loading a Mobilen et SSD model for garbage recognition; a Raspberry Pi Zero WH microcomputer is provided with a Wuban diagram system for supporting a TensorFlow deep learning framework and processing a neural network operation result.
The Raspberry Pi Zero WH microcomputer has the following functions: 1. training images are collected. The garbage photos of different scenes, different lighting conditions and various angles are shot. 2. Each image is manually marked. 3. A training data set is prepared to convert the labels to the appropriate format, a label map is made, and the image is divided into a large training set and a smaller evaluation set. 4. The correct parameters are set in the object detection profile. 5. A TensorFlow environment was prepared. 6. Training and generating a model. 7. The mold is cured. 8. The Bonnet Compiler compilation model was used in Ubuntu. 9. The compiled model is loaded onto the Vision Kit. 10. Example code is adapted to work with a compilation model.
The model of the STM32 controller 7 can adopt STM32F103ZET 6;
the invention also provides an automatic classification method (short method) based on visual identification, which is characterized by comprising the following steps:
step one, training an image recognition component 6;
(1) making an image recognition training set:
① collecting training pictures, collecting pictures of various garbage objects shot under different backgrounds, different lights, different angles, different garbage quantities and the like, acquired by tools such as a web crawler and the like and screened from MS COCO data set to obtain the training pictures for improving the accuracy;
preferably, the specific method for screening the pictures of various junk objects from the MS COCO dataset is as follows: screening out a corresponding object classification list from the MS COCO data set, and extracting training pictures from train and val folders of the MS COCO data set according to the classification list;
②, screening training pictures, manually screening the training pictures, and deleting partial unqualified pictures to obtain a training picture set, wherein the pictures in the training picture set must contain clear images of objects, have typical characteristics of the objects and diversify object backgrounds;
③, labeling the training pictures, adopting LabLeImg software to label the pictures in the training picture set, namely identifying the garbage in the pictures, and outputting an XML labeling file in a Pascal VOC format by the software;
④, generating a data set in a TFRecord format, generating an XML annotation file into a unified TFRecord format file by using a program create _ past _ tf _ record.py of an object detection library (Objectdetection API) of TensorFlow to obtain the data set in the TFRecord format, and finishing the production of an image recognition training set;
(2) training is started, and the training process is as follows:
① downloading MobileNet SSD pre-training model, downloading the pre-training model SSD _ MobileNet to object _ detection folder of object detection library of TensorFlow;
②, modifying the object type file, adding or deleting the object type contained in the corresponding label map file (mapping file of object label number and object name) in the object _ detection/data folder according to the actual object type of the garbage;
③ modifies object _ detection/samples/configurations model configuration file ssd _ mobilene _ v1_ coco. configuration, namely modifying object type number num _ classes according to actual training garbage type, specifying file path input _ path of training and verifying TFRecord format data set (namely training and verifying TFRecord file path), specifying LABLE map file storage path;
④, adjusting the batch size of the pre-training model for each training according to the configuration condition of the computer hardware CPU and the memory, starting the training, and training the pre-training model into a trained model in a Vision Bonnet neural network operation card of the image recognition component 6;
⑤ converting the trained model into a PB model (PB, protocol buffer), outputting a program export _ reference _ graph through a model file of a target detection library of Tensflow, and converting the trained model into a PB model (garbage recognition model) capable of running independently;
⑥ testing the training result, testing the trained PB model through object _ detection _ configuration.py of a target detection library of TensorFlow, and increasing the number of the labeled pictures of each object (generally, each object is not less than 1000) and adjusting the parameter value in the model configuration file ssd _ mobilene _ v1_ coco.config to improve the recognition rate of the PB model to the pictures to a preset value;
(3) the specific method/steps of the operating environment configuration of the image recognition component 6 are as follows:
① configuring PB model, copying PB model, able map file and model configuration file ssd _ mobilenet _ v1_ coco.config to data directory of TensorRT;
②, adding support to a newly added PB model, and modifying the model and the model configuration file path thereof into the newly added PB model and the model configuration file path thereof in the egowings _ models.
Opening a camera _ tf _ trt. py file in TensorRT, modifying the default model name into a newly added PB model name, and modifying the able map file path into a newly added able map file path;
④ configuring a serial port to realize recognition result output, modifying the result output part of the visualization. py file under the utils directory of TensorRT, increasing serial port data output, and realizing the serial port output of the recognition result;
step two, after the training is finished, starting garbage classification based on vision:
①, putting garbage in, wherein the image recognition component 6 and the STM32 controller 7 are in a dormant state for reducing power consumption when no garbage is put in, a user puts in the garbage through the garbage putting port 1, the first photoelectric switch sensor 2 is triggered when the garbage is put in, the garbage falls into the V-shaped baffle 35 of the recognition and classification tray 3, the STM32 controller 7 in the dormant state is awakened by the trigger signal, and the STM32 controller 7 awakens the image recognition component 6;
② garbage image acquisition, wherein the light sensor detects illumination intensity and sends the illumination intensity information to the STM32 controller 7, the STM32 controller 7 controls the on-off of the annular light supplement lamp 34 and adjusts the illumination intensity to provide proper illumination intensity for the camera 33 to acquire garbage images, and the camera 33 acquires garbage images;
③, identifying garbage, sending the acquired garbage image to a VisionBonnet neural network operation card of the image identification assembly 6 by the camera 33, identifying the characteristics of the garbage image through neural network operation, and transmitting the identification result to the STM32 controller 7 by the image identification assembly 6 through a serial port;
④, classifying and throwing garbage, STM32 controller 7 classifying the garbage according to the recognition result ("wet garbage", "recoverable garbage", "dry garbage", "harmful garbage") and controlling the V-shaped baffle 35 to convey the garbage to the corresponding garbage throwing area according to the classification result, meanwhile, STM32 controller 7 detects the capacity condition of the sub-garbage can 5 through the second photoelectric switch sensor 4, if the corresponding sub-garbage can 5 is full, the speaker in the STM32 controller 7 sends a prompt sound of "garbage can is full and timely cleaning is requested" to perform manual cleaning, if the corresponding sub-garbage can 5 is not full, the speaker sends a corresponding garbage dumping prompt sound, the opening of the rotary baffle 38 rotates to the corresponding garbage throwing area, the corresponding garbage throwing opening is opened, the garbage falls into the sub-garbage can 5, the V-shaped baffle 35 and the rotary baffle 38 return to the initial positions (in the embodiment, the V-shaped baffle 35 returns to the wet garbage throwing area 310, the opening of the rotary baffle 38 returns to the throwing area 317, then the STM32 controller 7 and the dormant image recognition module 34 and completes the classification process.
Example 1
Identifying and classifying harmful garbage-tablet boards through the garbage can, wherein 319 pictures are contained in an image data set of the tablet boards; as can be seen from fig. 5, after the model is trained 9817 times through the image dataset, the recognition rate (the mAP value) of the model reaches 80%. As can be seen from fig. 6, the total loss rate decreased to 10% after 11026 times of model training through the image dataset. As can be seen from fig. 7, after 11026 times of model training through the image dataset, all tablet plates can be identified.
Nothing in this specification is said to apply to the prior art.

Claims (7)

1. An automatic classification garbage can based on visual identification is characterized by comprising a garbage throwing port, a first photoelectric switch sensor, an identification classification tray, a second photoelectric switch sensor, a sub-garbage can, an image identification assembly, an STM32 controller, a double-path stepping motor driver and a garbage can shell;
the side wall of the garbage can shell is provided with a garbage throwing opening; the first photoelectric switch sensor is arranged at the garbage throwing port and used for detecting whether garbage is thrown into the garbage can or not; a plurality of sub-garbage cans are placed in the garbage can shell, a second photoelectric switch sensor is mounted at the opening of each sub-garbage can and used for detecting the capacity conditions of the sub-garbage cans; the recognition and classification tray is placed in the garbage can shell and is positioned above the sub garbage cans;
the identification and classification tray comprises a garbage tray, a V-shaped baffle stepping motor, a camera, a V-shaped baffle, a bracket, a rotary baffle stepping motor and a rotary baffle; the garbage tray is fixed on the inner wall of the garbage can shell; the camera is arranged on the garbage tray through a bracket, and the shooting visual angle range of the camera covers a garbage recognition area in the garbage tray and is used for collecting garbage images; the V-shaped baffle is placed in the garbage tray, the rotating shaft at the center of the V-shaped baffle is rotatably arranged at the center of the garbage tray, and the edges of two ends of the V-shaped baffle are in contact with the inner wall of the garbage tray; the output end of the V-shaped baffle stepping motor is connected with a rotating shaft of the V-shaped baffle to drive the V-shaped baffle to rotate by taking the center of the garbage tray as a shaft, so that garbage is pushed to the upper part of the corresponding garbage throwing port; the rotating baffle is provided with an opening, and a rotating shaft at the center of the rotating baffle is rotatably arranged at the center of the garbage tray; the output end of the stepping motor of the rotary baffle is connected with a rotating shaft of the rotary baffle, the rotary baffle is driven to rotate by taking the center of the garbage tray as a shaft, and the corresponding garbage throwing port is opened to enable the garbage to fall into the corresponding sub-garbage can;
the first photoelectric switch sensor, the second photoelectric switch sensor and the two-way stepping motor driver are all connected with the STM32 controller; the STM32 controller is connected with the image recognition component; the V-shaped baffle plate stepping motor and the rotary baffle plate stepping motor are both connected with a double-path stepping motor driver; the camera is connected with the image recognition component.
2. The automatic classification garbage can based on visual identification as claimed in claim 1, wherein the identification and classification tray further comprises an annular light supplement lamp and a light sensor; the annular light supplement lamp is arranged on the garbage tray through a bracket and provides proper illumination for the camera to collect garbage images; the light sensor is located in the illumination range of the annular light supplement lamp, detects illumination intensity and sends illumination intensity information to the STM32 controller, and the STM32 controller controls the opening and closing of the annular light supplement lamp and the illumination intensity according to the illumination intensity information and provides proper illumination intensity for the camera to collect garbage images; annular light filling lamp and light sensor all are connected with STM32 controller.
3. The automatic sorting garbage can based on visual recognition of claim 1, wherein the garbage recognition area of the recognition sorting tray is divided into a wet garbage throwing area, a recoverable garbage throwing area, a dry garbage throwing area, a harmful garbage throwing area and a harmful garbage throwing area; the sub-garbage cans are divided into wet garbage cans, recyclable garbage cans, dry garbage cans and harmful garbage cans.
4. A method of sorting refuse according to any of claims 1-3, characterised in that it comprises the following steps:
step one, training an image recognition component;
(1) making an image recognition training set:
① collecting training pictures, collecting pictures of various garbage objects to obtain training pictures;
② screening training pictures, manually screening the training pictures to obtain a training picture set, wherein the pictures in the training picture set contain clear images of objects, have typical characteristics of the objects and diversify object backgrounds;
③ marking training pictures, marking pictures in the training picture set, identifying garbage in the pictures, and outputting the pictures as XML marking files;
④, generating a data set in a TFrecord format, and generating an XML label file into a uniform TFrecord format file by using a program of a target detection library of TensorFlow to obtain the data set in the TFrecord format;
(2) training is started, and the training process is as follows:
① downloading the pre-training model to the object _ detection folder of the object detection library of Tensflow;
②, modifying the object type file, adding or deleting the object type contained in the corresponding layout map file in the object _ detection/data folder according to the actual object type of the garbage;
③ modifying the model configuration file in object _ detection/samples/configurations, modifying the object type quantity according to the actual training garbage type, specifying the file path of the data set in TFRecord format for training and verification, specifying the storage path of the table map file;
④, adjusting the batch size of the pre-training model for each training according to the configuration condition of the computer hardware CPU and the memory, starting the training, and training the pre-training model into a trained model in a Vision Bonnet neural network operation card of the image recognition component;
⑤ converting the trained model into PB model which can run independently through the model file output program of the object detection library of TensorFlow;
⑥ testing the training result, testing the PB model by a testing program of a target detection library of TensorFlow, and increasing the number of the labeled pictures of each object and adjusting the parameter values in the model configuration file to ensure that the recognition rate of the PB model to the pictures is increased to a preset value;
(3) the method specifically comprises the following steps of:
①, configuring the PB model, copying the PB model, the able map file and the model configuration file to a dat a directory of TensorRT;
②, adding support to the newly added PB model, modifying the model and the model configuration file path thereof into the newly added PB model and the model configuration file path thereof under the utilis directory of TensorRT, and realizing the support to the newly added PB model;
opening a camera _ tf _ trt. py file in TensorRT, modifying the default model name into a newly added PB model name, and modifying the able map file path into a newly added able map file path;
④ configuring a serial port to realize recognition result output, modifying the result output part of the visualization. py file under the utils directory of TensorRT, increasing serial port data output, and realizing the serial port output of the recognition result;
step two, after the training is finished, garbage classification is started:
①, garbage is thrown in through the garbage throwing port by a user, when the garbage is thrown in, the first photoelectric switch sensor is triggered, the garbage falls into the identification and classification tray, the trigger signal wakes up the STM32 controller in a dormant state, and the STM32 controller wakes up the image identification component;
② garbage image acquisition, wherein the light sensor detects illumination intensity and sends the illumination intensity information to the STM32 controller, the STM32 controller controls the on-off of the annular light supplement lamp and adjusts the illumination intensity to provide proper illumination intensity for the camera to acquire garbage images;
③ garbage recognition, wherein the camera sends the collected garbage image to a Vision Bonnet neural network operation card of the image recognition component to perform feature recognition on the garbage image, and the image recognition component transmits the recognition result to the STM32 controller;
④, classifying and throwing garbage, STM32 controlling garbage according to the recognition result and controlling the V-shaped baffle to convey the garbage to a corresponding garbage throwing area according to the classification result, meanwhile, detecting the capacity condition of the sub-garbage cans by the STM32 controller through the second photoelectric switch sensor, manually cleaning the corresponding sub-garbage cans if the sub-garbage cans are full, rotating the openings of the rotary baffles to the corresponding garbage throwing openings if the corresponding sub-garbage cans are not full, opening the corresponding garbage throwing openings, dropping the garbage into the sub-garbage cans, and returning the V-shaped baffle and the rotary baffles to the initial positions to finish the garbage classification process.
5. The method of claim 4, wherein in step one, pictures of various spam objects are taken at different times, obtained through a network, and filtered from the MS COCO data set.
6. The method for garbage classification according to claim 5, wherein in the first step, the specific method for screening the images of various garbage objects from the MS COCO data set is as follows: and screening out a corresponding object classification list from the MS COCO data set, and extracting training pictures from the train and val folders of the MS COCO data set according to the classification list.
7. The garbage classification method according to the claim 4, wherein in the second step, the STM32 controller detects the capacity condition of the sub-garbage can through the second photoelectric switch sensor; if the corresponding sub-garbage can is full, a loudspeaker in the STM32 controller sends out corresponding prompt tones to carry out manual cleaning; if the corresponding sub-garbage can is not full, the loudspeaker emits corresponding garbage dumping prompt sound, the opening of the rotary baffle plate rotates to the corresponding garbage throwing opening, the corresponding garbage throwing opening is opened, and the garbage falls into the sub-garbage can; then the STM32 controller and the image recognition component enter a dormant state, and the light supplement lamp is turned off; the garbage classification process is completed.
CN201911189565.8A 2019-11-28 2019-11-28 Automatic classification garbage can based on visual identification and classification method Pending CN110861852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911189565.8A CN110861852A (en) 2019-11-28 2019-11-28 Automatic classification garbage can based on visual identification and classification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911189565.8A CN110861852A (en) 2019-11-28 2019-11-28 Automatic classification garbage can based on visual identification and classification method

Publications (1)

Publication Number Publication Date
CN110861852A true CN110861852A (en) 2020-03-06

Family

ID=69655503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911189565.8A Pending CN110861852A (en) 2019-11-28 2019-11-28 Automatic classification garbage can based on visual identification and classification method

Country Status (1)

Country Link
CN (1) CN110861852A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111332651A (en) * 2020-03-16 2020-06-26 河海大学常州校区 Photoelectric sensing garbage bin based on degree of depth study
CN111498333A (en) * 2020-05-11 2020-08-07 桂林电子科技大学 Intelligent classification garbage can
CN111498326A (en) * 2020-04-03 2020-08-07 成都禧来科技有限公司 Automatic garbage classifier based on two-class recognition model
CN111674762A (en) * 2020-06-22 2020-09-18 南通大学 Intelligent classification dustbin
CN111717560A (en) * 2020-06-14 2020-09-29 武汉理工大学 Intelligent classification garbage bin based on computer vision technique
CN111874486A (en) * 2020-07-28 2020-11-03 重庆邮电大学 Novel intelligent garbage classification and recovery equipment
CN111887610A (en) * 2020-08-05 2020-11-06 江西财经大学 Automatic classification and arrangement device for financial files
CN111891593A (en) * 2020-08-06 2020-11-06 上海应用技术大学 Intelligent garbage can
CN111942765A (en) * 2020-07-09 2020-11-17 浙江工业大学 Domestic automatic classification garbage bin
CN112320135A (en) * 2020-11-25 2021-02-05 北京轩昂环保科技股份有限公司 Intelligent classification dustbin
CN112478493A (en) * 2020-12-08 2021-03-12 天津工业大学 Household intelligent classification garbage can
CN112651318A (en) * 2020-12-19 2021-04-13 重庆市信息通信咨询设计院有限公司 Image recognition-based garbage classification method, device and system
CN112660655A (en) * 2020-12-10 2021-04-16 成都工业学院 Intelligent classification garbage bin based on degree of depth study
CN112693767A (en) * 2020-12-14 2021-04-23 秦郡酉 Garbage classification robot
CN112827846A (en) * 2021-01-04 2021-05-25 西安建筑科技大学 Automatic garbage classification device and method
CN112830129A (en) * 2021-03-05 2021-05-25 湘潭大学 Scenic spot rubbish intelligent classification system
CN112849814A (en) * 2020-12-30 2021-05-28 西安建筑科技大学 Garbage identification and throwing device and control method thereof
CN112938216A (en) * 2021-02-26 2021-06-11 三峡大学 Rotary garbage classification garbage can and classification method
CN113086450A (en) * 2021-04-16 2021-07-09 武汉理工大学 Rotary classification garbage can
CN113104449A (en) * 2021-04-09 2021-07-13 浙江工业大学 Intelligent classification garbage bin that can put in succession
CN113148477A (en) * 2021-04-30 2021-07-23 杭州电子科技大学 Intelligent garbage can device
CN113148490A (en) * 2021-04-20 2021-07-23 杭州捷途慧声科技有限公司 Automatic garbage subpackaging device capable of continuously throwing garbage
CN113184406A (en) * 2021-05-12 2021-07-30 徐州木牛流马机器人科技有限公司 Kitchen waste classification method and equipment based on machine vision
CN113213005A (en) * 2021-04-26 2021-08-06 长春工程学院 Automatic change refuse classification processing apparatus
CN113335789A (en) * 2021-05-14 2021-09-03 华南理工大学 Integrated intelligent classification recycling dustbin and garbage classification recycling method
CN113353488A (en) * 2021-06-07 2021-09-07 淮南联合大学 Intelligent classification garbage bin based on vision
CN113401529A (en) * 2021-06-15 2021-09-17 北京科技大学 Automatic garbage classification device and method
CN113734649A (en) * 2021-09-17 2021-12-03 上海第二工业大学 Garbage classification device and method
CN113996543A (en) * 2021-10-09 2022-02-01 西安石油大学 Intelligent garbage sorting robot
ES2893149A1 (en) * 2020-07-28 2022-02-08 Cecotec Res And Development Residual container and associated waste management procedure (Machine-translation by Google Translate, not legally binding)
CN114655603A (en) * 2022-04-20 2022-06-24 湖北工业大学 Supplementary fallen leaves device
CN114735378A (en) * 2022-03-14 2022-07-12 中国矿业大学 Garbage classification device and garbage classification method
CN115057134A (en) * 2022-07-06 2022-09-16 江西高洁环保科技有限公司 Solid waste recognition and classification device
IT202100010637A1 (en) * 2021-04-27 2022-10-27 Re Learn Srl INTELLIGENT DEVICE FOR THE COLLECTION OF WASTE
CN116040157A (en) * 2023-01-13 2023-05-02 重庆大学 Intelligent garbage sorting and delivering device
IT202200010352A1 (en) * 2022-05-18 2023-11-18 Ganiga Innovation S R L AUTOMATIC BIN AND SYSTEM FOR SEPARATE WASTE COLLECTION
CN117152521A (en) * 2023-09-04 2023-12-01 长江大学 Garbage can device based on convolutional neural network and embedded technology and use method
CN113353488B (en) * 2021-06-07 2024-06-07 淮南联合大学 Intelligent classification garbage bin based on vision

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014100397A4 (en) * 2014-04-21 2014-05-22 Pujiang Jianfeng Environmental Science And Technology Co., Ltd An environmentally-friendly trash can
CN108197633A (en) * 2017-11-24 2018-06-22 百年金海科技有限公司 Deep learning image classification based on TensorFlow is with applying dispositions method
CN109214426A (en) * 2018-08-08 2019-01-15 王新维 A kind of method and deep neural network model of the detection of object appearance
CN109703937A (en) * 2018-12-26 2019-05-03 泰州职业技术学院 Intelligent garbage bin
CN110119662A (en) * 2018-03-29 2019-08-13 王胜春 A kind of rubbish category identification system based on deep learning
CN110342135A (en) * 2019-07-23 2019-10-18 彭立军 A kind of intelligent garbage identification sorter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014100397A4 (en) * 2014-04-21 2014-05-22 Pujiang Jianfeng Environmental Science And Technology Co., Ltd An environmentally-friendly trash can
CN108197633A (en) * 2017-11-24 2018-06-22 百年金海科技有限公司 Deep learning image classification based on TensorFlow is with applying dispositions method
CN110119662A (en) * 2018-03-29 2019-08-13 王胜春 A kind of rubbish category identification system based on deep learning
CN109214426A (en) * 2018-08-08 2019-01-15 王新维 A kind of method and deep neural network model of the detection of object appearance
CN109703937A (en) * 2018-12-26 2019-05-03 泰州职业技术学院 Intelligent garbage bin
CN110342135A (en) * 2019-07-23 2019-10-18 彭立军 A kind of intelligent garbage identification sorter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
廖义奎: "《物联网移动软件开发》", 30 September 2019, 北京航空航天大学出版社 *

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111332651A (en) * 2020-03-16 2020-06-26 河海大学常州校区 Photoelectric sensing garbage bin based on degree of depth study
CN111498326A (en) * 2020-04-03 2020-08-07 成都禧来科技有限公司 Automatic garbage classifier based on two-class recognition model
CN111498333A (en) * 2020-05-11 2020-08-07 桂林电子科技大学 Intelligent classification garbage can
CN111498333B (en) * 2020-05-11 2023-09-19 桂林电子科技大学 Intelligent classification garbage can
CN111717560A (en) * 2020-06-14 2020-09-29 武汉理工大学 Intelligent classification garbage bin based on computer vision technique
CN111674762A (en) * 2020-06-22 2020-09-18 南通大学 Intelligent classification dustbin
CN111942765A (en) * 2020-07-09 2020-11-17 浙江工业大学 Domestic automatic classification garbage bin
CN111942765B (en) * 2020-07-09 2024-05-07 浙江工业大学 Household automatic classification garbage can
CN111874486A (en) * 2020-07-28 2020-11-03 重庆邮电大学 Novel intelligent garbage classification and recovery equipment
ES2893149A1 (en) * 2020-07-28 2022-02-08 Cecotec Res And Development Residual container and associated waste management procedure (Machine-translation by Google Translate, not legally binding)
CN111887610A (en) * 2020-08-05 2020-11-06 江西财经大学 Automatic classification and arrangement device for financial files
CN111891593A (en) * 2020-08-06 2020-11-06 上海应用技术大学 Intelligent garbage can
CN111891593B (en) * 2020-08-06 2022-09-30 上海应用技术大学 Intelligent garbage can
CN112320135A (en) * 2020-11-25 2021-02-05 北京轩昂环保科技股份有限公司 Intelligent classification dustbin
CN112320135B (en) * 2020-11-25 2021-11-19 轩昂环保科技股份有限公司 Intelligent classification dustbin
CN112478493A (en) * 2020-12-08 2021-03-12 天津工业大学 Household intelligent classification garbage can
CN112478493B (en) * 2020-12-08 2022-09-13 天津工业大学 Household intelligent classification garbage can
CN112660655A (en) * 2020-12-10 2021-04-16 成都工业学院 Intelligent classification garbage bin based on degree of depth study
CN112693767A (en) * 2020-12-14 2021-04-23 秦郡酉 Garbage classification robot
CN112651318A (en) * 2020-12-19 2021-04-13 重庆市信息通信咨询设计院有限公司 Image recognition-based garbage classification method, device and system
CN112849814A (en) * 2020-12-30 2021-05-28 西安建筑科技大学 Garbage identification and throwing device and control method thereof
CN112827846B (en) * 2021-01-04 2023-08-22 西安建筑科技大学 Automatic garbage classification device and method
CN112827846A (en) * 2021-01-04 2021-05-25 西安建筑科技大学 Automatic garbage classification device and method
CN112938216A (en) * 2021-02-26 2021-06-11 三峡大学 Rotary garbage classification garbage can and classification method
CN112830129A (en) * 2021-03-05 2021-05-25 湘潭大学 Scenic spot rubbish intelligent classification system
CN113104449A (en) * 2021-04-09 2021-07-13 浙江工业大学 Intelligent classification garbage bin that can put in succession
CN113086450A (en) * 2021-04-16 2021-07-09 武汉理工大学 Rotary classification garbage can
CN113148490A (en) * 2021-04-20 2021-07-23 杭州捷途慧声科技有限公司 Automatic garbage subpackaging device capable of continuously throwing garbage
CN113213005A (en) * 2021-04-26 2021-08-06 长春工程学院 Automatic change refuse classification processing apparatus
IT202100010637A1 (en) * 2021-04-27 2022-10-27 Re Learn Srl INTELLIGENT DEVICE FOR THE COLLECTION OF WASTE
EP4082941A1 (en) * 2021-04-27 2022-11-02 Re Learn Srl Intelligent device for waste collection
CN113148477B (en) * 2021-04-30 2022-08-16 杭州电子科技大学 Intelligent garbage can device
CN113148477A (en) * 2021-04-30 2021-07-23 杭州电子科技大学 Intelligent garbage can device
CN113184406A (en) * 2021-05-12 2021-07-30 徐州木牛流马机器人科技有限公司 Kitchen waste classification method and equipment based on machine vision
CN113335789A (en) * 2021-05-14 2021-09-03 华南理工大学 Integrated intelligent classification recycling dustbin and garbage classification recycling method
CN113353488B (en) * 2021-06-07 2024-06-07 淮南联合大学 Intelligent classification garbage bin based on vision
CN113353488A (en) * 2021-06-07 2021-09-07 淮南联合大学 Intelligent classification garbage bin based on vision
CN113401529A (en) * 2021-06-15 2021-09-17 北京科技大学 Automatic garbage classification device and method
CN113734649A (en) * 2021-09-17 2021-12-03 上海第二工业大学 Garbage classification device and method
CN113996543A (en) * 2021-10-09 2022-02-01 西安石油大学 Intelligent garbage sorting robot
CN113996543B (en) * 2021-10-09 2023-11-10 西安石油大学 Intelligent garbage sorting robot
CN114735378A (en) * 2022-03-14 2022-07-12 中国矿业大学 Garbage classification device and garbage classification method
CN114655603A (en) * 2022-04-20 2022-06-24 湖北工业大学 Supplementary fallen leaves device
IT202200010352A1 (en) * 2022-05-18 2023-11-18 Ganiga Innovation S R L AUTOMATIC BIN AND SYSTEM FOR SEPARATE WASTE COLLECTION
WO2023223252A1 (en) * 2022-05-18 2023-11-23 Ganiga Innovation S.R.L. Automatic bin and system for separate waste collection
CN115057134A (en) * 2022-07-06 2022-09-16 江西高洁环保科技有限公司 Solid waste recognition and classification device
CN116040157A (en) * 2023-01-13 2023-05-02 重庆大学 Intelligent garbage sorting and delivering device
CN117152521A (en) * 2023-09-04 2023-12-01 长江大学 Garbage can device based on convolutional neural network and embedded technology and use method

Similar Documents

Publication Publication Date Title
CN110861852A (en) Automatic classification garbage can based on visual identification and classification method
CN110884791A (en) Vision garbage classification system and classification method based on TensorFlow
CN109928107B (en) Automatic classification system
CN203782622U (en) Intelligent garbage-collecting-sorting educating robot
CN110861854B (en) Intelligent garbage classification device and intelligent garbage classification method
CN204595990U (en) Coin classifier
CN110861851A (en) Community garbage classification system and method based on Internet of things
CN110589282A (en) Intelligent garbage classification method based on machine learning and automatic garbage sorting device
CN110466911A (en) Automatic sorting garbage bin and classification method
CN212654888U (en) Automatic categorised intelligent garbage bin
CN104148301A (en) Waste plastic bottle sorting device and method on basis of cloud computing and image recognition
CN204056879U (en) Can intelligent weighing classified garbage box monitored
CN113213005A (en) Automatic change refuse classification processing apparatus
CN210823781U (en) Environmental protection intelligent recognition waste classification collection box
CN210593593U (en) Intelligent voice recognition automatic classification garbage can
CN109573403A (en) Novel and multifunctional intelligent dustbin and application method
CN110654738A (en) Automatic garbage classification and recovery device and method based on natural language processing
CN111332651A (en) Photoelectric sensing garbage bin based on degree of depth study
CN206798308U (en) A kind of automatic recovery rewarding device of refuse classification detection
CN110758932A (en) Automatic garbage classification mechanism and classification method
CN113104449A (en) Intelligent classification garbage bin that can put in succession
CN113371363A (en) Classified garbage can, intelligent classified garbage can based on deep learning and classification method
CN110155556A (en) A kind of intelligent classification dustbin
CN204210972U (en) A kind of waste intelligent classification reclaims module
CN210504190U (en) Automatic garbage classification recognition device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200306

RJ01 Rejection of invention patent application after publication